
Appendix: Neural Weight Search for Scalable Task Incremental Learning

Jian Jiang and Oya Celiktutan

Department of Engineering, King’s College London, London, UK
{jian.jiang, oya.celiktutan}@kcl.ac.uk

In this appendix we present supplementary materials as
follows: Insights into Neural Weight Search are presented
in Section 1. Ablation studies are shown in Section 2. Ex-
periments of our method conducted with different hyperpa-
rameters are shown in Section 3. Training setup for different
network architecture are in Section 4. Implementation de-
tails of the baselines used in the main paper are discussed in
Section 5. Visualisations of distributions of kernel indices
are shown in Section 6.

1. Insights into Neural Weight Search

In transfer learning [10, 13], weights of layers from a
pretrained model can be reused for finetuning new models.
Considering the training cost, one efficient way is freezing
parts of weights and finetuning the rest, e.g., fixing the low-
level weights and retraining the high-level weights and vice
versa. However, conducting finetuning on all weights can
usually increase learning ability. Intuitively, it is inevitable
that some weights of good generalization ability are updated
during the finetuning and updated weights may be not suit-
able for finetuning other models.

Given a set of well-generalized weights, is it possible to
utilize them to build a model without changing their values?
Motivated by this, we propose a new problem setting named
Neural Weight Search (NWS). Distinctive from conven-
tional finetuning strategies, NWS aims to search optimal
combinations of frozen weights from a search space with
repetition to build different models instead of changing
the values of weights. In this way, the re-utilization of
weights is maximized, resulting in a large memory reduc-
tion. Nonetheless, we need to take care of the computation
cost of the search process which is influenced by two main
factors: (1) the size of the search space. (2) the searching
strategy. Note that, the computation workload and the run-
ning time of a searched model during the inference are the
same as those of a vanilla finetuned model. We elaborate on
how to design the search space in the rest of this section.

Search Space: We recommend using grouped weights

as elements to reduce the size of the search space because
treating each weight scalar as an element will induce a
search space of large size. In the main paper, we focus on
convolution networks so we can group weights in convo-
lution kernels, e.g., for a kernel with size 3 × 3, 9 weight
values are grouped together. In terms of a fully connected
(FC) layer, although its weights cannot be grouped into ker-
nels, it is also feasible to divide weights into groups with
different strategies. For instance, given an FC layer with
input size 4 and output size 6, weights can be divided into
6 groups with each group having 4 × 1 weight scalars or 4
groups with each group having 2 × 3 weight scalars. We
leave this direction to readers.

2. Ablation Studies
We study the individual impact of two modifications, i.e.,

pretrained pools, and initialisation of temporary kernels, on
the performance of our proposed method using the Split-
CIFAR-100 dataset. More explicitly, we conduct the fol-
lowing experiments: 1) We evaluate the importance of the
generalization of weights in pools by pretraining the NWS
using a subset (100 classes) of ImageNet (NWS-subImg)
and the original version (Original) is pretrained using the
full set. 2) We use randomly initialized temporary weights
for each new task (NWS-random). As shown in Table 1,
pretraining NWS with more classes (Original vs. NWS-
subImg) on ImageNet benefits incremental learning, imply-
ing that more data helps NWS learn more distinctive and
generalized weights. NWS-random has the worst average
accuracy, demonstrating the importance of the initialisation
of temporary kernels.

3. Different Hyperparameters
We evaluate our method from several aspects: optimizer,

learning rate (LR), beta (the coefficient in the Eq. 3 in the
main paper), and random seed. For stochastic gradient de-
scent (SGD), we used the same setting as that used in our
main paper. More specifically, we use 0.9 as momentum,



Table 1: Ablation studies on the Split-CIFAR-100 dataset. NWS-subImg: NWS pretrained using a portion of the ImageNet.
NWS-random: NWS with randomly initialised temporary kernels.

Method Average Accuracy (%) Per Task (MB) Assist (MB) Total (MB)
Original 73.4 1.6 1.3 33.9
NWS-subImg 72.5 1.6 1.3 34.1
NWS-random 68.7 1.5 1.3 32.0

4e-5 as weight decay, and set ‘Nesterov’ to ‘True’ for SGD.
For Adam optimizer, we use Pytorch default setting to ini-
tialise. Milestones are used to divide the learning rate by 10
at certain epochs. We use milestones {50, 80} when SGD
optimizer is used and {50} for Adam optimiser. For ex-
ample, an initial learning rate 0.1 with milestones {50, 80}
will become 0.01 after epoch 50 and then become 0.001 af-
ter epoch 80. Results are reported in Table 2 and Table 3.
We also calculate the mean and standard deviation of aver-
age accuracy and total memory. Low standard deviations
show our model is stable.

We further investigate the impact of the size of a kernel
pool. We pretrain kernel pools with different sizes (128,
256, 512 and 1024) on Sub-ImageNet. We obtain average
results on 3 different seeds in Tab. 4. Results show that the
size of 512 achieves the best performance.

4. Different Model Architectures
As presented in Section 5.6 in the main paper, we test

another 3 different architectures: Resnet-34 [3], MobileNet-
V2 [8], VGG-16 [9]. In this section, we show the detailed
implementation and training setups.
Model modification. For Finetune-VGG16, We replace the
last 3 fully connected (FC) layers with a single FC layer to
reduce the training workload. For Finetune-MobileNet-V2,
we remove the Dropout layer in the classifier as our results
show Dropout can hinder its performance.
Pretraining. The baselines finetune a corresponding pre-
trained model (pretrained on ImageNet) for each task sepa-
rately and the pretrained model is taken from Pytorch model
zoo. The NWS-Res34 is pretrained for 160 epochs on Im-
ageNet while NWS-VGG16 and NWS-MobileNetV2 are
pretrained for 160 epochs on Sub-ImageNet.
Hyperparameters. We use Adam optimizer with an initial
learning rate of 0.01, a milestone of {50}, a batch size of 32
and epochs of 100 for all methods to train new models.

5. Baseline Implementation Details
As mentioned in Section 5.3 in the main paper, following

the previous works [5, 12], we use the same set of common
hyperparameters for comparing methods and our method.
More specifically, there are 5 common hyperparameters:
the initial learning rate, batch size, training epochs, at-

tributes of the optimizer and the scheduler. Here we show
the model-specific hyperparameters as followed.

• Finetune No extra model-specific hyperparameters.

• KSM [12]. We adapt from the official reposi-
tory KSM. We use default values of the learning rate
for the mask (2e-4) and initialization of the mask (1e-
2). It saves the statistics of batch normalization layers,
soft masks for each task, and a single shared backbone
for all tasks.

• PackNet [5]. We adapt from the repository CPG. The
prune ratio is set to the default value of 60%. The
model is finetuned from the backbone model for 100
epochs (in default) before pruning is conducted. Then
retraining the model for 30 (in default) epochs. It
learns a binary kernel-wise mask for each task and
updates the pretrained model. After the first task is
learned, it frees up the weights at a predefined ra-
tio (60%) and relearns the first task to obtain two
groups of weights, namely, 60% learnable weights and
40% fixed weights. It finetunes the released learnable
weights for the second task. After the second task is
trained, 60% of the learnable weights are freed up,
which means only 36% of the total weights remain
learnable, and so on. For each task, it saves the statis-
tics of batch normalization layers. Note that all tasks
share the same set of kernel masks; so the memory cost
of saving kernel masks does not change. The backbone
model is updated during the incremental training and
only the last updated backbone is saved. The learning
of the current model relies on the previous model only.

• AQD [1]. We adapt from the official repository AQD.
The bitwidths of feature quantization and weight quan-
tization are both 9 bits. It saves a quantised network for
each task.

6. Visualization of Distributions of Kernel In-
dices

To recap, the ResNet-18 has a total of 21 layers (includ-
ing short-cut layers). Consequently, the layer-wise kernel
pool for 8th, 13th, 18th layers are convolution layers with a
kernel size of 1×1 for short-cut function. The last layer (the

https://github.com/LYang-666/CVPR_2021_KSM
https://github.com/ivclab/CPG
https://github.com/aim-uofa/model-quantization


Table 2: Hyperparameters on split-CIFAR-100. ‘LR’ refers to the learning rate; ‘Beta’ refers to the coefficient; ‘Seed’ refers
to the random seed; ‘Memory’ refers to the total memory cost including saving the kernel pools; ‘Mean’ (‘STD’) refers to
the mean (standard deviation) of average accuracy or total memory.

Optimizer LR Beta Epoch Seed Average Accuracy (%) Memory
SGD 1e-1 0.5 100 1993 73.4 32.4
SGD 1e-1 0.5 100 1994 73.9 32.7
SGD 1e-1 0.5 100 1995 73.8 32.6
SGD 1e-2 0.1 100 1993 72.9 33.8
SGD 1e-2 0.1 100 1994 72.5 33.9
SGD 1e-2 0.1 100 1995 74.7 33.9
SGD 1e-2 0.5 100 1993 74.1 33.9
SGD 1e-2 0.5 100 1994 72.9 33.9
SGD 1e-2 0.5 100 1995 73.4 33.9
SGD 1e-2 1 100 1993 75.6 33.8
SGD 1e-2 1 100 1994 72.6 33.9
SGD 1e-2 1 100 1995 70.2 34.0
SGD 1e-3 0.5 100 1993 79.8 33.6
SGD 1e-3 0.5 100 1994 79.7 33.6
SGD 1e-3 0.5 100 1995 79.3 33.6
Mean 74.6 33.6
STD 2.85 0.54
Adam 1e-2 0.5 100 1993 71.0 25.4
Adam 1e-2 0.5 100 1994 71.3 25.6
Adam 1e-2 0.5 100 1995 71.9 25.7
Mean 71.6 25.6
STD 0.46 0.15

Table 3: Hyperparameters on CUB-to-Food. ‘LR’ refers to the learning rate; ‘Beta’ refers to the coefficient; ‘Seed’ refers to
the random seed; ‘Memory’ refers to the total memory cost including saving the kernel pools; ‘Mean’ (‘STD’) refers to the
mean (standard deviation) of average accuracy or total memory.

Optimizer LR Beta Epoch Seed Average Accuracy (%) Memory
SGD 1e-3 0.1 100 1993 81.7 9.9
SGD 1e-3 0.1 100 1994 81.0 9.9
SGD 1e-3 0.1 100 1995 81.4 9.9
Mean 81.4 9.9
STD 0.44 0.0
Adam 1e-3 0.1 100 1993 74.9 7.6
Adam 1e-3 0.1 100 1994 74.8 7.5
Adam 1e-3 0.1 100 1995 75.7 7.5
Mean 75.1 7.5
STD 0.49 0.06

21th layer), the replacement of an FC layer, is implemented
as 1× 1 convolution layer as well. The layer 1 has a kernel
size of 7× 7 and that of the remaining ones is 3× 3.

We visualise layer-wise distributions of selected kernel
indices of 5 trained models for CUB-to-Food , for the 21
layers, from Figure 1 to 5 respectively. In each subplot,
the x-axis is the kernel index and the y-axis is the Selection

Rate (SR) of a unique kernel. We define SR as hl
i/d

l, a
frequency of a kernel index i is selected. To recall, hl

u is
the selection times of a unique index and dl is the number
of required kernels to build the layer. Note that, SR is in
the range of [0, 1] and i is in the range of [0, 511]. We
observe that although the distributions of the same layer of
the two different tasks are similar, the ordering of indices is



Table 4: Impact of size (the number of kernels) of a pool. Pools are pretrained on Sub-ImageNet. Results are averaged on 3
different random seeds.

Size of a Kernel Pool Benchmark Average Accuracy (%) Memory
128 Split-CIFAR100 68.9 25.6
256 Split-CIFAR100 67.5 28.8
512 Split-CIFAR100 72.5 34.1
1024 Split-CIFAR100 66.2 39.1
128 Cub-to-Sketch 54.9 7.1
256 Cub-to-Sketch 48.7 8.2
512 Cub-to-Sketch 67.3 10.2
1024 Cub-to-Sketch 50.6 12.1

different.
The first two layers among tasks select some kernels

with a rate larger than 0.3, resulting in low diversity of
kernels while in other layers the selections of kernels are
more diverse. Our observations show that, for the first and
the second layers of the first task, more than 30% of the
selected kernels are the same kernel. We observe similar
distributions of the same layer among different tasks. In-
tuitively, frequently selected kernels are helpful because of
their generality but it is hard to infer the actual factor induc-
ing the dominance. To give some insights, low-level ker-
nels capture coarse common local features (e.g., line, curve,
and dot), high-level kernels extract fine-grained specialized
global features (e.g., ear, eye, and head), and the last layer
infers the class based on high-level features. Therefore, we
conjecture that low-level kernels are less diverse and high
diversity is necessary for high-level kernels to ensure spe-
cialisation. Besides, it may be because the former layers
have a less number of kernels, while the later layers are
over-parameterized. In other words, more kernels in a layer
naturally lead to a more diverse selection of kernels from
the corresponding kernel pool.

References
[1] Peng Chen, Jing Liu, Bohan Zhuang, Mingkui Tan, and

Chunhua Shen. Aqd: Towards accurate quantized object
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 104–113,
2021.

[2] Mathias Eitz, James Hays, and Marc Alexa. How do hu-
mans sketch objects? ACM Transactions on graphics (TOG),
31(4):1–10, 2012.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[4] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[5] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018.

[6] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In In-
dian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008.

[7] Babak Saleh and Ahmed Elgammal. Large-scale classifica-
tion of fine-art paintings: Learning the right metric on the
right feature. arXiv preprint arXiv:1505.00855, 2015.

[8] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018.

[9] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[10] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,
Chao Yang, and Chunfang Liu. A survey on deep transfer
learning. In International conference on artificial neural net-
works, pages 270–279. Springer, 2018.

[11] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010.

[12] Li Yang, Zhezhi He, Junshan Zhang, and Deliang Fan. Ksm:
Fast multiple task adaption via kernel-wise soft mask learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13845–13853,
2021.

[13] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2020.



0 200 400
Kernel Index

0.0

0.1

0.2

0.3

Se
le

ct
io

n 
R

at
e

task = 1 | layer = 1

0 200 400
Kernel Index

0.0

0.2

0.4

task = 1 | layer = 2

0 200 400
Kernel Index

0.00

0.01

0.02

task = 1 | layer = 3

0 200 400
Kernel Index

0.00

0.01

0.02

task = 1 | layer = 4

0 200 400
Kernel Index

0.00

0.01

0.02

task = 1 | layer = 5

0 200 400
Kernel Index

0.000

0.005

0.010

task = 1 | layer = 6

0 200 400
Kernel Index

0.000

0.005

0.010

task = 1 | layer = 7

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

Se
le

ct
io

n 
R

at
e

task = 1 | layer = 8

0 200 400
Kernel Index

0.000

0.005

0.010

task = 1 | layer = 9

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

task = 1 | layer = 10

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 1 | layer = 11

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 1 | layer = 12

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 1 | layer = 13

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 1 | layer = 14

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

Se
le

ct
io

n 
R

at
e

task = 1 | layer = 15

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 1 | layer = 16

0 200 400
Kernel Index

0.000

0.002

0.004

task = 1 | layer = 17

0 200 400
Kernel Index

0.000

0.005

0.010

task = 1 | layer = 18

0 200 400
Kernel Index

0.000

0.002

0.004

task = 1 | layer = 19

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100

task = 1 | layer = 20

0 200 400
Kernel Index

0.000

0.005

0.010

task = 1 | layer = 21

Figure 1: Visualization of the distribution of selected kernel indices of the model trained on CUB [11]

0 200 400
Kernel Index

0.0

0.1

0.2

0.3

Se
le

ct
io

n 
R

at
e

task = 2 | layer = 1

0 200 400
Kernel Index

0.0

0.2

0.4

task = 2 | layer = 2

0 200 400
Kernel Index

0.00

0.01

0.02

task = 2 | layer = 3

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

0.020

task = 2 | layer = 4

0 200 400
Kernel Index

0.00

0.01

0.02

task = 2 | layer = 5

0 200 400
Kernel Index

0.000

0.005

0.010

task = 2 | layer = 6

0 200 400
Kernel Index

0.000

0.005

0.010

task = 2 | layer = 7

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

Se
le

ct
io

n 
R

at
e

task = 2 | layer = 8

0 200 400
Kernel Index

0.000

0.005

0.010

task = 2 | layer = 9

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

task = 2 | layer = 10

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 2 | layer = 11

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 2 | layer = 12

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 2 | layer = 13

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 2 | layer = 14

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

Se
le

ct
io

n 
R

at
e

task = 2 | layer = 15

0 200 400
Kernel Index

0.000

0.002

0.004

0.006
task = 2 | layer = 16

0 200 400
Kernel Index

0.000

0.002

0.004

task = 2 | layer = 17

0 200 400
Kernel Index

0.000

0.005

0.010

task = 2 | layer = 18

0 200 400
Kernel Index

0.000

0.002

0.004

task = 2 | layer = 19

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100

task = 2 | layer = 20

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100

task = 2 | layer = 21

Figure 2: Visualization of the distribution of selected kernel indices of the model trained on Cars [4]



0 200 400
Kernel Index

0.0

0.1

0.2

0.3

Se
le

ct
io

n 
R

at
e

task = 3 | layer = 1

0 200 400
Kernel Index

0.0

0.2

0.4

task = 3 | layer = 2

0 200 400
Kernel Index

0.00

0.01

0.02

0.03
task = 3 | layer = 3

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

0.020

task = 3 | layer = 4

0 200 400
Kernel Index

0.00

0.01

0.02

task = 3 | layer = 5

0 200 400
Kernel Index

0.000

0.005

0.010

task = 3 | layer = 6

0 200 400
Kernel Index

0.000

0.005

0.010

task = 3 | layer = 7

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

Se
le

ct
io

n 
R

at
e

task = 3 | layer = 8

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 3 | layer = 9

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

0.020
task = 3 | layer = 10

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

task = 3 | layer = 11

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 3 | layer = 12

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 3 | layer = 13

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

task = 3 | layer = 14

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

Se
le

ct
io

n 
R

at
e

task = 3 | layer = 15

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 3 | layer = 16

0 200 400
Kernel Index

0.000

0.002

0.004

task = 3 | layer = 17

0 200 400
Kernel Index

0.000

0.005

0.010

task = 3 | layer = 18

0 200 400
Kernel Index

0.000

0.002

0.004

task = 3 | layer = 19

0 200 400
Kernel Index

0.000

0.005

0.010

task = 3 | layer = 20

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100
task = 3 | layer = 21

Figure 3: Visualization of the distribution of selected kernel indices of the model trained on Flowers [6]

0 200 400
Kernel Index

0.0

0.1

0.2

0.3

Se
le

ct
io

n 
R

at
e

task = 4 | layer = 1

0 200 400
Kernel Index

0.0

0.2

0.4

task = 4 | layer = 2

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

task = 4 | layer = 3

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 4 | layer = 4

0 200 400
Kernel Index

0.000

0.005

0.010

0.015
task = 4 | layer = 5

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 4 | layer = 6

0 200 400
Kernel Index

0.000

0.002

0.004

task = 4 | layer = 7

0 200 400
Kernel Index

0.000

0.005

0.010

Se
le

ct
io

n 
R

at
e

task = 4 | layer = 8

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

task = 4 | layer = 9

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100
task = 4 | layer = 10

0 200 400
Kernel Index

0.000

0.002

0.004

0.006
task = 4 | layer = 11

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 4 | layer = 12

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100

task = 4 | layer = 13

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 4 | layer = 14

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

Se
le

ct
io

n 
R

at
e

task = 4 | layer = 15

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 4 | layer = 16

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 4 | layer = 17

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 4 | layer = 18

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 4 | layer = 19

0 200 400
Kernel Index

0.00

0.02

0.04

task = 4 | layer = 20

0 200 400
Kernel Index

0.000

0.002

0.004

0.006
task = 4 | layer = 21

Figure 4: Visualization of the distribution of selected kernel indices of the model trained on WikiArt [7]



0 200 400
Kernel Index

0.0

0.1

0.2

0.3

Se
le

ct
io

n 
R

at
e

task = 5 | layer = 1

0 200 400
Kernel Index

0.0

0.2

0.4

task = 5 | layer = 2

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

task = 5 | layer = 3

0 200 400
Kernel Index

0.000

0.005

0.010

0.015

task = 5 | layer = 4

0 200 400
Kernel Index

0.000

0.005

0.010

task = 5 | layer = 5

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100
task = 5 | layer = 6

0 200 400
Kernel Index

0.000

0.002

0.004

0.006
task = 5 | layer = 7

0 200 400
Kernel Index

0.000

0.005

0.010

Se
le

ct
io

n 
R

at
e

task = 5 | layer = 8

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100

task = 5 | layer = 9

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100
task = 5 | layer = 10

0 200 400
Kernel Index

0.000

0.002

0.004

0.006
task = 5 | layer = 11

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

task = 5 | layer = 12

0 200 400
Kernel Index

0.0000

0.0025

0.0050

0.0075

0.0100
task = 5 | layer = 13

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 5 | layer = 14

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

Se
le

ct
io

n 
R

at
e

task = 5 | layer = 15

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 5 | layer = 16

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 5 | layer = 17

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 5 | layer = 18

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008

task = 5 | layer = 19

0 200 400
Kernel Index

0.00

0.02

0.04

task = 5 | layer = 20

0 200 400
Kernel Index

0.000

0.002

0.004

0.006

0.008
task = 5 | layer = 21

Figure 5: Visualization of the distribution of selected kernel indices of the model trained on Sketches [2]


