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1. Data Pre-processing
We follow the same data pre-processing pipeline as done

in Park et al. [12]. The pipeline consists of a normalization
technique [15] initially introduced by Sugano et al. [13].
It is followed by face detection [4] and facial landmarks de-
tection [2] modules for which open-source implementations
are publicly available. The Surrey Face Model [7] is used
as a reference 3D face model. Further details can be found
in Park et al. [12]. To summarize, we use the public code1

provided by Park et al. [12] to produce image patches of
size 256× 64 containing both eyes.

2. Architecture Details
Our framework CUDA-GHR. We use DenseNet archi-
tecture [5] to implement image encoder Ea. The DenseNet
is formed with a growth rate of 32, 4 dense blocks (each
with four composite layers), and a compression factor of 1.
We use instance normalization [14] and leaky ReLU activa-
tion function (α = 0.01) for all layers in the network. We
remove dropout and 1 × 1 convolution layers. The dimen-
sion of latent factor za is set to be equal to 16. Thus, to
project CNN features to the latent features, we use global-
average pooling and pass through a fully-connected layer to
output 16-dimensional feature from Ea. The gaze encoder
Eg is a MLP-based block whose architecture is shown in
Table 1. The dimension of zg is set as 8.

For the generator network G, we use HoloGAN [11] ar-
chitecture shown in Table 5. The latent vector z for each
AdaIN [6] input is processed by a 1-layer MLP, and the ro-
tation layer is the same as the one used in the original pa-
per [11]. The latent domain discriminator DF consists of
4 MLP layers as shown in Table 2. It takes the input of
dimension 24 and gives 1-dimensional output. Both image
discriminators DT and DS are PatchGAN [9] based net-
works as used in Zheng et al. [16]. The architecture of the
discriminator is described in Table 4.

1https://github.com/swook/faze_preprocess

Table 1: Architecture of gaze encoder Eg

Layer name Activation Output shape
Fully connected LeakyReLU (α = 0.01) 2
Fully connected LeakyReLU (α = 0.01) 2
Fully connected LeakyReLU (α = 0.01) 2
Fully connected None 8

The task network T is a ResNet-50 [3] model with
batch normalization [8] replaced by instance normaliza-
tion [14] layers. It takes an input of 256 × 64 and gives
a 4-dimensional output describing pitch and yaw angles for
gaze and head directions. It is initialized with ImageNet [1]
pre-trained weights and is fine-tuned on the GazeCapture
training subset for around 190K iterations. The GazeCap-
ture validation subset is used to select the best-performing
model. The initial learning rate is 0.0016, decayed by a fac-
tor of 0.8 after about 34K iterations. Adam [10] optimizer
is used for optimization with a weight decay coefficient of
10−4. The architecture of T is summarized in Table 3.

Downstream Tasks. For gaze and head pose estimation,
we use similar architecture as employed for T shown in Ta-
ble 3. For all the experiments, the initial learning rate is
0.0001 decayed by a factor of 0.5 after every 1500 itera-
tions. The pre-trained models are trained for 10 epochs with
a batch size of 64 while fine-tuning is done for 5 epochs
with a batch size of 32.

State-of-the-art Baselines. We re-implement the ST-
ED [16] on images containing both eyes for a fair compar-
ison with our method using the public code2 available. We
use the same hyperparameters as provided by the original
implementation. For the accurate comparison, we replaced
tanh non-linearity with an identity function and removed a
constant factor of 0.5π in all the modules.

2https://github.com/zhengyuf/STED-gaze



Table 2: Architecture of latent domain discriminator DF

Layer name Activation Output shape
Fully connected LeakyReLU (α = 0.01) 24
Fully connected LeakyReLU (α = 0.01) 24
Fully connected LeakyReLU (α = 0.01) 24
Fully connected None 1

Table 3: Architecture of the task network T

Module/Layer name Output shape
ResNet-50 layers with MaxPool stride=1 2048×1×1
Fully connected 4

3. Additional Results
In Figures 1 and 2, we show additional qualitative results

for both target datasets, namely, MPIIGaze and Columbia.
Figure 1a and 2a represent gaze redirected images and Fig-
ure 1b and 2b show head redirected images.
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Table 4: Architecture of the image discriminator networks DT and DS . Note that, both the discriminators has the same
architecture.

Layer name Kernel, Stride, Padding Activation Normalization Output shape
Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) - 64× 32×128
Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) InstanceNorm 128×16×64
Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) InstanceNorm 256×8×32
Conv2d 4×4, 1, 1 LeakyReLU (α = 0.2) InstanceNorm 512×7×31
Conv2d 4×4, 1, 1 - - 1×6×30

Table 5: Architecture of the generator network G

Layer name Kernel Activation Normalization Output shape
Learned Constant Input - - - 512×4×2×8
Upsampling - - - 512×8×4×16
Conv3d 3×3×3 LeakyReLU AdaIN 256×8× 4×16
Upsampling - - - 256×16×8×32
Conv3d 3×3×3 LeakyReLU AdaIN 128×16×8×32
Volume Rotation - - - 128×16×8×32
Conv3d 3×3×3 LeakyReLU - 64×16×8×32
Conv3d 3×3×3 LeakyReLU - 64×16×8×32
Reshape - - - (64 · 16)×8×32
Conv2d 1×1 LeakyReLU - 512×8×32
Conv2d 4×4 LeakyReLU AdaIN 256×8×32
Upsampling - - - 256×16×32
Conv2d 4×4 LeakyReLU AdaIN 64×16×64
Upsampling - - - 64×32×128
Conv2d 4×4 LeakyReLU AdaIN 32×32×128
Upsampling - - - 32×64×256
Conv2d 4×4 Tanh - 3×64×256



Gaze Source Input Image FAZE [12] ST-ED [16] CUDA-GHR

(a) Gaze Redirected images for MPIIGaze dataset (GazeCapture→MPIIGaze)



Head Source Input Image FAZE [12] ST-ED [16] CUDA-GHR

(b) Head Redirected images for MPIIGaze dataset (GazeCapture→MPIIGaze)

Figure 1: Additional Qualitative Results (GazeCapture→MPIIGaze): More qualitative results on the MPIIGaze dataset.
1a shows the gaze redirected images and 1b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
MPIIGaze dataset. Best viewed in color.



Gaze Source Input Image FAZE [12] ST-ED [16] CUDA-GHR

(a) Gaze Redirected images for Columbia dataset (GazeCapture→Columbia)



Head Source Input Image FAZE [12] ST-ED [16] CUDA-GHR

(b) Head Redirected images for Columbia dataset (GazeCapture→Columbia)

Figure 2: Additional Qualitative Results (GazeCapture→Columbia): Qualitative results on the Columbia dataset. 2a
shows the gaze redirected images and 2b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
Columbia dataset. Best viewed in color.


