
6. Appendix

6.1. Detailed Architecture

We show the detailed architecture of QRes-VAE (34M)

in Fig. 7, in which we assume the input resolution is 64×64
as an example. Detailed description of network blocks is

provided in the caption.

Since our model is fully convolutional, the input image

size is arbitrary as long as both sides are divisible by 64 pix-

els. This requirement is because our model downsamples an

image by a ratio of 64 at maximum. In practical cases where

the input resolution is not divisible by 64 pixels, we pad the

image on the right and bottom borders using the edge values

(also known as the replicate padding) to make both sides di-

visible by 64 pixels. When computing evaluation metrics,

we crop the reconstructed image to the original resolution

(i.e., the one before padding).

Also note that our model has a learnable constant at the

beginning of the top-down path (i.e., on the right most side

of Fig. 7a and Fig. 7b). The constant feature has a shape of

1 × 1 × C, where C denotes the number of channels, for

64× 64 images. When the input image is larger, say, 256×
256, we simply replicate the constant feature accordingly,

e.g., 4× 4× C in this case.

6.2. Loss Function

Recall that the training objective of VAE is to minimize

the variational upper bound on the data log-likelihood:

L = DKL(qZ|x ‖ pZ) + EqZ|x

[
log

1

pX|Z(x|Z)

]

= EqZ|x

[
log

qZ|X(Z|x)
pZ(Z)

+ log
1

pX|Z(x|Z)

]
,

(11)

where x is a given image in the training set. In the ResNet

VAE, the posterior and prior has the form:

qZ|X(z|x) � qZ|X(z1, ..., zN |x)
= qN (zN |z<N , x) · · · q1(z1|x)

pZ(z) � pZ(z1, ..., zN)

= pN (zN |z<N) · · · p1(z2|z1)p1(z1),

(12)

Plug this into the VAE objective, we have

L = EqZ|x

[
N∑
i=1

log
qi(zi|z<i, x)

pi(zi|z<i)
+ log

1

pX|Z(x|Z)

]
.

(13)

In our model, the posteriors qi are uniform, so on the sup-

port of the PDF qZ|x, we have qi(zi|z<i, x) = 1, ∀i. Also

recall our likelihood term pX|Z(x|Z) ∝ e−λ·d(x̂,x). Putting

QRes-VAE (17M) QRes-VAE (34M)

Training set CelebA train COCO 2017 train

images 182,637 118,287

Image size 64x64 Around 640x420

Data augment. - Crop, h-flip

Train input size 64x64 256x256

Optimizer Adam Adam

Learning rate 2× 10−4 2× 10−4

LR schedule Constant Constant

Weight decay 0.0 0.0

Batch size 256 64

epochs 200 400

images seen 36.5M 47.3M

Gradient clip 5.0 2.0

EMA 0.9999 0.9999

GPUs 4 × 1080 ti 4 × RTX 6000

Time 20h 85h

Table 4. Training hyperparameters.

them altogether, we have

L = EqZ|x

[
N∑
i=1

log
1

pi(zi|z<i)
+ λ · d(x, x̂)

]
+ constant.

(14)

6.3. Training Details

Detailed hyperparameters are listed in Table. 4, where

“h-clip” denotes random horizontal flipping, and EMA

stands for weights exponential moving averaging. In our

experiments, we find that the learning rate and gradient clip

should be set carefully to avoid gradient exploding, possi-

bly caused by the large KL divergence (i.e., high bit rates)

when the prior fails to match the posterior.

6.4. Rate-Distortion Performance

We provide the numbers of our rate-distortion curves in

Table 5 and Table 6, where we show both the estimated,

theoretical bit rate (computed from the KL divergence) as

well as the actual bit rate (after entropy coding). We note

that on Kodak images (Table 5), our actual bit rate results in

an overhead when compared to the estimated bit rate. This

overhead remains approximately a constant of about 0.003

bpp for all bit rates. In experiments, we find that this over-

head is rooted in the entropy coding algorithm, which con-

stantly uses extra 64 bits in each bitstream. Since our model

produces 12 bitstreams for each image, for Kodak images

(512× 768) we obtain a constant bpp overhead of

12× 64 bits

512× 768
≈ 0.002 bits, (15)

which approximately matches the overhead we observed in

Table 5. Note that as the image resolution increases, the

11

6

64

64

6

8x8
384

6 4 2

1

1x1, 384

16x16
192

4x4
384

2x2
384

1x1
384

2333

2x2
384

4x4
384

8x8
384

16x16
192

16x16
192

16x16
192

64

64

C
onvN

eXt

C
onv 4x4, s4

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

Stochastic
blocks

Shuffle
C

onv 1x1, s1

Stochastic
blocks

Shuffle
C

onv 1x1, s1

Stochastic
blocks

Shuffle
C

onv 1x1, s1

Stochastic
blocks

Shuffle
C

onv 1x1, s1

Shuffle
C

onv 1x1, s1

Stochastic
blocks

(a) QRes-VAE (34M). We train this model on COCO dataset and use it for natural image compression.

6

64

64

6

8x8
288

4 2

1

1x1, 288

16x16
144

4x4
288

1x1
288

245

4x4
288

8x8
288

16x16
144

16x16
144

16x16
144

64

64

C
onvN

eXt

C
onv 4x4, s4

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

C
onvN

eXt
C

onv 2x2, s2

C
onvN

eXt

C
onvN

eXt
C

onv 4x4, s4

C
onvN

eXt

Stochastic
blocks

Stochastic
blocks

Stochastic
blocks

Shuffle
C

onv 1x1, s1

Stochastic
blocks

N
earest

up-sam
ple 4x

Transposed
C

onv 3x3, s2

Transposed
C

onv 5x5, s2
(b) QRes-VAE (17M). We train this model on CelebA dataset (human face images) and use it for ablation study. Note that in addition to pixel shuffle, we

also use nearest upsampling and transposed convolutions for feature map upsampling. The choices of these upsampling operations are arbitrary and do not

visibly impact the model performance. We adopt this combination in early development and did not further tune them.

Figure 7. Detailed architecture of QRes-VAE (64x64 input as an example). Numbers on the arrows denote the feature map dimension. For

example, “16x16 192” means a feature map that is 16× 16 in height and width, with 192 channels. “Conv 4x4, s4” means a convolutional

layer with kernel size 4 × 4 and stride 4. “ConvNeXt” [27] is a modern residual block with depth-wise convolution, layer normalization,

linear layers, and GeLU activation. “Shuffle” is the pixel shuffle operation [36] as often used in super resolution methods.

percentage of the extra bit rate caused by entropy coding

will asymptotically decreases to zero. As we can observe in

Table 6, on CLIC images (around 2048× 1365), the actual

bit rate is very close to the estimated bit rate, sometimes

even smaller than estimated ones, for example when λ =
2048.

Note that the reported results of QRes-VAE in the main

experiments are the actual bit rates, which is computed after

entropy coding.

6.5. Comparison with theoretical bounds

As we introduced in the related works, VAEs can be used

for computing upper bounds on the information R-D func-

tion of images. We compare our method with one such up-

per bound, which is computed by a ResNet VAE by Yang

et al. [54], in Fig. 8. The blue curve in the figure is an up-

per bound of the (information) R-D function of Kodak im-

ages, and when viewed in the PSNR-bpp plane, it is a lower

bound of the optimal achievable PSNR-bpp curve. We ob-

serve that although our approach improves upon previous

method, it is still far from (a lower bound of) the theoretical

limit, and further research is required to approach the limit

of compression.

6.6. Bit Rate Distribution

Recall that our model produces 12 bitstreams for each

image, where each bitstream corresponds to a separate la-

tent variable. We visualize how the overall bit rate dis-

tributes over latent variables in Fig. 9. Results are aver-

aged over the Kodak images. We also notice the posterior

collapse, i.e., VAEs learn to ignore latent variables, in our

models. For example, Z2 is ignored by our λ = 64 model.

Posterior collapse is a commonly known problem is VAEs,

and future work need to be conducted to address this issue.

12

λ 16 32 64 128 256 512 1024 2048

Bpp (estimated) 0.17960 0.29680 0.44780 0.66960 0.94993 1.28291 1.74430 2.35219

Bpp (entropy coding) 0.18352 0.30125 0.45200 0.67388 0.95406 1.28697 1.74814 2.35659

PSNR 30.0210 31.9801 33.8986 36.1126 38.1649 40.2613 42.2478 44.3549

Table 5. Rate-distortion performance of QRes-VAE (34M) on Kodak images.

λ 16 32 64 128 256 512 1024 2048

Bpp (estimated) 0.15370 0.24236 0.35435 0.54013 0.79785 1.10251 1.55179 2.14681

Bpp (entropy coding) 0.15405 0.24315 0.35457 0.54065 0.79773 1.10183 1.55027 2.14379

PSNR 30.6719 32.7126 34.1318 36.2879 38.2443 40.2436 42.1072 44.0814

Table 6. Rate-distortion performance of QRes-VAE (34M) on CLIC 2022 test set.

Figure 8. Comparing QRes-VAE (34M) with the an achievable

PSNR-rate curve computed by ResNet VAE (blue line), taken

from [54]. We can observe that there is still a large room for im-

provement (around 1dB at all bit rates) for lossy coders.

6.7. Generalization to Various Image Resolutions

In our main experiments on natural image compression,

we can observe that our model behaves stronger on Kodak

than on the CLIC 2022 test set, in the sense that our BD-

rate on Kodak is more than 3% better than the Invertible

Enc. model [52], while on CLIC this advantage reduces to

around 1.5%. We hypothesize that this is because our model

is trained on COCO dataset, which has a relatively low res-

olution (around 640×420 pixels) that better matches Kodak

than CLIC. A better match between training/testing image

resolution causes the probabilistic model optimized for the

training set also match the testing set, leading to better com-

pression efficiency.

To study this effect quantitatively, we resize the CLIC

test set images, whose original resolutions are around

1, 365×2, 048, such that the longer sides of all images equal

to r, which we choose from the following resolutions:

r ∈ {192, 256, 384, 512, 768, 1024, 1536, 2048}. (16)

Then, we evaluate our model as well as two baselines, Min-

nen 2018 Joint AR & H [30] and Cheng 2020 LIC [10],

at each resolution. Both of the two baselines are obtained

from the CompressAI2 codebase and have been trained on

the same high resolution dataset.

Results are shown in Fig. 10. We observe that as the

resolution r increases, the BD-rate of our model w.r.t. the

baseline gets worse, from −24.6% at r = 192 to −16.2%
at r = 2048. In contrast, the BD-rate between two base-

lines remains relatively unchanged, ranging from −8.6% to

−10.0%. We thus conclude that QRes-VAE (34M) model,

which is trained on COCO dataset, is stronger at lower reso-

lutions than higher resolutions. How to design lossy coders

that generalize to all resolution images is an interesting but

challenging problem, which we leave to future work.

6.8. MS-SSIM as the distortion metric

Our model posit no constraints on the distortion metric

d(·), so a different metric other than MSE could be used.

For an example, we train our smaller model, QRes-VAE

(17M), on the CelebA 64 × 64 dataset to optimize for MS-

SSIM [55]. Since MS-SSIM is a similarity metric, we let

d(x, x̂) � 1− MS-SSIM(x, x̂). (17)

Results are shown in Fig. 11, where we also train the Joint

AR & H model [30] as the baseline. We observe that our

smaller model outperforms the baseline at all bit rates in

terms of MS-SSIM, showing that our approach could gen-

eralize to using different distortion metrics.

6.9. Lossless Compression

Although our method is primarily designed for lossy

compression, it can be easily extended to the lossless setting

2github.com/InterDigitalInc/CompressAI

13

Figure 9. QRes-VAE (34M) bit rate distribution over latent variables. Rows correspond to models for different bit rates, i.e., trained with

different λ. Z1, Z2, ..., Z12 are the latent variables, where Z1 has the smallest (spatial) dimension (64× downsampled w.r.t. the input

image) and Z12 has the largest dimension (4× downsampled w.r.t. the input image). See also Fig. 7a for correspondence. We observe a

similar trend for all models: latent variables with higher dimension cost more bit rates.

Figure 10. We resize the CLIC 2022 test set images such that their longer size equals to r (shown in each subplot), and we evaluate our

approach as well as baseline methods on these downsampled images. At each resolution, BD-rate is computed w.r.t. the Joint AR & H

model. We observe that our QRes-VAE (34M) is stronger at lower image resolutions.

by using a discrete data likelihood term pX|Z(·). Specif-

ically, we let pX|Z(·) be a discretized Gaussian, which

is the same as our prior distributions when at compres-

sion/decompression. Instead of predicting a reconstruction

x̂ as in lossy compression, we predict the mean and scale

(i.e., standard deviation) of the discretized Gaussian using a

single convolutional layer at the end of the top-down path,

which enables losslessly coding of the original image x.

We start from the QRes-VAE (34M) trained at λ = 2048,

and we fine-tune for lossless compression for 200 epochs on

COCO. Other training settings are the same as QRes-VAE

(34M) shown in Table 4. We show the lossless compres-

sion results in Table 7. The QRes-VAE (lossless) is better

than PNG but is still behind better lossless codecs such as

WebP. We want to emphasize that our network architecture

is not optimized for lossless compression, and this prelim-

inary result nevertheless shows the potential possibility of

a unified neural network model for both lossy and lossless

image compression.

14

Figure 11. MS-SSIM results of QRes-VAE (17M) on CelebA. Our

model is better than the baseline method.

Kodak bpp

PNG 13.40

WebP 9.579

QRes-VAE (lossless) 10.37

Table 7. Results on lossless compression. Although not designed

for lossless compression, our model achieves similar performance

compared to common methods.

15

