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1. Introduction

First, further details about the implementation of the
method are given. In section [] the bands of recordings
of the cameras Specim FX 10 and Corning microHSI 410
Vis-NIR are compared. These two cameras were used in
the experiments of application A. Then, to strengthen the
argument of camera agnostic behavior, we provide a third
set of experiments on the fruit set with two simulated cam-
eras. Afterward, common objections are tackled. The sup-
plementary material is rounded out by ablation study ex-
periments that did not find a place in the main paper and a
visualization of the prediction on the HRSS data set.

2. Method

In this section, we provide additional notes regarding
the implementation. Further, we describe the number of
learnable parameters for depthwise-separable convolutions
in more detail.

3. Implementation of the Learnable Gaussian

For our implementation, we initialized the Gaussian dis-
tributions of the WROIs in a manner that the whole in-
spected wavelength range is covered. This is achieved by
distributing the means p;—o evenly between the minimal
(Wmin) and the maximal inspected wavelengths (w;,qz)-
Further, the variance o7, is initialized with overlap:

1 2
O}?:() = 5 . (wnLam - wmin) (1)
Further, negative variances are prevented by using softplus

[2]].
3.1. Depthwise-Separable Convolution

Depthwise-separable convolutions[1] reduce the number
of parameters by splitting up a convolution into a spatial-
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Figure 1: Assigment of wavelengths to channels for Specim
FX10 and Corning microHSI 410 Vis-NIR

and a channel-based convolution, the overall relation be-
tween input channels and necessary weights still exists.
Our baseline model DeepHS_net is based on depthwise-
separable convolutions [[1]. For a depthwise-separable con-
volution, the learnable parameters are necessary:
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4. Channels of Specim FX10 and Corning Mi-
croHSI 410 Vis-NIR

For our approach, only the difference in the wavelength-
channel-assignment is substantial (shown in Fig. [I). Other
architectural decisions solve the handling of differences in
spatial resolution.
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Figure 2: Assignment of wavelengths to channels for the
synthetic data
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Figure 3: Overall accuracy on the ripening fruit data set
with recordings generated for two synthetic cameras.

For the two selected cameras, the channels over index
50 differ widely between the two cameras and can result
in invalid predictions without adequate handling. Also, the
number of total channels slightly differs for the cameras.
We show that the proposed method can handle both chal-
lenges.

S. Experiments for Camera-Agnostic Behavior
on Synthetic Data

There is a lack of hyperspectral data sets with multiple
camera recordings of the same scene. We evaluated our ap-
proach on a synthetic generated data set to support the claim
of camera agnostic behavior. For this, a data set was created
based on the Specim FX10 recordings of the ripening fruit

[3]. Two cameras are simulated using two channels’ subsets
(shown in Fig. [2). We selected the channels of the subsets
based on different step sizes for the channel indices. This
mimics the real setup’s behavior, as shown in Fig. [} The
wavelengths of the latter channels differ more in contrast
to the actual setup. Further, based on the sampling method
of the channels of the two subsets, camera B contains fewer
channels than Camera A. Therefore, this experiment setup’s
challenge is slightly different from the configuration with
two real cameras. We used the same models which were
used in the main work.

Fig. | shows the final outcome of the experiments. Our
method could again outperform the other approaches. For
these experiments, the baseline model DeepHS _net with a
linear interpolation could produce satisfying results, too. As
already mentioned, the challenges of this experiment setup
slightly differ from a real camera setup. But we could show
that our model could handle both situations better than the
other tested models.

6. Common Objections

Here we want to tackle the most common objections.

Additional hyperparameter The parameter G has a sig-
nificant role in the method. But it is interpretable, and the
default value was stable for two hyperspectral applications.
We analyze the stability of the parameter in the ablation
study (see section. Further, a basic understanding of the
used wavelength range is necessary for hyperspectral appli-
cation. Thus, a rough intuition of how many WROIs are re-
quired for a task is expectable. Further, the learned WROIs
can be visualized, and it is possible to interpret them. For
example, G can be increased or decreased based on their
final overlap.

Slower inference The inference time is not affected by
this modification. For the training, the prediction of the fi-
nal kernel K is required in each step. For the inference, this
can be done once per camera. No trainable part of the con-
volution is changing anymore. So the only difference in the
inference time is the one-time prediction of the kernels for
anew camera type.

Training stability The training was stable for two signif-
icantly different applications in our experiments. Also, the
selection of the WROI worked reliably in these settings.

7. Ablation Study

This section analyzes the impact of a couple of design
choices.
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Figure 4: Performance with and without training of the
Gaussian distributions on the ripening fruit data set.
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Figure 5: Performance of for different number of WROIs
on the ripening fruit data set with recordings of the Specim
FX10.

7.1. Training of the Gaussian Distributions

We evaluated whether training the Gaussian distributions
is necessary for the fruit ripening data set. As a compari-
son, we used the distribution previously mentioned, which
should cover the whole inspected wavelength range in an
evenly distributed way. The result is visible in Fig. 4} There
is a clear improvement in performance and stability.

7.2. Impact of Parameter G

Fig. [3 visualizes the impact of the parameter G, which
defines the number of possible WROIs, on the performance
of our model. This was tested on the ripening fruit data
set and averaged over all setups (fruit type and classifica-
tion type). A clear trend is visible. Increasing the num-
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Figure 6: Performance of different approaches on the ripen-
ing fruit data set with recordings of the Specim FX10.

ber of Gaussian distributions increases the performance of
the model. Two giant steps are visible: a Plateau between
(G = 2 and G = 4 and for G > 5. The increase is continu-
ous for G > 5, but only slightly. Each jump in performance
shows that the additional WROI provides helpful new infor-
mation. Overall, the hyperparameter G seems stable above
the threshold of 5. So, for a ripeness prediction for different
fruit types, G = 5 is recommendable. For avocados, the
classification seems more straightforward, and therefore al-
ready, G = 4 are sufficient (this was shown in section 5.1.
of the main work). G = 5 also worked well for the sec-
ond application B. As a result, G = 5 seems a reliable first
choice, which the first training results can optimize.

7.3. Impact of the Method Extension

We checked whether the proposed extension of the ba-
sic method is useful. We compare the baseline model
(DeepHS _net) with the basic method (HyveConv) and the
extended method (HyveConv++). We did these experiments
on the fruit ripening data set and averaged over all setups.
The recordings of the Specim FX 10 were only used. Fig.
[6] shows the performance of the different approaches. We
tested the baseline model (DeepHS _net) with and without
our camera agnostic convolution layer. Further, the impact
of the proposed extension is shown. The continuous defi-
nition of the input channel space of the convolution (Hyve-
Conv) boosts the accuracy by around 2%. Allowing the con-
volution to share features through different output channels
and the whole convolution layers(HyveConv++) boosts the
model’s performance by an additional 4%. Therefore, the
extension seems reasonable.



8. Visualization of the HRSS prediction result

For the HRSS data set, a visual comparison of the predic-
tion and the ground truth is common, which can be found
in Fig. [7] (Salinas), Fig. [0] (University of Pavia) and Fig.
[[T] (Indian pines). Especially for the Indian pines data set,
some prediction errors of the model are visible. The corners
of some areas are falsely classified.

Further, we provide for each model the training procedure
of the camera filters and the final camera filters.
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(a) Prediction

(b) Ground Truth

Figure 7: Prediction of DeepHS _net + HyveConv++ and ground truth for the segmentations mask of the Salinas data set.
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Figure 8: Training of the Gaussian distributions for the Salinas data set. (a) and (b) show the development of the mean and
variance over training epochs. (c) shows the final Gaussian distributions, and these are applied as filters in (d).



(a) Prediction (b) Ground Truth

Figure 9: Prediction of DeepHS_net + HyveConv++ and ground truth for the segmentations mask of the University of Pavia
data set.
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Figure 10: Training of the Gaussian distributions for the Pavia University data set. (a) and (b) show the development of the
mean and variance over training epochs. (c) shows the final Gaussian distributions, and these are applied as filters in (d).



(a) Prediction (b) Ground Truth

Figure 11: Prediction of DeepHS _net + HyveConv++ and ground truth for the segmentations mask of the Indian pines data
set.
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Figure 12: Training of the Gaussian distributions for the Indian pines data set. (a) and (b) show the development of the mean
and variance over training epochs. (c) shows the final Gaussian distributions, and these are applied as filters in (d).



