Saadatzadeh et al., 2019 - Google Patents
Pedestrian dead reckoning using smartphones sensors: an efficient indoor positioning system in complex buildings of smart citiesSaadatzadeh et al., 2019
View PDF- Document ID
- 10085017862188201812
- Author
- Saadatzadeh E
- Chehreghan A
- Ali Abbaspour R
- Publication year
- Publication venue
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
External Links
Snippet
This paper proposes an indoor positioning method using Pedestrian Dead Reckoning (PDR) based on the detection of the mode of the user's smartphone. In the first step, to determine the mode of carrying the smartphone (Holding, Calling, Swinging) by suitably …
- 238000001514 detection method 0 abstract description 42
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/02—Systems for determining distance or velocity not using reflection or reradiation using radio waves
- G01S11/06—Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by comparing measured values with pre-stored measured or simulated values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/26—Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/76—Systems for determining direction or position line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C17/00—Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Poulose et al. | An indoor position-estimation algorithm using smartphone IMU sensor data | |
Ban et al. | Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and WiFi fingerprints | |
Chen et al. | Smartphone inertial sensor-based indoor localization and tracking with iBeacon corrections | |
Zhou et al. | Activity sequence-based indoor pedestrian localization using smartphones | |
Xiao et al. | Lightweight map matching for indoor localisation using conditional random fields | |
Tian et al. | Pedestrian dead reckoning for MARG navigation using a smartphone | |
Chung et al. | Indoor location sensing using geo-magnetism | |
Ouyang et al. | A survey of magnetic-field-based indoor localization | |
Liu et al. | Fusing similarity-based sequence and dead reckoning for indoor positioning without training | |
CN107396321B (en) | Unsupervised indoor positioning method based on mobile phone sensor and iBeacon | |
US20150018018A1 (en) | Indoor Location-Finding using Magnetic Field Anomalies | |
Lee et al. | An experimental heuristic approach to multi-pose pedestrian dead reckoning without using magnetometers for indoor localization | |
Real Ehrlich et al. | Indoor localization for pedestrians with real-time capability using multi-sensor smartphones | |
Xiao et al. | Indoor tracking using undirected graphical models | |
Pei et al. | Motion recognition assisted indoor wireless navigation on a mobile phone | |
Yu et al. | Autonomous 3D indoor localization based on crowdsourced Wi-Fi fingerprinting and MEMS sensors | |
Pei et al. | Using motion-awareness for the 3D indoor personal navigation on a Smartphone | |
CN106197418B (en) | A kind of indoor orientation method merged based on the fingerprint technique of sliding window with sensor | |
Wang et al. | An adaptive indoor positioning method using multisource information fusion combing Wi-Fi/MM/PDR | |
Basso et al. | A smartphone-based indoor localization system for visually impaired people | |
Hafner et al. | Evaluation of smartphone-based indoor positioning using different Bayes filters | |
Soni et al. | A survey of step length estimation models based on inertial sensors for indoor navigation systems | |
Qian et al. | RPNOS: Reliable pedestrian navigation on a smartphone | |
Qi et al. | Precise 3D foot-mounted indoor localization system using commercial sensors and map matching approach | |
Kuusniemi et al. | Multi-sensor multi-network seamless positioning with visual aiding |