
Appendices
A. Query Types Comparison

Type of Queries mAP [%]
Learnable 88.1

Fixed NLP-based 88.1
Fixed Random 88.1

Table 7. Comparison of MS-COCO mAP scores for ML-
Decoder with different query types. We used K = N = 80.

B. ZSL Group Decoder
We will now describe how to incorporate group-

decoding in the ZSL setting in order to improve the ML-
Decoder’s scalability with respect to the number of classes.
Group-decoding cannot be trivially applied for ZSL, since
in group-decoding each query is associated with a group of
labels, while in the ZSL setting we assume that each query
is associated with a specific word embedding. To allevi-
ate this issue, we propose to construct each query by con-
catenating linear projections of all the word embeddings as-
signed to its group (See Figure 7). Formally, the kth group
query is given by

qk = concat({Wa ·Ni}i∈Gj
) (5)

where Gk is the set of labels assigned to the kth group, {Ni}
is the set of word embeddings (Ni ∈ Rdw ), Wa ∈ R

d
g×dw

is the parameter matrix, and g = N
K .

In addition, as can be seen in Table 8, the group fully-
connected head, even with shared weights, does not gen-
eralize well to unseen classes in a group-decoding setting.
Therefore, we implemented a different pooling strategy
for ZSL group-decoding: we decompose the group fully-
connected parameter matrix (Wk from Eq. 3) into two com-
ponents: {Ni} - the set of word embeddings which is label-
specific, and Wb ∈ Rd×dw - a learned parameter matrix
which is shared for all labels. Formally, the parameter ma-
trix Wk of the kth group-query (Eq. 3) is constructed by the
following:

Wk = Wb ·Mk (6)

where Mk ∈ Rdw×g is constructed by stacking the word
embedding vectors {Ni}i∈Gk

of group k. Inserting Eq. 6
into Eq. 3, we get the output logits for the ZSL group-
decoder. (see Fig. 7, and pseudo-code in appendix L). Ta-
ble 8 shows ablation experiments for the different modifica-
tions.

C. MS-COCO Training Details
Unless stated explicitly otherwise, for MS-COCO we

used the following training procedure: We trained our mod-

Query
Type

Head
Type

mAP [%]
(ZSL)

NLP Learnable 2.4
NLP Learnable (shared) 2.6

Learnable NLP 23.4
NLP NLP 28.7

Table 8. Comparison of NUS-WIDE mAP scores for ML-
Decoder with different query types and head types. ”NLP” sig-
nifies using NLP projections to generate query/head parameters,
and ”Learnable” signifies using regular parameters (as described
in Section 2.3.2)

. . .

Cross-Attention
+ Feed-Forward

𝑊!

𝑧!

𝑊"𝑀#

. . .

. . .

. . .

. . .

𝑁$

𝑁#

K Group Queries

N Class Logits

𝑀% = 𝑁# ;𝑁& ;… ; 𝑁$

g 
w

or
d 

em
be

dd
in

gs

𝑑

𝑑 𝑔#

𝑊"𝑀'

. . .

. . .

𝑧"

Figure 7. Group decoding scheme for ZSL.

els for 40 epochs using Adam optimizer and 1-cycle pol-
icy, with maximal learning rate of 2e-4. For regulariza-
tion, we used Cutout factor of 0.5, True-weight-decay of
1e-4 and auto-augment. We found that the common Im-
ageNet statistics normalization does not improve results,
and instead used a simpler normalization - scaling all the
RGB channels to be between 0 and 1. Our input resolution
was 448. For ML-Decoder, our baseline was full-decoding
(K = N = 80). Similar to [2], we used Open Images pre-
training for our models’ backbone. ML-Decoder weights
were used with random initialization. The number of token
embeddings was D = 768. We adjusted the backbone em-
bedding output to D via a 1×1 depth-wise convolution. As
a loss function, we used ASL with γ− = 4, γ+ = 0 and
m = 0.05. All results were averaged over three seeds for
better consistency. TResNet-L model is V21.

1see: https://github.com/Alibaba-MIIL/TResNet



Classification
Head

Number of
Classes

Number of
Queries

Training
Speed

[img/sec]

Inference
Speed

[img/sec]

Maximal
Training

Batch Size

Flops
[G]

GAP
100 — 706 2915 520 5.7

1000 — 703 2910 512 5.7
5000 — 698 2846 504 5.8

Transformer-
Decode

100 100 556 2496 424 6.6
1000 1000 44 916 112 14.2
5000 5000 2 17 4 61.1

ML-Decoder
100 100 575 2588 464 6.3

1000 100 568 2563 456 6.3
5000 100 562 2512 448 6.4

Table 9. Comparison of throughput indices for different classification heads. All measurements were done on Nvidia V100 16GB
machine, with mixed precision. We used TResNet-M as a backbone, with input resolution 224. Training and inference speed were
measured with 80% of maximal batch size.

D. Speed Comparison
In Table 10 we provide flop measurements for ML-

Decoder with stacked layers For these measurements wee
used a decoder with self-attention, since for additional
stacked layer, the attention module is not redundant. We
see from Table 10 that the contribution of stacking several
layers is negligible. Due to these results, our ML-Decoder
based-solution uses a single decoding layer.

Head Type Decoder Layers mAP [%] Flops [G]
GAP 87.02 23.0

ML-Decoder
1 88.09 24.1
2 88.16 25.0
3 88.21 25.9

Table 10. Flops vs. accuracy measurements for ML-Decoder with
stacked layers.

In Table 11 we present direct direct inference time mea-
surements of different modules of a decoder units.

Num
Classes Module

ML-Decoder
cost [ms]

Transformer-
Decoder cost [ms]

100
self-attention None 1.5

cross-attention 1.4 1.4
mlp 1.8 1.8

4000
self-attention None 612.8

cross-attention 1.4 38.8
mlp 1.8 85.3

Table 11. Comparing inference time of different modules.

In Table 12 we provide full speed-accuracy measure-
ments for different classification heads. We see that using
ML-Decoder on TResNet-M architecture reduces inference
speed by 15%, independent with the number of classes,
while transformer-decoder classification head scales badly
with the number of classes, reducing the inference speed
(and other throughput metrices) by orders of magnitudes.

E. MS-COCO Results for Different Input Res-
olutions

In Table 13 we provide results on MS-COCO dataset for
different input resolution - 224, 448 and 640.

F. NUS-WIDE ZSL Dataset and Training De-
tails

NUS-WIDE is a multi-label ZSL dataset, comprised of
nearly 270K images with 81 human-annotated categories,
in addition to the 925 labels obtained from Flicker user tags.
The 925 and 81 labels are used as seen and unseen classes,
respectively.

To be compatible with previous works [3], as a loss func-
tion we used CE, our backbone was TResNet-M, and our
input resolution is 224. Unless stated otherwise, our base-
line ML-Decoder for ZSL was full-decoding, with K = N ,
and shared projection matrix, as discussed in Section 2.3.3.
Other training details for ZSL NUS-WIDE were similar to
the one used for MS-COCO.

G. Pascal-VOC Training Details and Results
Pascal Visual Object Classes Challenge (VOC 2007) is

another popular dataset for multi-label recognition. It con-
tains images from 20 object categories, with an average
of 2.5 categories per image. Pascal-VOC is divided to a
trainval set of 5,011 images and a test set of 4,952 images.
As a backbone we used TResNet-L, with input resolution
of 448. For ML-Decoder, our baseline was full-decoding
(K = N = 20). Other training details are similar to the
ones used for MS-COCO. Results appear in Table 14.

H. Open-Images Training Details and Results
Open Images (v6) [19] is a large-scale dataset, which

consists of 9 million training images, 41, 620 validation



Classification
Head

Number of
Classes

Number of
Queries

Training
Speed

[img/sec]

Inference
Speed

[img/sec]

Maximal
Training

Batch Size

Flops
[G]

GAP
100 — 706 2915 520 5.7

1000 — 703 2910 512 5.7
5000 — 698 2846 504 5.8

Transformer-
Decode

100 100 556 2496 424 6.6
1000 1000 44 916 112 14.2
5000 5000 2 17 4 61.1

ML-Decoder
100 100 575 2588 464 6.3

1000 100 568 2563 456 6.3
5000 100 562 2512 448 6.4

Table 12. Comparison of throughput indices for different classification heads. All measurements were done on Nvidia V100 16GB
machine, with mixed precision. We used TResNet-M as a backbone, with input resolution 224. Training and inference speed were
measured with 80% of maximal batch size.

Method Backbone
Input

Resolution
Flops
[G]

mAP
[%]

ML-Decoder TResNet-L 224x224 9.3 85.5
ML-Decoder TResNet-L 448x448 36.2 90.0
ML-Decoder TResNet-L 640x640 73.5 91.1

Table 13. Comparison of MS-COCO mAP scores for different
input resolutions.

Method mAP [%]
RNN [37] 91.9

FeV+LV [42] 92.0
ML-GCN [8] 94.0
SSGRL [6] 95.0
BMML [21] 95.0

ASL [2] 95.8
Q2L [23] 96.1

ML-Decoder 96.6
Table 14. Comparison of ML-Decoder to known state-of-the-
art models on Pascal-VOC dataset. For ML-Decoder, we used
TResNet-L backbone, input resolution 448.

images and 125, 436 test images. It is partially annotated
with human labels and machine-generated labels. For deal-
ing with the partial labeling methodology of Open Images
dataset, we set all untagged labels as negative, with re-
duced weights. Due to the large the number of images, we
trained our network for 25 epochs on input resolution of
224. We used TResNet-M as a backbone. Since the level
of positive-negative imbalancing is significantly higher than
MS-COCO, we increased the level of loss asymmetry: For
ASL, we trained with γ− = 7, γ+ = 0. For ML-Decoder,
our baseline was group-decoding with K = 100. Other
training details are similar to the ones used for MS-COCO.

Method mAP [%]
CE [2] 84.8

Focal Loss [2] 84.9
ASL [2] 86.3

ML-Decoder 86.8
Table 15. Comparison of ML-Decoder to known state-of-the-
art results on Open Images dataset.

I. Single-label Classification with Different
Logit Activations

In Table 16 we compare ImageNet classification scores
for different logits activations.

Logit Activation Classification Head Top1 Acc. [%]

Sigmoid GAP 79.7
ML-Decoder 80.3

Softmax GAP 79.3
ML-Decoder 80.1

Table 16. ImageNet classification scores for different classifi-
cation heads and logits activations. For ML-Decoder, we used
group-decoding with 100 groups. Our training configuration is
A2 [39]. Backbone - ResNet50.

I.1. Comparison of ML-Decoder to State-of-the-
art Models on Single-label Transfer Learning
Datasets

To further test our solution, we compare ML-Decoder
based models to known state-of-the-art results from the
literature on two prominent and competitive single-label
datasets - CIFAR-100[?] and Stanford-Cars[?]. The com-
parison is based on 2 and 3.

2https://paperswithcode.com/sota/image-classification-on-cifar-100
3https://paperswithcode.com/sota/fine-grained-image-classification-

on-stanford



Dataset Model
Top-1
Acc.

CIFAR-100

CvT-W24 94.05
ViT-H 94.55

EffNet-L2 (SAM) 96.08
Swin-L + ML-Decoder 95.1

Stanford-
Cars

EffNet-L2 (SAM) 95.95
ALIGN 96.13

DAT 96.2
TResNet-L + ML-Deocder 96.41

Table 17. Comparison top of state-of-the-art models.

We can see from Table 17 that with ML-Decoder, we
achieve the 1st and 2nd place on Stanford-Cars and CIFAR-
100 datasets respectively.

J. Query Augmentations Illustration

. . .

ML-Decoder

𝑦!Target 𝑦" 𝑦# “noise”

𝑞! 𝑞#Queries 𝑟! 𝑟"

Image 
embeddings

. . .

𝑞"

𝑁𝑜𝑖𝑠𝑒

Figure 8. Query augmentations rand-query: adding random
queries which are assigned label ”noise”. additive noise: adding
random noise to the input queries.



K. Group Fully-connected Pseudo Code

1 def GroupFullyConnected(G, group_weights, output, num_of_groups):
2 ’’’
3 - G is the group queries tensor. G.shape = [groups, embeddings]
4 - group_weights are learnable (group) fully connected weights.
5 group_weights.shape = [groups, embeddings, classes//groups]
6 - output is the interpolated queries tensor. output.shape = [groups, classes//groups]
7 ’’’
8 for i in range(num_of_groups):
9 g_i = G[i, :] # [1,embeddings]

10 w_i = group_weights[i, :, :] # [embeddings, classes//groups]
11 output_i = matmul(g_i, w_i) # [1, classes//groups]
12 output[i, :] = output_i
13 logits = output.flatten(1)[:self.num_classes] # [1, classes]
14 return logits

Notice that the loop implementation is very efficient in
terms of memory consumption during training. Implement-
ing the group-fully-connected in a single vectoric operation
(without a loop) is possible, but reduces the possible batch
size. Also, the proposed implementation is fully suitable for
compile-time acceleration (@torch.jit.script)

L. Group Fully-connected ZSL Pseudo-Code

1 def GroupFullConnectedZSL(G, wordvecs, output, W, num_groups, num_classes):
2 ’’’
3 - G is the group queries tensor. G.shape = [num_groups, embeddings_dim]
4 - wordvecs is the word-embedding tensor [num_classes, word_embedding_dim]
5 - W is a learnable projection matrix [embeddings_dim, word_embedding_dim]
6 - output is the interpolated queries tensor. output.shape = [num_groups, num_classes//num_groups]
7 ’’’
8 labels_per_group = num_classes // num_groups
9 group_weights = zeros(num_groups, embedding_dim, labels_per_group)

10 for i in range(num_classes):
11 group_weights[i // labels_per_group, :, i % labels_per_group] = W * wordvecs[i, :]
12

13 logits = GroupFullyConnected(G, group_weights, output, num_groups)
14 return logits


