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1. Data Pre-processing

We follow the same data pre-processing pipeline as done
in Park ef al. [12]. The pipeline consists of a normalization
technique [15] initially introduced by Sugano et al. [13].
It is followed by face detection [4] and facial landmarks de-
tection [2] modules for which open-source implementations
are publicly available. The Surrey Face Model [7] is used
as a reference 3D face model. Further details can be found
in Park et al. [12]. To summarize, we use the public code!
provided by Park er al. [12] to produce image patches of
size 256 x 64 containing both eyes.

2. Architecture Details

Our framework CUDA-GHR. We use DenseNet archi-
tecture [5] to implement image encoder E,. The DenseNet
is formed with a growth rate of 32, 4 dense blocks (each
with four composite layers), and a compression factor of 1.
We use instance normalization [ 14] and leaky ReLLU activa-
tion function (o = 0.01) for all layers in the network. We
remove dropout and 1 x 1 convolution layers. The dimen-
sion of latent factor z® is set to be equal to 16. Thus, to
project CNN features to the latent features, we use global-
average pooling and pass through a fully-connected layer to
output 16-dimensional feature from E,. The gaze encoder
E, is a MLP-based block whose architecture is shown in
Table 1. The dimension of z9 is set as 8.

For the generator network G, we use HoloGAN [1 1] ar-
chitecture shown in Table 5. The latent vector z for each
AdalN [6] input is processed by a 1-layer MLP, and the ro-
tation layer is the same as the one used in the original pa-
per [11]. The latent domain discriminator D consists of
4 MLP layers as shown in Table 2. It takes the input of
dimension 24 and gives 1-dimensional output. Both image
discriminators D7 and Dg are PatchGAN [9] based net-
works as used in Zheng et al. [16]. The architecture of the
discriminator is described in Table 4.

https://github.com/swook/faze_preprocess

Table 1: Architecture of gaze encoder E

Layer name Activation Output shape
Fully connected LeakyReLU (« = 0.01) 2
Fully connected LeakyReLU (« = 0.01) 2
Fully connected LeakyReLU (« = 0.01) 2
Fully connected None 8

The task network 7 is a ResNet-50 [3] model with
batch normalization [8] replaced by instance normaliza-
tion [14] layers. It takes an input of 256 x 64 and gives
a 4-dimensional output describing pitch and yaw angles for
gaze and head directions. It is initialized with ImageNet [1]
pre-trained weights and is fine-tuned on the GazeCapture
training subset for around 190K iterations. The GazeCap-
ture validation subset is used to select the best-performing
model. The initial learning rate is 0.0016, decayed by a fac-
tor of 0.8 after about 34K iterations. Adam [10] optimizer
is used for optimization with a weight decay coefficient of
10~*. The architecture of 7 is summarized in Table 3.

Downstream Tasks. For gaze and head pose estimation,
we use similar architecture as employed for 7 shown in Ta-
ble 3. For all the experiments, the initial learning rate is
0.0001 decayed by a factor of 0.5 after every 1500 itera-
tions. The pre-trained models are trained for 10 epochs with
a batch size of 64 while fine-tuning is done for 5 epochs
with a batch size of 32.

State-of-the-art Baselines. We re-implement the ST-
ED [16] on images containing both eyes for a fair compar-
ison with our method using the public code’ available. We
use the same hyperparameters as provided by the original
implementation. For the accurate comparison, we replaced
tanh non-linearity with an identity function and removed a
constant factor of 0.57 in all the modules.

2https://qithub.com/zhenqyuf/STED—qaze



Table 2: Architecture of latent domain discriminator D i

Layer name Activation Output shape
Fully connected LeakyReLU (« = 0.01) 24
Fully connected LeakyReLU (a =0.01) 24
Fully connected LeakyReLU (« = 0.01) 24
Fully connected None 1

Table 3: Architecture of the task network 7

Module/Layer name Output shape
ResNet-50 layers with MaxPool stride=1 ~ 2048 x1x1
Fully connected 4

3. Additional Results

In Figures 1 and 2, we show additional qualitative results
for both target datasets, namely, MPIIGaze and Columbia.
Figure 1a and 2a represent gaze redirected images and Fig-
ure 1b and 2b show head redirected images.
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Table 4: Architecture of the image discriminator networks Dy and Dg. Note that, both the discriminators has the same
architecture.

Layer name Kernel, Stride, Padding Activation Normalization  Output shape
Conv2d 4x4,2,1 LeakyReLU (a =0.2) - 64x 32x128
Conv2d 4x4,2,1 LeakyReLU (v =0.2) InstanceNorm 128x16x64
Conv2d 4x4,2,1 LeakyReLU (a=0.2) InstanceNorm 256x8x32
Conv2d 4x4,1,1 LeakyReLU (o =0.2) InstanceNorm 512x7x31
Conv2d 4x4,1,1 - - 1x6x30
Table 5: Architecture of the generator network G
Layer name Kernel  Activation = Normalization Output shape
Learned Constant Input - - - 512x4x2x8
Upsampling - - - 512x8x4x16
Conv3d 3x3x3 LeakyReLU AdaIN 256x8x 4x16
Upsampling - - - 256x16x8x32
Conv3d 3x3x3 LeakyReLU AdaIN 128x16x8x32
Volume Rotation - - - 128x16x8x32
Conv3d 3x3x3 LeakyReLU - 64x16x8x32
Conv3d 3x3x3 LeakyReLU - 64x16x8x32
Reshape - - - (64 - 16)x8x32
Conv2d Ix1 LeakyReLU - 512x8x%x32
Conv2d 4x4 LeakyReLU AdaIN 256x8x%x32
Upsampling - - - 256x16x32
Conv2d 4x4 LeakyReLU AdaIN 64x16x64
Upsampling - - - 64x32x128
Conv2d 4x4 LeakyReLU AdalN 32x32x128
Upsampling - - - 32x64x256
Conv2d 4x4 Tanh - 3x64x256
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(a) Gaze Redirected images for MPIIGaze dataset (GazeCapture—MPIIGaze)
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Head Source Input Image FAZE [12] ST-ED [16] CUDA-GHR
(b) Head Redirected images for MPIIGaze dataset (GazeCapture—MPIIGaze)

Figure 1: Additional Qualitative Results (GazeCapture—MPIIGaze): More qualitative results on the MPIIGaze dataset.
l1a shows the gaze redirected images and 1b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
MPIIGaze dataset. Best viewed in color.
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(a) Gaze Redirected images for Columbia dataset (GazeCapture— Columbia)
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Head Source Input Image FAZE [12] ST-ED [16] CUDA-GHR

(b) Head Redirected images for Columbia dataset (GazeCapture— Columbia)

Figure 2: Additional Qualitative Results (GazeCapture— Columbia): Qualitative results on the Columbia dataset. 2a
shows the gaze redirected images and 2b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
Columbia dataset. Best viewed in color.



