
Appendix
In a first step, we review the multi-crop strategy [5].

The pseudo-code for the global-crop algorithm and the
multi-crop algorithm can be respectively found in Algo-
rithm 1 and Algorithm 2. We then show visualizations of
the matchings which are enforced at training time, visual-
izations of the collapse of the similarity matching function
and visualizations of the correspondence mapping between
two different images based on the similarity of the local-
representations.

A. Details on Multi-Crop
Details on the multi-crop strategy [5] are left out in the

main paper for simplicity. For completeness, we give a re-
view of the multi-crop strategy and explicitly explain how
it affects our loss terms.

A.1. Review of Multi-Crop
In Section 3.2 we explain the data-augmentation pipeline

and how multiple augmentations of a single input image
are generated. To obtain an augmented image x̃ from an
input image x, we sample an augmentation vector w =
[wgeo,wpho] from some distribution Daug . This augmen-

Algorithm 1 Dual global-local self-distillation framework
Input: X : an unlabeled dataset, N : the number of augmen-
tations per input image, P: a photometric-augmentation
function, G: a geometric-augmentation function, Daug: an
augmentation-vector distribution, fs: a backbone student,
ft: a backbone teacher, OPTIMIZER: an optimizer
Output: Trained weights ✓t

1: ✓s = ✓t = ✓init

2: for epoch = 1 · · · NB EPOCHS do
3: for x 2 X do
4: for n 2 [N ] do
5: Sample wn = [wn

geo
,wn

pho
] from Daug

6: x̃n = P
⇣
G(x,wn

geo
),wn

pho

⌘

7: end for
8: Wgeo = {w1

geo
,w2

geo
,w3

geo
, · · · }

9: Infer E = {e1, e2, e3, · · · } from Wgeo

10: V = {x̃1, x̃2, x̃3, · · · }
11: Z̄s = {f̄s(x̃) : x̃ 2 V}
12: Z̄t = {f̄t(x̃) : x̃ 2 V}
13: Zs = {fs(x̃) : x̃ 2 V}
14: Zt = {ft(x̃) : x̃ 2 V}
15: L = LG + Lsim/geo

L
(Eq. (2), Eq. (7)/Eq. (5))

16: ✓s  OPTIMIZER(✓s,r✓sL)
17: end for
18: ✓t  �✓t + (1� �)✓s

19: end for
20: return ✓t

Figure 6. Example of the sampled locations using the multi-
crop strategy. 2 global- and 8 local-crops are respectively shown
in thick full lines and thin dashed.

tation vector parametrizes both the geometric- and pho-
tometric transforms that are applied to x. Spatial trans-
forms include CROP, RESIZE and HORIZONTAL FLIP
while photometric transforms include COLOR JITTER,
SOLARIZE, GAUSSIAN BLUR and GRAYSCALE. We de-
note the composition of all geometric transforms by G and
the composition of all photometric transforms by P. In Sec-
tion 3.2, we assumed that all augmentation vectors w are
sampled from the same distribution Daug . The multi-crop
strategy [5] removes this assumption. Instead, we segregate
augmentations into two categories, global- and local-crops.
Local-crops are taken from smaller regions of the input im-
age while global-crops are taken from larger ones. Local-
crops are also resized to 96 ⇥ 96 pixels while global-crops
are resized to 224 ⇥ 224 pixels. This is illustrated in Fig-
ure 6.

For every single original input image x, 2 global-crops
and NL = 8 local-crops are generated. All augmentation
vectors for local-crops are sampled from the same distribu-
tion DL

aug
while the augmentation vectors for global-crops

are individually sampled from two different distributions:
DG

aug1
and DG

aug2
. Given an input image x, the set of aug-

mentations V = {x̃1, x̃2, · · · x̃NL+2} is generated follow-
ing Algorithm 2. Lines 4-7 from Algorithm 1 can be re-
placed with all lines from Algorithm 2 to make it imple-
ment the multi-crop strategy. x̃1 and x̃2 correspond to the
global-crops while x̃3, x̃4, · · · , x̃2+NL correspond to the
local-crops. More details can be found in the code.

Algorithm 2 Algorithm 1 edit for multi-crop
4: Sample w1 = [w1
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aug1

5: x̃1 = P
⇣
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8: for n 2 {3, 4, · · · , 2 +NL} do
9: Sample wn = [wn

geo
,wn
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] from DL
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10: x̃n = P
⇣
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⌘

11: end for



Figure 7. Visualization of the collapse of the similarity match-
ing function. This example shows the matchings of the
Similarity setting trained on Food-101.

A.2. Loss expression with Multi-Crop

The loss expression for LG and Lsim/geo

L
are slightly af-

fected due to the multi-crop strategy. Only the 2 global-
crops are fed to the teacher while the student is fed all crops
in V . The definition of the global- and local-representation
set are thus slightly changed compared to Section 3.4.
Given a student backbone fs and teacher backbone ft as
well as a set V = {x̃1, x̃2, · · · x̃2+NL} containing 2 +
NL = |V| augmented views of the same input image, a
forward pass of x̃1 and x̃2 in the teacher network and a for-
ward pass of all augmentations x̃n in the student network
results in:

1. two sets of global4-representations Z̄s = {f̄s(x̃) :
x̃ 2 V} and
Z̄t = {f̄t(x̃1), f̄t(x̃

2)}

2. two sets of local-representations Zs = {fs(x̃) : x̃ 2
V} and
Zt = {ft(x̃1), ft(x̃

2)}

Given the new definition of the above sets, the only
changes in Eq. (2), Eq. (5) and Eq. (7) are the normaliza-
tion constants. Equation (2) becomes
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Equation (5) becomes
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and Equation (7) becomes
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B. Training matchings visualized
To build a better intuition of the coherence that the

local-representation loss enforces, we illustrate a few pairs
4The local/global terminology used here should not be confused with

the local/global terminology of the multi-crop strategy. We refer the reader
to Section 3.1 for more information on global- and local-representations.

of augmentations x̃ and x̃0 and show how the local-
representations are matched during the training phase both
for the Similarity (Fig. 8 and Fig. 9) and Geometric
setting (Fig. 10 and Fig. 11). This is done both for a pair
of 2 global-crops as well as a pair of 1 global-crop and 1
local-crop. Using a Swin-T/W=7 [31] backbone results in
dense-representations which are downscaled with a factor
of 32 compared to the augmentations. Global-crops of size
224⇥ 224 result in a dense-representation of spatial dimen-
sion 7⇥7 while local-crops of size 96⇥96 result in a dense-
representation of spatial dimension 3⇥ 3.

As mentioned in the paper, the training matchings of
the Similarity setting depend on the state of the local-
representations. The visualization here use a network
trained until the last epoch (300) on ImageNet-1k. The im-
ages shown are from the validation set of ImageNet-1k. The
matchings from Figure 10 (Geometric setting) seem to
be more well behaved than the matchings from Figure 8
(Similarity setting). Moreover, we can observe cases
of collapse of the similarity based matching function in Fig-
ure 8 even though the network is trained on a large scale
dataset (ImageNet-1k). This happens when the photometric
transforms applied to both crops are highly different from
each other (e.g. dog in 5th row of Figure 8).

C. Collapse of the similarity matching function
visualization

The collapse of the similarity matching function when
trained on Food-101 [4] can be visualized in Figure 7. Sim-
ilar effects (though less strong) can be observed in Figure 8
(trained on ImageNet-1k [14]).

D. Correspondence mapping between 2 differ-
ent images

Although not the goal of our work, we show qualitative
results of the correspondence mapping between two dif-
ferent images. We use 2 pairs of 2 images with similar
semantics and show a visual alignment between the two.
Local-representations from each image are linked to the
most similar local-representation in the other image based
on their cosine similarity. The 15 assignments with the
highest similarities are shown in Figure 12. This is done
with Swin-T backbones trained on all 3 different settings
(Vanilla, Similarity and Geometric). Overall, all
settings seem to show decent alignments of the 2 images
though qualitative gains (on the correspondence mapping)
can be observed with the additional local cues, especially in
the Geometric setting.



Figure 8. Visualization of the training matchings between 2 augmentations (both are global-crops) of an input image with the
Similarity setting. Each location on a coarse grained grid (corresponding to the area of an output token) on the right view is linked
to the best matching location on the left view based on their similarity. Colors are used only to better differentiate different matchings.
(extended version of the left part of Fig. 3 in the main paper)



Figure 9. Visualization of the training matchings between 2 augmentations (1 global- and 1 local-crop) of an input image with the
Similarity setting. Each location on a coarse grained grid (corresponding to the area of an output token) on the right view is linked to
the best matching location on the left view based on their similarity. Colors are used only to better differentiate different matchings.



Figure 10. Visualization of the training matchings between 2 augmentations (both are global-crops) of an input image with the
Geometric setting. Each location on a coarse grained grid (corresponding to the area of an output token) on the right view is linked
to the best matching location on the left view based on their similarity. Colors are used only to better differentiate different matchings.
(extended version of the right part of Fig. 3 in the main paper)



Figure 11. Visualization of the training matchings between 2 augmentations (1 global- and 1 local-crop) of an input image with the
Geometric setting. Each location on a coarse grained grid (corresponding to the area of an output token) on the right view is linked to
the best matching location on the left view based on their similarity. Colors are used only to better differentiate different matchings.



Figure 12. Visualization of the correspondence mapping between 2 different images. The top 15 matchings are shown for all 3 settings.
The matchings are obtained based on the similarity of the learned local-representations. Colors are used only to better differentiate different
matchings.
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