
6. Appendix
In the appendix, we give the details of datasets used in

our experiments and show additional experimental results.

6.1. Details of Datasets

Table 5 shows the details of the datasets used in our ex-
periments. Note that all the models in our experiments are
trained on the Pitts30k-train dataset and tested on the other
datasets.
Visualization of Feature Embeddings. We visualize the
feature embeddings of some images in the Pitts30k dataset
computed by our TransVLAD with Vgg-16 in 2-D using the
t-SNE method. As shown in Figure 8, images taken from
the same places are mostly embedded in nearby 2D posi-
tions although their lighting and perspective are different.

Table 5. Details of datasets used in our experiments.
Dataset Gallery Images Query Images

Pitts30k-train 10,000 7,416
Pitts30k-val 10,000 7,068
Pitts30k-test 10,000 6,816

Pitts250k-train 91,464 7,824
Pitts250k-val 78,648 7,608
Pitts250k-test 83,952 8,280
TokyoTM-val 49,056 7,186

Tokyo 24/7 75,984 315
Oxford 5k 5,063 55
Paris 6k 6,412 220
Holidays 991 500

6.2. Additional Results with Different CNN Back-
bones

To verify whether the deeper CNN backbones can further
improve the performance of our TransVLAD with CNN
backbones on geo-localization datasets, we maintain the
same TransVLAD module and choose Vgg-19, ResNet-
101 and ResNet-152 as the CNN backbones for the extra
training and compare with the existing results on the geo-
localization benchmarks.

We plot the Precision-Recall curves for each CNN back-
bone in Figure 9 and report the detailed comparison of re-
calls at N top retrievals in Table 6. From the results, we can
observe our models with deeper CNN backbones have less
than 1% improvement on most geo-localization datasets.
On the challenging Tokyo 24/7 dataset, the improvements
by utilizing deeper CNN backbones are more obvious. For
example, our TransVLAD with ResNet-152 achieves 91.7%
rank-5 recall, up to 1.9% accuracy improvement against our
TransVLAD with Vgg-16. By analyzing the performance
of our TransVLAD with different CNN backbones, it can
be concluded that deeper CNN backbones can indeed im-
prove the generalization ability at the cost of heavy model
complexity. However, the improvement of model accuracy
by adopting deeper CNN backbones is limited.

Figure 9. Comparison of recalls at N top retrievals from database
with different CNN backbones.

6.3. Comparison of the Comprehensive Perfor-
mance with MobileNetV3

Besides the accuracy of our proposed model, we also
consider the running speed and the storage size in practical
geo-localization tasks. We further evaluate the comprehen-
sive performance for our TransVLAD with MobileNetV3
on the Pitts30k-test dataset by using different dimensions
of cluster centers (c-dim) and dimensions of output vectors
(o-dim). The running speed is tested on the whole Pitts30k-
test dataset on a single GeForce GTX 1080 GPU and the
Intel Xeon E5-2620 v4 @ 2.10GHz CPU. The storage size
consists of the parameters of the model and the feature vec-
tors of the gallery images in the Pitts30k-test dataset.

Table 7. Comparison of the comprehensive performance for our
TransVLAD with MobileNetV3 on the Pitts30k-test dataset.

Method Model Setting Pitts30k-test
c-dim o-dim R@1 R@5 R@10 time(s) storage(MB)

Our-MobileNetV3 1024 4096 89.1 94.9 96.1 511.3 1266.7
512 4096 89.1 94.2 95.8 484.2 742.5
256 4096 88.6 94.3 95.9 464.6 480.4
256 2048 88.3 94.3 95.8 436.4 270.3
256 1024 87.9 94.2 95.8 424.2 165.3
256 512 87.4 93.9 95.6 414.6 112.8
128 4096 88.2 94.4 95.8 357.6 339.5
128 2048 88.0 94.4 95.8 343.9 196.5
128 1024 87.7 94.1 95.7 335.8 125
128 512 87.4 94.0 95.7 328.2 89.2

From the results in Table 7, we can state that the run-
ning speed and storage size of our TransVLAD with Mo-
bileNetV3 can be greatly reduced by decreasing the c-dim
and o-dim. More specifically, our TransVLAD with Mo-
bileNetV3 can achieve 328.2s running time and 89.2MB
storage size on the Pitts30k-test dataset at the cost of 1.7%
rank-1 Recalls compared to the best accuracy.



Figure 8. Visualization of feature embeddings computed by our TransVLAD with Vgg-16 using t-SNE on the Pitts30k dataset (part of
images).

Table 6. Comparison of Recalls with different CNN backbones on the Pitts30k/250k-test, TokyoTM-val, Tokyo 24/7 datasets.

Method Pitts30k-test Pitts250k-test TokyoTM-val Tokyo 24/7
R@1 R@5 R@10 R@15 R@1 R@5 R@10 R@15 R@1 R@5 R@10 R@15 R@1 R@5 R@10 R@15

Our-Vgg16 89.3 94.5 96.0 96.6 91.1 96.3 97.5 97.9 96.0 98.3 98.8 99.1 85.4 89.8 91.7 93.0
Our-MobileNetV3 89.1 94.9 96.1 96.8 90.7 96.2 97.4 97.9 95.4 98.0 98.7 98.9 83.5 90.5 92.1 93.3

Our-Vgg19 89.4 94.8 96.2 96.8 91.1 96.5 97.6 97.8 96.3 98.6 99.1 99.2 85.2 90.5 93.7 93.7
Our-ResNet101 89.5 94.9 96.3 97.0 91.2 96.6 97.5 97.9 96.5 98.7 99.2 99.3 85.4 90.8 93.0 94.0
Our-ResNet152 89.6 94.9 96.5 97.2 91.3 96.6 97.6 98.0 96.6 98.8 99.2 99.5 85.7 91.7 93.8 94.6

6.4. Additional Qualitative Evaluation

To better demonstrate the performance of our Trans-
VLAD with CNN backbones on the geo-localization task,

we visualize additional attention maps of query images by
our model with VGG-16, SARE and NetVLAD on both
Pitts30k-test and challenging Tokyo 24/7 datasets. For gen-
erating the attention maps, we use the feature maps before
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Figure 10. Visualized additional attention maps. The attention maps of query images are generated to show the regions where the models
focus. We compare the attention maps and the top-1 retrieved gallery images. Green and red borders indicate correct and incorrect retrieval
results, respectively. (Best viewed in color.)

the VLAD layer. From the results in Figure 10, we can ob-
serve our model with VGG-16 focuses on the discriminative
landmarks (e.g. buildings, signs) due to the global reason-
ing enhanced by our sparse transformer module, while the
other two models incorrectly focus on changeable objects
(e.g. trees, cars, pedestrians and light). The misdirection
by changeable objects will result in false retrieval results,
since the objects may shift or vanish from the right gallery
images, or appear in the incorrect gallery images.

6.5. Generalization on Detecting and Matching
Keypoints

To further verify the performance and generalization ca-
pability of our TransVLAD with CNN backbones, we adopt
DFM model and replace the VGG backbone with our net-

work trained on Pitts30k-train dataset for feature detection.
We further estimate matching results on both original and
rotated image pairs by detecting and matching keypoints
with deep CNNs. From the matching results shown in Fig-
ure 11, we can observe the DFM with our backbone gener-
ates more dense correct matches than the other three models
on both original and rotated image pairs, which can attest to
the stronger generalization ability of our network.



(a) DFM with our backbone (b) DFM (c) GIFT (d) Superpoint

Figure 11. Qualitative matching results with four methods. The correct matches are drawn in green lines.


