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In this supplementary document, we present:

• the details of the network architecture (Section 1);

• quantitative results on the additional object metric
(Section 2);

• more qualitative results (Section 3);

• analysis of failure cases (Section 4).

1. Network Architectures
In this section, we describe the architecture of each mod-

ule used in our network. At the initial stage, we use the
ResNet-50 [3] network pre-trained on the ImageNet [8] for
the image encoders fh

e (·) and fo
e (·). We denote the image

features output from the final layer as Fh,Fo ∈ R8×8×2048.
For the joint estimator fh

j (·) and mesh estimators fh
m(·),

fo
m(·), we use a similar architecture differ only on the output

vertex numbers (i.e. 21, 778 and 1000 respectively). Take
the hand joint estimator as an example, we first decode the
image feature Fh using 4 transposed 2D convolutional lay-
ers to obtain a decoded feature Fh

J ∈ R64×64×256. We then
forward the features into 1D convolutional layers as:

jx = soft-argmax(Conv1D(avgx(Fh
J)))

jy = soft-argmax(Conv1D(avgy(Fh
J)))

jz = soft-argmax(Conv1D(flatx,y(Fh)))

(1)

where the positions of 21 hand joints can be found as
Ĵh = [jx, jy, jz] ∈ R21×3. avgi denotes averaging along
the i-th dimension (where we denote the feature shape as
Rx,y,c), and flatx,y denotes flattening the feature map in
the spatial domain (so that the resulting feature has shape
R64,2048). The independent convolutional layers Conv1D
transform the feature channels to L = 64 matching the
lixel definition. Compared to [9], we replace linear layers
with convolutional layers to estimate the depth component,
which achieves competitive results yet significantly reduces
the model complexity. For the object mask estimator fo

s (·),
we follow [7] to adopt a U-Net architecture, where we use

4 2D convolutional layers as the encoder and 4 bilinear in-
terpolation operation layers as the decoder.

At the refinement stage, we use N = 4 graph convolu-
tional blocks, where the first and last blocks both contain
1 graph convolutional layer, and the rest blocks each con-
tain 2 residually connected graph convolutional layers. To
increase inference speed, we only include one mutual at-
tention layer following [1] after the first block. We adopt
a single 1D convolutional layer as the global feature fusion
unit fg(·) to obtain the unique global feature. In terms of
mutual attention, we predict the keys, queries, and values
with the same channel number H = F = 64. We fuse the
aggregated features with the original node features using the
value fusion unit fu(·), which is implemented as another 1D
convolutional layer.

2. More Results on the Object Metric
In order to compare the object pose estimation results

with [5, 1], we additionally report the maximum symmetry-
aware surface distance (MSSD) [4] on the HO3D v2 testing
set in Table 1. The metric measures the maximum vertex
distance between the predicted and ground truth object pose
in all rotation invariants. We follow the same symmetry
axes as described in [1] to define the aforementioned rota-
tion invariants, and retrain the model with the symmetry-
aware object corner loss proposed in [1] to reflect the sym-
metry. The results show that our method achieves competi-
tive results with [5, 1] on the MSSD metric.

Table 1. Quantitative comparison for the object pose estima-
tion on the MSSD metric. Best results are highlighted in bold.

MSSD (cm)↓
Methods mustard bottle bleach cleanser potted meat can
Artiboost [5] 3.14 5.72 6.36
Keypoint Trans [1] 4.41 6.03 9.08
Ours 4.30 5.23 6.14

3. More Qualitative Results
We provide more qualitative results on the HO3D and

DexYCB testing sets in Figure 1. It can be seen that our
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Figure 1. More qualitative results on the HO3D and DexYCB testing sets. Our method produces accurate hand-object poses on diverse
object classes and grasping approaches. More views are shown in the supplementary video.

method produces accurate hand and object poses for various
hand-object interaction scenes, including different grasping
approaches and interacting objects. Moreover, we observe
that valid contacts that satisfy physical constraints can be
established in the estimated hand-object pose.

For completeness, we compare the estimated hand-
object pose with the recent work [2] in Figure 2. We ob-
serve that our method produces much-improved results that
better align with input images, showing the superiority of
our proposed techniques.

4. Analysis of Failure Cases

We show the cases where our method fails to estimate
the correct hand and object pose in Figure 3. In particu-

lar, when the hand is partially outside the camera’s field of
view, we observe that our method is unable to generate hand
meshes with a well-defined shape. The corrupted hand fea-
tures also impaired the estimation of the object pose. This
happens since we rely on the lixel [6] representation for the
mesh prediction. Recall that we quantize the image space to
convert the pixel coordinates into lixels, therefore there are
no valid correspondences for vertices that can not be pro-
jected onto the image space. Future works should consider
more expressive mesh representations to handle the afore-
mentioned issue.
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Figure 2. Qualitative comparison with state-of-the-art method.
We compare the results of [2] in the camera view and a rotated
view. Our method produces hand-object poses of higher quality
with less penetration and more contact.
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Figure 3. Examples of failure cases. Our methods can not recover
a correct hand pose when the hand is partially outside the camera’s
field of view, as there is no valid lixel correspondence exists.
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[4] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
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