WO2013181498A1 - Apparatus and method for coating balloon catheters - Google Patents
Apparatus and method for coating balloon catheters Download PDFInfo
- Publication number
- WO2013181498A1 WO2013181498A1 PCT/US2013/043547 US2013043547W WO2013181498A1 WO 2013181498 A1 WO2013181498 A1 WO 2013181498A1 US 2013043547 W US2013043547 W US 2013043547W WO 2013181498 A1 WO2013181498 A1 WO 2013181498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balloon
- coating
- coating apparatus
- body member
- fluid
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/02—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
- B05B13/04—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
- B05B13/0442—Installation or apparatus for applying liquid or other fluent material to separate articles rotated during spraying operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
- A61M2025/1031—Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/105—Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
Definitions
- the present invention relates to apparatus and methods for coating medical devices.
- Functional improvements to implantable or insertable medical devices can be achieved by coating the surface of the device.
- a coating formed on the surface of the device can provide improved lubricity, improved biocompatibility, or drug delivery properties to the surface. In turn, this can improve movement of the device in the body, extend the functional life of the device, or treat a medical condition near the site of implantation.
- One type of insertable medical device is a balloon catheter. Balloon catheter constructions are well known in the art and are described in various documents, for example, U.S. Pat. Nos. 4,195,637, 5,041,089, 5,087,246, 5,318,587, 5,382,234,
- Balloon catheters generally include four portions, the balloon, catheter shaft, guide wire, and manifold.
- a balloon catheter generally includes an elongated catheter shaft with an inflatable balloon attached to a distal section of the catheter shaft. At a proximal end of the catheter shaft, there is typically a manifold. At the manifold end, placement of the catheter can be facilitated using a guide wire. Guide wires are small and maneuverable when inserted into an artery.
- the catheter with balloon portion is then fed over the guide wire until the balloon reaches the target location in the vessel.
- the balloon is typically inserted into the arterial lumen of a patient and advanced through the lumen in an unexpanded state. The balloon is then inflated when the catheter reaches target site resulting in application of
- the balloon is typically inflated using a fluid, which is injected through an inflation port.
- the manifold can control the fluid introduction within shaft for expansion of the balloon.
- the mechanics of fluid transfer and introduction within balloons vary according to the specific design of the catheter, and are well known in the art.
- Embodiments of the invention include apparatus and methods for coating drug coated medical devices.
- the invention includes a coating apparatus including a coating application unit comprising a movement restriction structure; a fluid applicator; and an air nozzle.
- the apparatus can further include a rotation mechanism and a axial motion mechanism, the axial motion mechanism configured to cause movement of at least one of the coating application unit and the rotation mechanism with respect to one another.
- the invention includes a coating apparatus including a coating application unit comprising a fluid applicator; a fluid distribution bar; an air nozzle; and a rotation mechanism.
- the coating apparatus can further include an axial motion mechanism, the axial motion mechanism configured to cause movement of the coating application unit with respect to the rotator.
- the invention includes a method of coating including rotating a balloon catheter with a rotation mechanism, the balloon catheter comprising a balloon, contacting the balloon with a movement restriction structure defining a channel; applying a coating solution onto the surface of the balloon with a fluid applicator, contacting the surface of the balloon with a fluid distribution bar, blowing a stream of a gas onto the surface of the balloon, wherein the channel limits lateral movement of the balloon.
- FIG. 1 is a schematic side view of a coating apparatus in accordance with various embodiments herein.
- FIG. 2 is a schematic view of a coating application unit in accordance with various embodiments herein.
- FIG. 3 is a schematic view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 4 is a schematic view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 5 is a schematic view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 6 is a schematic end view of a fluid distribution bar in conjunction with the balloon of a balloon catheter.
- FIG. 7 is a schematic end view of a fluid applicator in conjunction with the balloon of a balloon catheter.
- FIG. 8 is a schematic end view of an air nozzle in conjunction with the balloon of a balloon catheter.
- FIG. 9 is a schematic view of a coating application unit in accordance with various embodiments herein.
- FIG. 10 is a schematic view of a coating application unit in accordance with various embodiments herein.
- FIG. 11 is a schematic top view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 12 is a schematic end view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 13 is a schematic front view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 14 is a schematic front view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 15 is a schematic end view of a movement restriction structure in accordance with various embodiments herein.
- FIG. 16 is a schematic end view of a fluid applicator in accordance with various embodiments herein.
- Embodiments herein can be used to apply visually uniform coatings, such as coatings including active agents, onto medical devices, such as onto the balloons of drug coated or drug eluting balloon catheters, that have substantially uniform active agent concentrations along the length of the medical device.
- visually uniform coatings such as coatings including active agents
- medical devices such as onto the balloons of drug coated or drug eluting balloon catheters, that have substantially uniform active agent concentrations along the length of the medical device.
- coatings can be formed with apparatus and methods wherein each section of the device that has been coated contains an amount of the active agent that is within ten percent of the average amount of active agent across all sections coated.
- the coating apparatus 100 is shown in conjunction with a drug coated balloon catheter 102.
- the drug coated balloon catheter 102 can include a catheter shaft 104 and a balloon 106.
- the balloon 106 can assume a deflated configuration and an inflated configuration.
- the drug coated balloon catheter 102 can include a distal end 103 and a proximal end 105.
- the drug coated balloon catheter 102 can include a proximal end manifold (not shown).
- the coating apparatus 100 can include a coating application unit 108.
- the coating apparatus 100 can further include, in some embodiments, an axial motion mechanism 110 (axial with respect to the axis of rotation of the balloon catheter and thus parallel to the lengthwise axis of the balloon catheter) that can function to move one or more components of the coating application unit 108.
- axial motion can be substantially horizontal.
- axial motion can be substantially vertical.
- axial motion can be somewhere in between horizontal and vertical, depending on the orientation of the lengthwise axis of the balloon catheter.
- the coating application unit 108 can remain stationary.
- Coating of the balloon 106 to make it drug coated can occur starting at the proximal end of the balloon and proceeding to the distal end. However, in other embodiments, coating of the drug coated balloon 106 can occur starting at the distal end of the balloon and proceeding to the proximal end. In many embodiments, coating can take place with a single pass of the coating application unit 108 with respect to the balloon. However, in other embodiments, multiple passes of the coating application unit with respect to the balloon can be made.
- the coating apparatus 100 can further include a fluid pump 112.
- the fluid pump 112 can be, for example, a syringe pump.
- the fluid pump 112 can be in fluid
- the coating apparatus 100 can further include a rotation mechanism 116 (or rotating balloon catheter fixture).
- the rotation mechanism 116 can be directly or indirectly coupled to the drug coated balloon catheter in order to rotate the drug coated balloon catheter 102 around its lengthwise (major) axis (about the central lumen of the catheter).
- the drug coated balloon catheter can be rotated at a speed of between 100 and 400 rotations per minute.
- the drug coated balloon catheter can be rotated at a speed of between 200 and 300 rotations per minute.
- a guide wire 107 passing through the central lumen of the catheter, can extend from the distal tip of the catheter and be inserted into a distal tip support ring 109 or guide. In this manner, the guide wire 107 can be used to support the distal tip of the balloon catheter to be coated while allowing the balloon catheter to rotate freely.
- the coating apparatus 100 can further include, in some embodiments, an axial motion mechanism 118 which can be configured to move the drug coated balloon catheter 102 in the direction of its lengthwise major axis.
- axial motion can be substantially horizontal.
- axial motion can be substantially vertical.
- axial motion can be somewhere in between horizontal and vertical, depending on the orientation of the lengthwise axis of the balloon catheter.
- the axial motion mechanism 118 can be a linear actuator.
- the axial motion mechanism 118 can include an electric motor.
- the coating apparatus 100 can further include a frame member 120 (in some embodiments this can also be referred to as an axial motion support rail).
- the frame member 120 can support other components of the coating apparatus 100 such as one or more guides 126.
- the frame member 120 can itself be support by a platform 122.
- the coating apparatus 100 can further include a controller 124 that can serve to control operation of the coating apparatus 100 including, specifically, fluid pump 112, axial motion mechanism 110, rotation mechanism 116, and axial motion mechanism 118.
- the coating application unit 108 can include a movement restriction structure 202 (or wobble control structure), an air nozzle 204, a fluid distribution bar 206, and a fluid applicator 208.
- the movement restriction structure 202 can serve to limit the lateral motion (e.g., movement in a direction perpendicular to the lengthwise axis of the catheter) of the balloon during a coating operation.
- the fluid applicator 208 can serve to apply a coating solution 209 to the surface of the balloon 212 on the drug coated balloon catheter.
- the fluid applicator 208 is less than or equal to about 1 cm away from the movement restriction structure 202.
- the air nozzle 204 is less than or equal to about 2 cm away from the fluid applicator 208.
- the air nozzle 204 can provide a stream of a gas in order to assist in drying the coating solution after it has been applied to the balloon or other medical device.
- the fluid distribution bar 206 can serve to promote distribution of the applied coating solution.
- the fluid distribution bar 206 can serve to prevent pooling of the applied coating solution.
- the fluid distribution bar 206 can be at least about 0.5 mm away from the fluid applicator and less than 2 cm away. In some embodiments, the fluid distribution bar 206 can be at least about 0.2 cm away from the fluid applicator and less than 2 cm away.
- the coating application unit 108 can move, relative to the balloon 212 in the direction of arrow 230.
- the movement restriction structure 202 can pass over the balloon first, followed by the fluid applicator 208, followed by the fluid distribution bar 206, with the air nozzle last.
- this movement is relative in the sense that in some embodiments the coating application unit 108 is moving and the balloon 212 is rotating but otherwise stationary, in some embodiments the balloon 212 is rotating and moving in the direction of its lengthwise axis and the coating application unit 108 is stationary, in still other embodiments both the coating application unit 108 and the balloon 212 are moving.
- the speed of movement of the balloon 212 relative to the coating application unit 108 can vary depending on the amount of coating solution to be applied. In some embodiments the speed can be from about 0.02 centimeters per second to about 0.2 centimeters per second.
- the path of the deposition of the coating onto the balloon follows a roughly helical path.
- the combination of the rotation speed of the drug coated balloon catheter and the speed of the movement of the balloon relative to the coating application unit can influence the amount of coating solution that is deposited at any given point and the nature of the helical path.
- the coating material can be deposited in helical layers that partially overlap one another at their edges, helical layers wherein the edge of one turn substantially meets the edge of a previous turn, and helical layers wherein there are gaps in between subsequent helical turns.
- these helical patterns can be configured so as to maximize release of the active agent.
- the apparatus can be used to coat device so as to produce helical ridges of the coating material on the balloon surface.
- the coating application unit 108 can optionally include a manifold block 210.
- the manifold block 210 can facilitate support of, and in some embodiments movement of, the components of the coating application unit 108.
- the components of the coating application unit can move together as a unit during a coating operation.
- the components of the coating application unit are substantially separate from one another and can move independently.
- the components of the coating application unit are all substantially stationary during a coating operation.
- the components of the coating application unit 108 are shown in FIG. 2 as being within a particular plane and disposed at approximately the same angle with respect to the balloon 212 being coated, it will be appreciated that this is not the case with all embodiments herein. In some embodiments, the components of the coating application unit 108 lie in different planes with respect to the balloon 212 and/or the components of the coating application unit 108 are disposed at different angles (both with respect to the lengthwise axis of the balloon and radially) with respect to the balloon.
- the structure 302 can include a body member 306 defining a channel 304 or aperture.
- the body member 306 can be formed of various materials such as polymers, metals, ceramics, and the like. In a particular embodiment, the body member 306 is formed of
- the channel 304 can have a diameter 308 that is sufficiently large so as to accommodate the balloon of a drug coated balloon catheter in an expanded state.
- the channel 304 is shown as being bounded in a radially continuous manner by the body member 306 (e.g., it is completely surrounded on all sides by the body member 306). However, it will be appreciated that in some embodiments the channel 304 is not bounded in a radially continuous manner by the body member 306.
- the movement restriction structure can include multiple pieces that together define a channel or aperture.
- a movement restriction structure 402 is shown including a body member that includes a first piece 406 and a second piece 408 that together define a channel 404 or aperture.
- the first piece 406 and second piece 408 are joined together by a hinge 410 in this embodiment, however it will be appreciated that there are many ways known to those of skill in the art by which to hold two structure pieces in association with one another.
- body members of movement restriction structures can take on many different shapes.
- the shape of the channel defined by the body member(s) can take on many different shapes. Referring now to FIG.
- a movement restriction structure 502 is shown including a first side piece 506 and a second side piece 508 that together define a channel 504 or aperture.
- the first side piece 506 and the second side piece 508 are supported by a frame member 510.
- the first side piece 506 and the second side piece 508 can be spring loaded such that it is biased toward sliding inward toward the other piece.
- one or both of the first side piece 506 and the second side piece 508 can be adjustable and then fixed in position so as to create a channel 504 of a desired size.
- the fluid distribution bar 606 can include a support structure 608 and a shaft 610.
- the support structure 608 can be omitted.
- the shaft 610 can be formed of various materials such as polymers, metals, ceramics, and the like.
- the shaft 610 is formed of polytetrafluoroethylene (PTFE).
- PTFE polytetrafluoroethylene
- the shaft 610 can be of various lengths and diameters and can have various cross- sectional shapes. In some embodiments, the shaft 610 is from about 2 mm to about 15 cm and is substantially circular in cross-sectional shape. In some embodiments, the shaft is about 1/16 inch in diameter.
- the shaft 610 is configured to rest against the balloon 618 of the balloon catheter 614.
- the fluid distribution bar 606 can include multiple rods or extensions from support structure 608. Exemplary of these embodiments can include, but are not limited to, a comb-like structure or a brush.
- the balloon 618 is supported by the catheter shaft 616, but generally only at the ends of the balloon 618. Because of the limited support of the balloon 618 by the catheter shaft 616, the inherent flexibility of the balloon material and manufacturing variations, the balloon 618 may not be perfectly round. As such, when it is being rotated during a coating operation there may be variations in the distance of the outer surface of the balloon 618 from the catheter shaft 616 of the balloon catheter 614. If unaccounted for, this could lead to circumstances where the fluid distribution bar 606 does not maintain contact with the surface of the balloon 618. As such, the shaft 610 of the fluid distribution bar 606 can be configured to maintain contact with the surface of the balloon 618.
- the shaft 610 of the fluid distribution bar 606 can be positioned such that it exerts a small degree of pressure against the surface of the balloon 618 such that when an irregularity in the balloon is encountered the fluid distribution bar 606 can move slightly in order to maintain contact with the balloon surface.
- the shaft 610 of the fluid distribution bar 606 is flexible to accommodate movement to stay in contact with the balloon surface.
- the fluid distribution bar 606 can be configured to pivot from where it is mounted in order to accommodate movement to stay in contact with the balloon surface.
- While the shaft 610 of the fluid distribution bar 606 is shown in FIG. 6 as contacting the top of the balloon 618 and thus exerting a pressure downward in the direction of arrow 612, it will be appreciated that in other embodiments the surface of the balloon 618 can be contacted at other points along its surface, such as on the sides or on the bottom.
- the fluid applicator 708 can include a shaft 706 and an orifice 704.
- the fluid applicator 708 can be a pipette.
- Fluid such as a coating solution, can travel through the shaft 706 of the fluid applicator 708 in order to be deposited on the surface of the balloon 718 of the drug coated balloon catheter 714.
- the shaft 706 is configured to rest against the balloon 718 of the balloon catheter 714.
- the balloon 718 is supported by the catheter shaft 716, but generally only at the ends of the balloon 718.
- the balloon 718 may not be perfectly round. As such, when it is being rotated during a coating operation there may be variations in the distance of the outer surface of the balloon 718 from the catheter shaft 716 of the balloon catheter 714. If unaccounted for, this could lead to circumstances where the fluid applicator 708 does not maintain contact with the surface of the balloon 718. As such, the shaft 706 of the fluid applicator 708 can be configured to maintain contact with the surface of the balloon 718.
- the shaft 706 of the fluid applicator 708 can be positioned such that it exerts a small degree of pressure against the surface of the balloon 718 such that when an irregularity in the balloon 718 is encountered the fluid applicator 708 can move slightly in order to maintain contact with the balloon surface.
- the shaft 706 of the fluid applicator 708 is flexible to accommodate movement to stay in contact with the balloon surface.
- the fluid applicator 708 can be configured to pivot from where it is mounted in order to accommodate movement to stay in contact with the balloon surface.
- the fluid applicator may not be in direct contact with the balloon surface but situated closely, for example within 1 millimeter.
- the shaft 706 of the fluid applicator 708 is shown in FIG. 7 as contacting the upper right side (approximately equivalent to an area between the 1 and 2 position of a clock face) of the balloon 718, it will be appreciated that in other embodiments the surface of the balloon 718 can be contacted at other points along its surface. For example, in some embodiments, the very top of the balloon 718 can be contacted by the fluid applicator 708.
- the fluid distribution bar 606 and the fluid applicator 708 can be configured such that the shaft 610 of the fluid distribution bar 606 contacts the surface of the balloon at approximately the same point radially along the surface of the balloon as the shaft 706 of the fluid applicator 708. In some embodiments, the fluid distribution bar 606 and the fluid applicator 708 can be configured such that the shaft 610 of the fluid distribution bar 606 contacts the surface of the balloon within at least 90 degrees radially along the surface of the balloon as the shaft 706 of the fluid applicator 708.
- the air nozzle 804 can include an orifice 806.
- a gas such nitrogen, ambient air or another gas can be directed to flow out of the orifice 806 and towards the balloon 818 of the drug coated balloon catheter 814.
- the gas can be heated.
- the gas can be from about 50 to about 70 degrees Celsius. While the orifice 806 of the air nozzle 804 is shown in FIG. 8 as directing air to the top of the balloon 818, it will be appreciated that in other embodiments the air nozzle 804 and orifice 806 can be configured to direct air at other parts of the balloon 818 such as, but not limited to, the sides or the bottom.
- the coating application unit 900 can include a movement restriction structure 902, a first air nozzle 914, a fluid applicator 908, and a second air nozzle 904.
- the first air nozzle 914 is disposed on one side of the fluid applicator 908 and the second air nozzle 904 is disposed on the other side of the fluid applicator 908.
- the first air nozzle 914 can act to avoid pooling of the coating at the fluid applicator 908.
- the second air nozzle 904 can act to avoid pooling of the coating fluid at the fluid applicator 908.
- the fluid applicator 908 can serve to apply a coating solution 909 to the surface of the balloon on the drug coated balloon catheter.
- Other embodiments can include three or more air nozzles.
- the coating application unit 900 can move, relative to the balloon 912 in the direction of arrow 930. As such, during a coating operation, the movement restriction structure 902 can pass over the balloon first. It should be emphasized, however, that this movement is relative in the sense that in some
- the coating application unit 900 is moving and the balloon 912 is rotating but otherwise stationary, in some embodiments the balloon 912 is rotating and moving in the direction of its lengthwise axis and the coating application unit 900 is stationary, in still other embodiments both the coating application unit 900 and the balloon 912 are moving.
- the coating solution can be applied on to the balloon in various ways including, but not limited to, spraying (including both ultrasonic spraying and conventional spraying techniques), dribbling, blade coating, contact printing, drop coating, or the like.
- the fluid applicator can include a fluid spray nozzle.
- FIG. 10 a schematic view of a coating application unit in accordance with various embodiments herein is shown.
- the coating application unit 1000 can include a movement restriction structure 1002, an air nozzle 1004, a fluid distribution bar 1006, and a fluid spray nozzle 1008.
- the fluid spray nozzle 1008 can serve to apply a coating solution 1009 to the surface of the balloon 1012 on the drug coated balloon catheter.
- the gap can be between 1 millimeter and 10 centimeters.
- multiple fluid applicators and/or spray nozzles can be used.
- the coating application unit 1000 can move, relative to the balloon 1012 in the direction of arrow 1030. As such, during a coating operation, the movement restriction structure 1002 can pass over the balloon first. It should be emphasized, however, that this movement is relative in the sense that in some
- the coating application unit 1000 is moving and the balloon 1012 is rotating but otherwise stationary, in some embodiments the balloon 1012 is rotating and moving in the direction of its lengthwise axis and the coating application unit 1000 is stationary, in still other embodiments both the coating application unit 1000 and the balloon 1012 are moving.
- FIG. 11 is a schematic top view of a movement restriction structure in accordance with various embodiments herein.
- the structure 1102 can include a first body member 1104 and a second body member 1106.
- the first and second body members 1104, 1106 can be formed of various materials such as polymers, metals, ceramics, and the like.
- the first and second body members 1104, 1106 can function together to restrict movement of a balloon 1118 to be coated.
- the first and second body members 1104, 1106 can be separated from one another by a distance 1108 that is greater than or equal to the diameter of the balloon 1118. In some embodiments, the distance 1108 is approximately equal to the balloon 1118. In some embodiments, the distance 1108 is between about 3 millimeters and about 10 millimeters.
- FIG. 12 is a schematic end view of the movement restriction structure 1102.
- the first body member 1104 can include a curved segment 1142 and an end 1144.
- the curved segment 1142 can define a portion of a channel which can surround at least a portion of the balloon 1118, thereby restricting its movement.
- the second body member 1106 can be formed similarly but with a different orientation so that together the first body member 1104 and the second body member 1106 can effectively restrict movement of the balloon 1118.
- the end 1146 of the second body member 1106 can be pointed upward instead of downward.
- FIG. 13 is a schematic front view of the movement restriction structure 1102 that shows the differing orientations of the first body member 1104 and the second body member 1106.
- the balloon can be loaded into the movement restriction structure in various ways.
- the balloon catheter can simply be threaded through the movement restriction structure before or after being connected with other portions of the apparatus in preparation for coating.
- the movement restriction structure itself can be manipulated in order to load the balloon.
- the movement restriction structure can be rotated into an open orientation in order to accommodate loading the balloon from the side. Then, in some embodiments, the movement restriction structure can be rotated from the open orientation to a closed orientation in order to lock the balloon in place.
- FIG. 14 a schematic front view of the movement restriction structure 1102 is shown illustrating an open orientation.
- first body member 1104 and the second body member 1106 are rotated approximately 90 degrees from their respective positions in FIG. 13.
- the balloon 1118 can be slid out from between the first and second body members 1104, 1106 when the movement restriction structure 1102 is in this orientation.
- a new balloon to be coated can be slid back in between the first and second body members 1104, 1106 and then the body members can be rotated in the direction of arrows 1150 and 1152 to put the movement restriction structure 1102 into the closed position (illustrated in FIG. 13) where the balloon 1118 is locked in place.
- the first and second body members 1104, 1106 can be rotated in either direction.
- the first and second body members 1104, 1106 can be rotated together around a single axis or independently from one another around two separate axes.
- the movement restriction structure 1500 can include a first body member 1502.
- the first body member 1502 can include a curved segment 1504 and an end 1508.
- the curved segment 1504 can define a portion of a channel which can surround at least a portion of the balloon 1518, thereby restricting the balloon's 1518 movement, in conjunction with a second body member (not shown in this view).
- the first body member 1502 can also include an alignment lip 1506 adjacent to the end 1508.
- the alignment lip 1506 can include a surface 1510 that is angled away from the channel defined by the curved segment 1504.
- the alignment lip 1506 can aid in positioning the balloon 1518 within the channel formed by the curved segment 1504. For example, when the first body member 1502 is rotated starting from the open position, if the balloon 1518 is slightly out of position by being too close to the end 1508, the surface 1510 of the alignment lip 1506 will contact the balloon 1518 surface and cause the balloon 1518 to move into alignment with the channel.
- FIG. 16 is a schematic end view of a fluid applicator 1600 in accordance with various embodiments herein.
- the fluid applicator 1600 can include a shaft 1602 and an orifice 1608.
- the orifice 1608 can be located along the shaft 1602 at a position other than at the distal end 1620 of the shaft 1602.
- Fluid 1604, such as a coating solution, can pass from the fluid applicator 1600 through the orifice 1608 in order to be deposited on the surface of the balloon.
- segment 1606 of the shaft 1602 that extends beyond where the orifice 1608 is located can be curved, in some embodiments, in order to form part of a channel which can serve to maintain the position of the balloon relative to the fluid applicator 1600. In some embodiments, segment 1606 can be disposed between the orifice 1608 and the distal end 1620 of the shaft 1602.
- coating solutions applied onto balloons can include various components including, but not limited to, one or more active agents, carrier agents and/or solvents, polymers (including degradable or non-degradable polymers), excipients, and the like.
- the relative amounts of the components of the coating solution will depend on various factors including the desired amount of active agent to be applied to the balloon and the desired release rate of the active agent.
- Embodiments herein include methods of applying coatings onto balloon catheters.
- the method can include rotating a balloon catheter with a rotation mechanism, the balloon catheter comprising a balloon, contacting the balloon with a movement restriction structure defining a channel, wherein the channel limits lateral movement of the balloon, applying a coating solution onto the surface of the balloon with a fluid applicator (such as through direct contact with a fluid applicator), contacting the surface of the balloon with a fluid distribution bar, and blowing a stream of a gas onto the surface of the balloon.
- the balloon catheter can be rotated at a speed of between 100 and 400 rotations per minute.
- the method can include moving the fluid applicator relative to the lengthwise axis of the drug eluting balloon catheter.
- the method can include moving the drug eluting balloon catheter along its lengthwise axis relative to the fluid applicator, fluid distribution bar, and movement restriction structure.
- the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration to.
- the phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Child & Adolescent Psychology (AREA)
- Manufacturing & Machinery (AREA)
- Epidemiology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Coating Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2874824A CA2874824C (en) | 2012-06-01 | 2013-05-31 | Apparatus and methods for coating balloon catheters |
JP2015515223A JP6549482B2 (en) | 2012-06-01 | 2013-05-31 | Device and method for coating a balloon catheter |
EP13729853.5A EP2855030B1 (en) | 2012-06-01 | 2013-05-31 | Apparatus and method for coating balloon catheters |
MX2014014574A MX351261B (en) | 2012-06-01 | 2013-05-31 | Apparatus and method for coating balloon catheters. |
CR20140589A CR20140589A (en) | 2012-06-01 | 2014-12-17 | APPLIANCE AND METHOD FOR COVERING CATHETERS WITH BALLOON |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261654403P | 2012-06-01 | 2012-06-01 | |
US61/654,403 | 2012-06-01 | ||
US201261661684P | 2012-06-19 | 2012-06-19 | |
US61/661,684 | 2012-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013181498A1 true WO2013181498A1 (en) | 2013-12-05 |
Family
ID=48652323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/043547 WO2013181498A1 (en) | 2012-06-01 | 2013-05-31 | Apparatus and method for coating balloon catheters |
Country Status (7)
Country | Link |
---|---|
US (2) | US9308355B2 (en) |
EP (1) | EP2855030B1 (en) |
JP (1) | JP6549482B2 (en) |
CA (1) | CA2874824C (en) |
CR (1) | CR20140589A (en) |
MX (1) | MX351261B (en) |
WO (1) | WO2013181498A1 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015009095A (en) * | 2013-07-02 | 2015-01-19 | テルモ株式会社 | Balloon coating method and balloon coating device |
WO2015093585A1 (en) * | 2013-12-21 | 2015-06-25 | テルモ株式会社 | Balloon coating method and balloon coating device |
WO2015093584A1 (en) * | 2013-12-21 | 2015-06-25 | テルモ株式会社 | Balloon coating method and balloon coating device |
JP2015119801A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon coating method and balloon coating device |
JP2015119805A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon shape correction tool and balloon coating method |
JP2015119802A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon coating method and balloon coating device |
WO2015151879A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Positioning method for balloon coating |
WO2015151877A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Balloon coating method, coat layer control method and balloon coating device |
WO2015151878A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Positioning method for balloon coating |
WO2015151876A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Balloon coating method |
JP2015195962A (en) * | 2014-04-01 | 2015-11-09 | テルモ株式会社 | balloon coating method |
JP2016016374A (en) * | 2014-07-09 | 2016-02-01 | 株式会社モリタ東京製作所 | Surface treatment device of flexible tube, surface treatment method of flexible tube, and surface-treated flexible tube |
US9283350B2 (en) | 2012-12-07 | 2016-03-15 | Surmodics, Inc. | Coating apparatus and methods |
US9308355B2 (en) | 2012-06-01 | 2016-04-12 | Surmodies, Inc. | Apparatus and methods for coating medical devices |
US9364349B2 (en) | 2008-04-24 | 2016-06-14 | Surmodics, Inc. | Coating application system with shaped mandrel |
WO2016171252A1 (en) * | 2015-04-23 | 2016-10-27 | テルモ株式会社 | Balloon coating method, balloon rotation method, and balloon coating device |
WO2016171251A1 (en) * | 2015-04-23 | 2016-10-27 | テルモ株式会社 | Balloon coating method, balloon rotation method, and balloon coating device |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9872940B2 (en) | 2013-04-01 | 2018-01-23 | Terumo Kabushiki Kaisha | Drug coating layer |
US9901719B2 (en) | 2015-04-23 | 2018-02-27 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
JP2018064998A (en) * | 2018-01-17 | 2018-04-26 | テルモ株式会社 | Balloon coating method and balloon coating device |
US10143779B2 (en) | 2014-05-16 | 2018-12-04 | Terumo Kabushiki Kaisha | Method of inhibiting thickening of vascular intima |
US10149925B2 (en) | 2014-05-16 | 2018-12-11 | Terumo Kabushiki Kaisha | Method of reducing the risk of embolization of peripheral blood vessels |
US10188771B2 (en) | 2014-05-16 | 2019-01-29 | Terumo Kabushiki Kaisha | Method of treating peripheral artery diseases in lower limbs |
US10646697B2 (en) | 2015-04-23 | 2020-05-12 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
US20200390693A1 (en) * | 2017-12-22 | 2020-12-17 | Samsung Bioepis Co., Ltd. | Liquid composition comprising vegf antagonist |
US11090468B2 (en) | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11628466B2 (en) | 2018-11-29 | 2023-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2861314C (en) | 2012-01-18 | 2021-03-16 | Surmodics, Inc. | Lubricious medical device coating with low particulates |
CA2896107C (en) | 2013-01-04 | 2021-11-23 | Surmodics, Inc. | Low particulate lubricious coating with vinyl pyrrolidone and acidic polymer-containing layers |
US10124088B2 (en) | 2014-09-29 | 2018-11-13 | Surmodics, Inc. | Lubricious medical device elements |
KR101666944B1 (en) * | 2015-05-06 | 2016-10-17 | 주식회사 노아닉스 | Device And Method for Coating Apparatus Of Drug Eluting Balloon Catheter |
US11174447B2 (en) | 2015-12-29 | 2021-11-16 | Surmodics, Inc. | Lubricious coatings with surface salt groups |
US10342898B2 (en) | 2015-12-29 | 2019-07-09 | Surmodics, Inc. | Lubricious coatings with surface salt groups |
US11278647B2 (en) | 2016-03-31 | 2022-03-22 | Surmodics, Inc. | Lubricious coating for medical device |
US11123459B2 (en) | 2016-12-16 | 2021-09-21 | Surmodics, Inc. | Hydrophobic active agent particle coatings and methods for treatment |
JP6955548B2 (en) * | 2017-03-16 | 2021-10-27 | テルモ株式会社 | Balloon coating method |
EP3643336B1 (en) * | 2017-09-21 | 2021-09-01 | Terumo Kabushiki Kaisha | Method and device for forming drug coating layer |
CN111110927B (en) * | 2019-12-30 | 2021-12-21 | 深圳市顺美医疗股份有限公司 | Process for adding hydrophilic coating on surface of vascular sheath |
CN115581848B (en) * | 2022-10-17 | 2024-05-24 | 上海申淇医疗科技有限公司 | Preparation method of medicine saccule |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1281672A (en) * | 1916-04-29 | 1918-10-15 | Simmons Co | Lacquering-machine. |
US4195637A (en) | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US5041089A (en) | 1987-12-11 | 1991-08-20 | Devices For Vascular Intervention, Inc. | Vascular dilation catheter construction |
US5087246A (en) | 1988-12-29 | 1992-02-11 | C. R. Bard, Inc. | Dilation catheter with fluted balloon |
US5318587A (en) | 1989-08-25 | 1994-06-07 | C. R. Bard, Inc. | Pleated balloon dilatation catheter and method of use |
US5382234A (en) | 1993-04-08 | 1995-01-17 | Scimed Life Systems, Inc. | Over-the-wire balloon catheter |
US5571089A (en) | 1993-06-30 | 1996-11-05 | Cardiovascular Dynamics, Inc. | Low profile perfusion catheter |
US5776101A (en) | 1990-10-04 | 1998-07-07 | Schneider (Europe) A.G. | Balloon dilatation catheter |
US5807331A (en) | 1994-04-20 | 1998-09-15 | Cordis Corporation | Active perfusion dilatation catheter |
US5882336A (en) | 1994-12-30 | 1999-03-16 | Janacek; Jaroslav | Dilation catheter |
US6394995B1 (en) | 1998-05-15 | 2002-05-28 | X Technologies Inc. | Enhanced balloon dilatation system |
US6517515B1 (en) | 1998-03-04 | 2003-02-11 | Scimed Life Systems, Inc. | Catheter having variable size guide wire lumen |
US6623504B2 (en) | 2000-12-08 | 2003-09-23 | Scimed Life Systems, Inc. | Balloon catheter with radiopaque distal tip |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US7163523B2 (en) | 2003-02-26 | 2007-01-16 | Scimed Life Systems, Inc. | Balloon catheter |
US20100040766A1 (en) * | 2008-08-14 | 2010-02-18 | Chappa Ralph A | Method and apparatus for coating balloon catheters |
WO2010024898A2 (en) * | 2008-08-29 | 2010-03-04 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
WO2010146096A1 (en) * | 2009-06-17 | 2010-12-23 | Dot Gmbh | Method and device for coating catheters or balloon catheters |
US20110281019A1 (en) * | 2010-05-17 | 2011-11-17 | Abbott Cardiovascular Systems Inc. | Direct Fluid Coating Of Drug Eluting Balloon |
Family Cites Families (473)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US273410A (en) | 1883-03-06 | Gelatine eye-disk | ||
US554114A (en) | 1896-02-04 | Binding for books | ||
GB104464A (en) | 1916-08-22 | 1917-03-08 | Sterling Telephone And Electri | Improvements in and relating to Lacquering Machines. |
US1866100A (en) | 1928-03-16 | 1932-07-05 | Western Electric Co | Coating apparatus |
US2335116A (en) | 1934-05-12 | 1943-11-23 | American Anode Inc | Apparatus for spraying a plurality of fluids |
US2253019A (en) | 1938-08-25 | 1941-08-19 | Atlen J Crepeau | Overhead cable spraying apparatus |
GB525373A (en) | 1938-09-09 | 1940-08-27 | Thomassen Thomas | Method and apparatus for coating covers or bottoms for preserve tins, cans or like containers |
US2330880A (en) | 1940-07-16 | 1943-10-05 | Crown Cork & Seal Co | Coating machine |
US2493787A (en) | 1946-03-19 | 1950-01-10 | Theodore T Torretti | Antenna |
US2781280A (en) | 1953-03-11 | 1957-02-12 | Ransburg Electro Coating Corp | Method and apparatus for spray coating of articles |
US2821158A (en) | 1954-10-22 | 1958-01-28 | Gen Electric | Machine for coating bell-shaped electrical suspension insulators |
US3198170A (en) | 1961-03-11 | 1965-08-03 | Copal Co Ltd | Ultrasonic-wave painting machine |
FR1304457A (en) | 1961-10-18 | 1962-09-21 | Gusti Alfredo Officina Meccani | Machine particularly intended for coating hollow objects with a layer of plastic |
BE628600A (en) | 1962-03-06 | 1900-01-01 | ||
US3416530A (en) | 1966-03-02 | 1968-12-17 | Richard A. Ness | Eyeball medication dispensing tablet |
US3669917A (en) | 1966-12-23 | 1972-06-13 | Kanegafuchi Spinning Co Ltd | Copolyamide fibers of reduced stickiness containing a normal paraffin |
US4000745A (en) | 1968-08-05 | 1977-01-04 | Goldberg Edward M | Electrical leads for cardiac stimulators and related methods and means |
US3625214A (en) | 1970-05-18 | 1971-12-07 | Alza Corp | Drug-delivery device |
US4069307A (en) | 1970-10-01 | 1978-01-17 | Alza Corporation | Drug-delivery device comprising certain polymeric materials for controlled release of drug |
US3699917A (en) | 1970-10-02 | 1972-10-24 | Cogar Corp | Vapor deposition apparatus |
US3837805A (en) | 1971-01-15 | 1974-09-24 | Wave Energy Systems | Apparatus for continuous sterilization at low temperature |
US3723120A (en) | 1971-08-30 | 1973-03-27 | Du Pont | Process for hardening photohardenable images |
US3936549A (en) | 1972-11-17 | 1976-02-03 | The Kohler Coating Machinery Corporation | Method and apparatus for applying a liquid coating to strip material |
US3935896A (en) | 1973-01-16 | 1976-02-03 | Concast Incorporated | Method for cooling a continuously cast strand |
US4073335A (en) | 1974-04-01 | 1978-02-14 | Pont-A-Mousson S.A. | Cooling device for iron pipe centrifugal casting machine |
US4016306A (en) | 1974-07-15 | 1977-04-05 | Mitsubishi Rayon Co., Ltd. | Process for forming a coated film in water |
CH576299A5 (en) | 1974-08-16 | 1976-06-15 | Concast Ag | |
US4060116A (en) | 1974-11-11 | 1977-11-29 | Eaton Corporation | Method for producing self-locking fasteners |
US3966120A (en) | 1975-03-12 | 1976-06-29 | Parker-Hannifin Corporation | Ultrasonic spraying device |
US4144317A (en) | 1975-05-30 | 1979-03-13 | Alza Corporation | Device consisting of copolymer having acetoxy groups for delivering drugs |
US4051805A (en) | 1975-11-11 | 1977-10-04 | Amchem Products, Inc. | Can washing and coating system |
US4082870A (en) | 1975-12-29 | 1978-04-04 | Union Carbide Corporation | Method for coating nonsymmetrical objects |
US4375820A (en) | 1976-10-04 | 1983-03-08 | Hi-Hard Rolls, Inc. | Roller for use in a conveyor-roller structure |
US4075975A (en) | 1976-10-06 | 1978-02-28 | Kaiser Steel Corporation | Rotator and coater system for drum shells |
US4153201A (en) | 1976-11-08 | 1979-05-08 | Sono-Tek Corporation | Transducer assembly, ultrasonic atomizer and fuel burner |
US4301968A (en) | 1976-11-08 | 1981-11-24 | Sono-Tek Corporation | Transducer assembly, ultrasonic atomizer and fuel burner |
US4289089A (en) | 1976-11-26 | 1981-09-15 | Rocket Research Corporation | Tire sealant applicator |
US4206756A (en) | 1977-03-23 | 1980-06-10 | Murray Grossan | Jet ear irrigation system |
DE2737917C2 (en) | 1977-08-23 | 1984-04-26 | Hübers & Meier, 4190 Bocholt | Impregnation device equipped with a centrifuge |
US4174678A (en) | 1977-09-23 | 1979-11-20 | Utility Contracting Co. | Cable spraying apparatus |
US4146036A (en) | 1977-10-06 | 1979-03-27 | Medtronic, Inc. | Body-implantable lead with protector for tissue securing means |
US4148934A (en) | 1977-12-02 | 1979-04-10 | W. R. Grace Ltd. | Secondary photocuring of photocured printing plate, apparatus and method |
DE2754136C3 (en) | 1977-12-05 | 1980-06-26 | Sprimag Spritzmaschinenbau-Gesellschaft Mbh, 7312 Kirchheim | Spray device for horizontally fed cylindrical bodies |
JPS55500517A (en) | 1978-07-21 | 1980-08-14 | ||
US4292965A (en) | 1978-12-29 | 1981-10-06 | The Population Council, Inc. | Intravaginal ring |
US4209019A (en) | 1979-01-05 | 1980-06-24 | Medtronic, Inc. | Stylet insertion guide and rotation control device for use with body implantable lead |
ZA803358B (en) | 1979-06-08 | 1981-06-24 | Sono Tek Corp | Ultrasonic fuel atomizer |
US4352459A (en) | 1979-11-13 | 1982-10-05 | Sono-Tek Corporation | Ultrasonic liquid atomizer having an axially-extending liquid feed passage |
US4300557A (en) | 1980-01-07 | 1981-11-17 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method for treating intraocular malignancies |
US4544626A (en) | 1980-05-08 | 1985-10-01 | Sullivan Donald F | Photoprinting process and apparatus for exposing photopolymers |
US4304765A (en) | 1980-10-14 | 1981-12-08 | Alza Corporation | Ocular insert housing steroid in two different therapeutic forms |
US4678466A (en) | 1981-06-25 | 1987-07-07 | Rosenwald Peter L | Internal medication delivery method and vehicle |
US4475972A (en) | 1981-10-01 | 1984-10-09 | Ontario Research Foundation | Implantable material |
US4971895A (en) | 1981-10-20 | 1990-11-20 | Sullivan Donald F | Double exposure method of photoprinting with liquid photopolymers |
DE3205911C2 (en) | 1982-02-19 | 1985-12-05 | Küsters, Eduard, 4150 Krefeld | Device for evenly applying small amounts of liquid to a moving textile web |
NL8202164A (en) | 1982-05-27 | 1983-12-16 | Philips Nv | METHOD AND APPARATUS FOR TRANSPORTING AND DEPOSITING VISCOUS SUBSTANCES |
US4415654A (en) | 1982-08-19 | 1983-11-15 | Hercules Incorporated | Post-exposure process |
US5310559A (en) | 1982-09-01 | 1994-05-10 | Hercon Laboratories Corporation | Device for controlled release and delivery to mammalian tissue of pharmacologically active agents incorporating a rate controlling member which comprises an alkylene-alkyl acrylate copolymer |
US4622917A (en) | 1982-09-27 | 1986-11-18 | Etd Technology, Inc. | Apparatus and method for electroless plating |
US5002582A (en) | 1982-09-29 | 1991-03-26 | Bio-Metric Systems, Inc. | Preparation of polymeric surfaces via covalently attaching polymers |
JPS59124644A (en) | 1982-12-27 | 1984-07-18 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for winding in paper machine |
US4541564A (en) | 1983-01-05 | 1985-09-17 | Sono-Tek Corporation | Ultrasonic liquid atomizer, particularly for high volume flow rates |
US4655393A (en) | 1983-01-05 | 1987-04-07 | Sonotek Corporation | High volume ultrasonic liquid atomizer |
US4567934A (en) | 1983-02-28 | 1986-02-04 | Kabushiki Kaisha Kobe Seiko Sho | Cooling mechanism for use in continuous metal casting |
JPS59175951U (en) | 1983-05-13 | 1984-11-24 | 東芝熱器具株式会社 | Combustion heating device |
DE3335502C1 (en) | 1983-09-30 | 1990-05-10 | Stahlwerke Peine-Salzgitter Ag, 3150 Peine | Process and device for covering a preheated steel pipe with pulverulent coating materials |
US4892736A (en) | 1983-10-07 | 1990-01-09 | The Forsyth Dental Infirmary For Children | Intra-pocket drug delivery devices for treatment of periodontal diseases |
US4764377A (en) | 1983-10-07 | 1988-08-16 | The Forsyth Dental Infirmary For Children | Intra-pocket drug delivery devices for treatment of periodontal diseases |
US5387247A (en) | 1983-10-25 | 1995-02-07 | Sorin Biomedia S.P.A. | Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device |
DE3344046A1 (en) | 1983-12-06 | 1985-06-20 | Brown, Boveri & Cie Ag, 6800 Mannheim | COOLING SYSTEM FOR INDIRECTLY COOLED SUPRALINE MAGNETS |
JPS60194108U (en) | 1984-06-01 | 1985-12-24 | 石川島播磨重工業株式会社 | Intake/exhaust valve blow-through detection device |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US5344298A (en) | 1984-08-08 | 1994-09-06 | 3D Systems, Inc. | Apparatus for making three-dimensional objects by stereolithography |
JPS6174668A (en) | 1984-09-19 | 1986-04-16 | Yoshida Kogyo Kk <Ykk> | Device for supplying separate paint in rotary painting machine |
US4603058A (en) | 1984-10-05 | 1986-07-29 | Macdermid, Incorporated | Post-treatment of cured, radiation sensitive, polymerizable resins to eliminate surface tack |
US4638045A (en) | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
GB8527071D0 (en) | 1985-11-04 | 1985-12-11 | Biocompatibles Ltd | Plastics |
US4743252A (en) | 1986-01-13 | 1988-05-10 | Corvita Corporation | Composite grafts |
ZA872295B (en) | 1986-03-13 | 1987-09-22 | ||
US4723708A (en) | 1986-05-09 | 1988-02-09 | Sono-Tek Corporation | Central bolt ultrasonic atomizer |
US4959217A (en) | 1986-05-22 | 1990-09-25 | Syntex (U.S.A.) Inc. | Delayed/sustained release of macromolecules |
US5229128A (en) | 1986-06-11 | 1993-07-20 | Haddad Heskel M | Drug delivery ophthalmic insert and method of preparing same |
JPH0657616B2 (en) | 1986-06-30 | 1994-08-03 | 山村硝子株式会社 | Method and device for manufacturing surface-treated glass container |
US4824017A (en) | 1986-07-14 | 1989-04-25 | Glas-Craft, Inc. | External mix spraying system |
US5322691A (en) | 1986-10-02 | 1994-06-21 | Sohrab Darougar | Ocular insert with anchoring protrusions |
US5989579A (en) | 1986-10-02 | 1999-11-23 | Escalon Medical Corp. | Ocular insert with anchoring protrusions |
US4863457A (en) | 1986-11-24 | 1989-09-05 | Lee David A | Drug delivery device |
US5049404A (en) | 1987-04-01 | 1991-09-17 | Polaroid Corporation | Method and apparatus for applying ultra-thin coatings to a substrate |
US5114719A (en) | 1987-04-29 | 1992-05-19 | Sabel Bernhard A | Extended drug delivery of small, water-soluble molecules |
US4819661A (en) | 1987-10-26 | 1989-04-11 | Cardiac Pacemakers, Inc. | Positive fixation cardiac electrode with drug elution capabilities |
JP2868817B2 (en) | 1987-12-17 | 1999-03-10 | ユナイテッド・ステーツ・サージカル・コーポレーション | Medical devices made from homopolymers and copolymers containing repeating carbonate units |
US4853224A (en) | 1987-12-22 | 1989-08-01 | Visionex | Biodegradable ocular implants |
US4997652A (en) | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
US4936825A (en) | 1988-04-11 | 1990-06-26 | Ungerleider Bruce A | Method for reducing intraocular pressure caused by glaucoma |
US5076974A (en) | 1988-04-18 | 1991-12-31 | 3 D Systems, Inc. | Methods of curing partially polymerized parts |
DE3825324A1 (en) | 1988-07-26 | 1990-02-01 | Kulzer & Co Gmbh | FINGERNAGEL RADIATORS |
JPH0236882A (en) | 1988-07-28 | 1990-02-06 | Terumo Corp | Medical appliance and manufacture thereof |
JP2686778B2 (en) * | 1988-08-29 | 1997-12-08 | コニカ株式会社 | Work positioning support device |
US5098443A (en) | 1989-03-23 | 1992-03-24 | University Of Miami | Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents |
JP2804087B2 (en) * | 1989-06-19 | 1998-09-24 | 株式会社ニッショー | Solvent coating device for tube end |
US6514238B1 (en) | 1989-08-14 | 2003-02-04 | Photogenesis, Inc. | Method for preparation and transplantation of volute grafts and surgical instrument therefor |
US4972848A (en) | 1989-08-23 | 1990-11-27 | Medtronic, Inc. | Medical electrical lead with polymeric monolithic controlled release device and method of manufacture |
US5003992A (en) | 1989-08-23 | 1991-04-02 | Holleman Timothy W | Atraumatic screw-in lead |
US5002067A (en) | 1989-08-23 | 1991-03-26 | Medtronic, Inc. | Medical electrical lead employing improved penetrating electrode |
US4953564A (en) | 1989-08-23 | 1990-09-04 | Medtronic, Inc. | Screw-in drug eluting lead |
US5255693A (en) | 1989-11-02 | 1993-10-26 | Possis Medical, Inc. | Cardiac lead |
US5525348A (en) | 1989-11-02 | 1996-06-11 | Sts Biopolymers, Inc. | Coating compositions comprising pharmaceutical agents |
US5164188A (en) | 1989-11-22 | 1992-11-17 | Visionex, Inc. | Biodegradable ocular implants |
US5304121A (en) | 1990-12-28 | 1994-04-19 | Boston Scientific Corporation | Drug delivery system making use of a hydrogel polymer coating |
US4978067A (en) | 1989-12-22 | 1990-12-18 | Sono-Tek Corporation | Unitary axial flow tube ultrasonic atomizer with enhanced sealing |
US5071337A (en) | 1990-02-15 | 1991-12-10 | Quadrax Corporation | Apparatus for forming a solid three-dimensional article from a liquid medium |
US5545208A (en) | 1990-02-28 | 1996-08-13 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
EP0470246B1 (en) | 1990-02-28 | 1995-06-28 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5626919A (en) | 1990-03-01 | 1997-05-06 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus and method with coating station |
US5076285A (en) | 1990-03-30 | 1991-12-31 | Medtronic, Inc. | Screw-in lead |
US5120312A (en) | 1990-04-20 | 1992-06-09 | Regents Of The University Of Minnesota | Method and apparatus for catheterization |
US5036634A (en) | 1990-05-14 | 1991-08-06 | Lessard Ronald R | Knock down shelter and storage structure |
WO1991017724A1 (en) | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
US5658387A (en) | 1991-03-06 | 1997-08-19 | Semitool, Inc. | Semiconductor processing spray coating apparatus |
US5069940A (en) | 1990-10-01 | 1991-12-03 | Creative Extruded Products, Inc. | Apparatus and method for applying coating material |
US5413638A (en) | 1990-10-03 | 1995-05-09 | Bernstein, Jr.; Philip | Apparatus for metalizing internal surfaces of tubular metal bodies |
KR0185215B1 (en) | 1990-11-30 | 1999-05-01 | 요시다 쇼오지 | A controlled-release pharmaceutical preparation for intra-ocular implant |
WO1992011895A1 (en) | 1990-12-28 | 1992-07-23 | Boston Scientific Corporation | Balloon drug delivery system |
US5102402A (en) | 1991-01-04 | 1992-04-07 | Medtronic, Inc. | Releasable coatings on balloon catheters |
US5378475A (en) | 1991-02-21 | 1995-01-03 | University Of Kentucky Research Foundation | Sustained release drug delivery devices |
AU1579092A (en) | 1991-02-27 | 1992-10-06 | Nova Pharmaceutical Corporation | Anti-infective and anti-inflammatory releasing systems for medical devices |
US5437656A (en) | 1991-02-27 | 1995-08-01 | Leonard Bloom | Method and device for inhibiting H.I.V. hepatitis B and other viruses and germs when using a needle, scalpel and other sharp instrument in a medical environment |
US5364343A (en) | 1991-03-06 | 1994-11-15 | D.D. S.R.L. | Irrigation device for use in ear canals for therapeutic or hygienic purposes |
AU656556B2 (en) | 1991-03-13 | 1995-02-09 | Minnesota Mining And Manufacturing Company | Radio frequency induction heatable compositions |
US5219690A (en) | 1991-04-12 | 1993-06-15 | Xerox Corporation | Substrate and process for coating a substrate with multi-pigment charge generation layers |
US5183509A (en) | 1991-04-26 | 1993-02-02 | Gencorp Inc. | Apparatus for application of a material to an internal surface of items of manufacture |
US5207343A (en) | 1991-05-29 | 1993-05-04 | Cesar Bogadi | Present invention refers to a new system of modular knock-down packaging |
US5221698A (en) | 1991-06-27 | 1993-06-22 | The Regents Of The University Of Michigan | Bioactive composition |
WO1993000174A1 (en) | 1991-06-27 | 1993-01-07 | Frank Anthony Matich | Method and apparatus for drying an article |
US5324325A (en) | 1991-06-27 | 1994-06-28 | Siemens Pacesetter, Inc. | Myocardial steroid releasing lead |
US5219120A (en) | 1991-07-24 | 1993-06-15 | Sono-Tek Corporation | Apparatus and method for applying a stream of atomized fluid |
US5248752A (en) | 1991-11-12 | 1993-09-28 | Union Carbide Chemicals & Plastics Technology Corporation | Polyurethane (meth)acrylates and processes for preparing same |
US5681585A (en) | 1991-12-24 | 1997-10-28 | Euro-Celtique, S.A. | Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer |
US5246867A (en) | 1992-01-17 | 1993-09-21 | University Of Maryland At Baltimore | Determination and quantification of saccharides by luminescence lifetimes and energy transfer |
ES2125329T3 (en) | 1992-02-14 | 1999-03-01 | Smith & Nephew Inc | SCREWS OF POLYMER MATERIALS AND COATINGS FOR SURGICAL USES. |
US5599352A (en) | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
US5178635A (en) | 1992-05-04 | 1993-01-12 | Allergan, Inc. | Method for determining amount of medication in an implantable device |
IT1259100B (en) | 1992-05-20 | 1996-03-11 | Lanfranco Callegaro | USE OF HYDROGELS FOR THE LOCKING OF PROSTHETIC SYSTEMS |
US5254164A (en) | 1992-06-15 | 1993-10-19 | Nordson Corp. | Coating system including indexing turret rotatable in the vertical and horizontal planes about a stationary shaft with loading and unloading of containers and closures from the edges of the turret |
US5270248A (en) | 1992-08-07 | 1993-12-14 | Mobil Solar Energy Corporation | Method for forming diffusion junctions in solar cell substrates |
US5447533A (en) | 1992-09-03 | 1995-09-05 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
US5314419A (en) | 1992-10-30 | 1994-05-24 | Pelling George E | Method for dispensing ophthalmic drugs to the eye |
US5578075B1 (en) | 1992-11-04 | 2000-02-08 | Daynke Res Inc | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5449382A (en) | 1992-11-04 | 1995-09-12 | Dayton; Michael P. | Minimally invasive bioactivated endoprosthesis for vessel repair |
US5414075A (en) | 1992-11-06 | 1995-05-09 | Bsi Corporation | Restrained multifunctional reagent for surface modification |
EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
US5300108A (en) | 1993-01-05 | 1994-04-05 | Telectronics Pacing Systems, Inc. | Active fixation lead with a dual-pitch, free spinning compound screw |
US5288323A (en) | 1993-02-19 | 1994-02-22 | Pender Don S | Apparatus with a shunt system for processing printed circuit board substrates |
JP3007503B2 (en) | 1993-02-26 | 2000-02-07 | トリニティ工業株式会社 | Paint booth with air supply |
EP0689465A1 (en) | 1993-03-18 | 1996-01-03 | Cedars-Sinai Medical Center | Drug incorporating and releasing polymeric coating for bioprosthesis |
BE1006819A7 (en) | 1993-03-24 | 1994-12-13 | Dsb Nv | Polyurethane coated prostheses (stents) FOR THE TREATMENT OF VESSEL CHOKES. |
US20020055710A1 (en) | 1998-04-30 | 2002-05-09 | Ronald J. Tuch | Medical device for delivering a therapeutic agent and method of preparation |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5673473A (en) | 1993-06-25 | 1997-10-07 | Medtronic, Inc. | Method of surface finishing a medical device shield using metallic media |
NZ533467A (en) | 1993-07-19 | 2006-02-24 | Angiotech Pharm Inc | Anti-angiogenic compositions and methods of use |
US20030203976A1 (en) | 1993-07-19 | 2003-10-30 | William L. Hunter | Anti-angiogenic compositions and methods of use |
US5994341A (en) | 1993-07-19 | 1999-11-30 | Angiogenesis Technologies, Inc. | Anti-angiogenic Compositions and methods for the treatment of arthritis |
US5385148A (en) | 1993-07-30 | 1995-01-31 | The Regents Of The University Of California | Cardiac imaging and ablation catheter |
US5921982A (en) | 1993-07-30 | 1999-07-13 | Lesh; Michael D. | Systems and methods for ablating body tissue |
AU7404994A (en) | 1993-07-30 | 1995-02-28 | Regents Of The University Of California, The | Endocardial infusion catheter |
US5421979A (en) | 1993-08-03 | 1995-06-06 | Photran Corporation | Load-lock drum-type coating apparatus |
US5405376A (en) | 1993-08-27 | 1995-04-11 | Medtronic, Inc. | Method and apparatus for ablation |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5807395A (en) | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
CA2131467A1 (en) | 1993-09-17 | 1995-03-18 | Frederick A. Kish | Method and apparatus for coating fasteners |
US5423777A (en) | 1993-10-27 | 1995-06-13 | Tajiri; Akira | Punctum plug |
US5443505A (en) | 1993-11-15 | 1995-08-22 | Oculex Pharmaceuticals, Inc. | Biocompatible ocular implants |
US5849843A (en) | 1993-11-16 | 1998-12-15 | Baxter International Inc. | Polymeric compositions for medical packaging and devices |
US5405631A (en) | 1994-02-23 | 1995-04-11 | Rosenthal; Richard | Apparatus and method for sanitizing fruits |
JP3348204B2 (en) | 1994-04-20 | 2002-11-20 | 三菱アルミニウム株式会社 | Method and apparatus for producing long material with brazing powder |
US5466233A (en) | 1994-04-25 | 1995-11-14 | Escalon Ophthalmics, Inc. | Tack for intraocular drug delivery and method for inserting and removing same |
DE4425991C1 (en) | 1994-07-22 | 1995-12-07 | Mtu Muenchen Gmbh | Partial coating of parts with precious metals |
US5472436A (en) | 1994-07-26 | 1995-12-05 | Fremstad; Daria A. | Ocular appliance for delivering medication |
US5626862A (en) | 1994-08-02 | 1997-05-06 | Massachusetts Institute Of Technology | Controlled local delivery of chemotherapeutic agents for treating solid tumors |
US5582616A (en) | 1994-08-05 | 1996-12-10 | Origin Medsystems, Inc. | Surgical helical fastener with applicator |
JPH0886466A (en) | 1994-09-16 | 1996-04-02 | Mazda Motor Corp | Air conditioner for application chamber |
US5725493A (en) | 1994-12-12 | 1998-03-10 | Avery; Robert Logan | Intravitreal medicine delivery |
US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US5743964A (en) | 1995-01-24 | 1998-04-28 | Fata Hunter, Inc. | Roll coating system |
US5551427A (en) | 1995-02-13 | 1996-09-03 | Altman; Peter A. | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
CA2216943C (en) | 1995-04-19 | 2003-06-17 | Schneider (Usa) Inc. | Drug release coated stent |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US20020091433A1 (en) | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
CN1088615C (en) | 1995-04-24 | 2002-08-07 | 株式会社理光 | Method and apparatus for mixing two or more kinds of resin material liquids |
IL113723A (en) | 1995-05-14 | 2002-11-10 | Optonol Ltd | Intraocular implant |
US6117456A (en) | 1995-05-19 | 2000-09-12 | Etex Corporation | Methods and products related to the physical conversion of reactive amorphous calcium phosphate |
US5643362A (en) | 1995-06-05 | 1997-07-01 | Garves; John C. | Centerless turning lathe for refinishing rollers |
US6774278B1 (en) | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
JPH0924317A (en) * | 1995-07-12 | 1997-01-28 | Ngk Insulators Ltd | Device for applying coating material and method therefor |
JPH0938546A (en) | 1995-07-26 | 1997-02-10 | Toyota Motor Corp | Method and apparatus for controlling air conditioning of coating booth |
US5877224A (en) | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
US5773019A (en) | 1995-09-27 | 1998-06-30 | The University Of Kentucky Research Foundation | Implantable controlled release device to deliver drugs directly to an internal portion of the body |
US5714360A (en) | 1995-11-03 | 1998-02-03 | Bsi Corporation | Photoactivatable water soluble cross-linking agents containing an onium group |
JP3985907B2 (en) | 1996-01-18 | 2007-10-03 | 旭化成ケミカルズ株式会社 | Method for producing film coating granules |
US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
US5925885A (en) | 1996-05-22 | 1999-07-20 | Purepulse Technologies, Inc. | Parametric control in pulsed light sterilization of packages and their contents |
US5833891A (en) | 1996-10-09 | 1998-11-10 | The University Of Kansas | Methods for a particle precipitation and coating using near-critical and supercritical antisolvents |
US5810836A (en) | 1996-03-04 | 1998-09-22 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
US5904144A (en) | 1996-03-22 | 1999-05-18 | Cytotherapeutics, Inc. | Method for treating ophthalmic diseases |
US6019784A (en) | 1996-04-04 | 2000-02-01 | Electroformed Stents, Inc. | Process for making electroformed stents |
ZA97976B (en) | 1996-04-05 | 1997-08-18 | Alza Corp | Uniform drug delivery theraphy. |
US5858435A (en) | 1996-04-10 | 1999-01-12 | Gallo; John B. | Method of cleaning and preparing a quantity of produce for sale |
DE19614596C1 (en) | 1996-04-13 | 1997-05-22 | Singulus Technologies Gmbh | Compact disc transfer assembly |
US20030094736A1 (en) | 1996-05-03 | 2003-05-22 | Chuan Qin | Method of surface modifying a medical tubing |
US6143037A (en) | 1996-06-12 | 2000-11-07 | The Regents Of The University Of Michigan | Compositions and methods for coating medical devices |
US5928662A (en) | 1996-07-31 | 1999-07-27 | Phillips; Andrew F. | Ocular drug delivery device |
ZA978537B (en) | 1996-09-23 | 1998-05-12 | Focal Inc | Polymerizable biodegradable polymers including carbonate or dioxanone linkages. |
US6053924A (en) | 1996-11-07 | 2000-04-25 | Hussein; Hany | Device and method for trans myocardial revascularization |
EP0842657A1 (en) | 1996-11-19 | 1998-05-20 | OctoPlus B.V. | Microspheres for controlled release and processes to prepare these microspheres |
JP3245813B2 (en) | 1996-11-27 | 2002-01-15 | 東京エレクトロン株式会社 | Coating film forming equipment |
US20030157187A1 (en) | 1996-12-02 | 2003-08-21 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing inflammatory diseases |
US6495579B1 (en) | 1996-12-02 | 2002-12-17 | Angiotech Pharmaceuticals, Inc. | Method for treating multiple sclerosis |
US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
GB2321864B (en) | 1997-02-11 | 2001-05-30 | Protective Finishing Group Ltd | Apparatus and method for removing excess liquid from articles |
DE69814710T2 (en) | 1997-03-03 | 2004-03-18 | Tokyo Electron Ltd. | Coating device and method |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
US6086582A (en) | 1997-03-13 | 2000-07-11 | Altman; Peter A. | Cardiac drug delivery system |
US6547787B1 (en) | 1997-03-13 | 2003-04-15 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
US6223683B1 (en) | 1997-03-14 | 2001-05-01 | The Coca-Cola Company | Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating |
EP0973499B1 (en) | 1997-03-31 | 2003-08-06 | Alza Corporation | Diffusional implantable delivery system |
AU6493598A (en) | 1997-04-16 | 1998-11-11 | White Spot Ag | Biodegradable osteosynthesis implant |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US5879697A (en) | 1997-04-30 | 1999-03-09 | Schneider Usa Inc | Drug-releasing coatings for medical devices |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
BR9815499A (en) | 1997-07-02 | 2001-01-02 | Euro Celtique Sa | Prolonged anesthesia in joints and body spaces. |
JP3725177B2 (en) | 1997-07-03 | 2005-12-07 | 古河電気工業株式会社 | Transmission controller using separation transformer and separation transformer |
US6001425A (en) | 1997-07-08 | 1999-12-14 | Northrop Grumman Corporation | Ceramic RAM film coating process |
US5849359A (en) | 1997-07-17 | 1998-12-15 | United Technologies Corporation | Variable tilting tumbler vacuum coating apparatus |
US5897911A (en) | 1997-08-11 | 1999-04-27 | Advanced Cardiovascular Systems, Inc. | Polymer-coated stent structure |
CA2300154C (en) | 1997-08-11 | 2008-07-08 | Allergan Sales, Inc. | Sterile bioerodible implant device with improved biocompatability and method |
US6306426B1 (en) | 1997-08-11 | 2001-10-23 | Allergan Sales, Inc. | Implant device with a retinoid for improved biocompatibility |
US6306166B1 (en) | 1997-08-13 | 2001-10-23 | Scimed Life Systems, Inc. | Loading and release of water-insoluble drugs |
US6039922A (en) | 1997-08-15 | 2000-03-21 | Tetra Laval Holdings & Finance, Sa | UV radiation and vapor-phase hydrogen peroxide sterilization packaging |
GB9719894D0 (en) | 1997-09-18 | 1997-11-19 | Newman Paul B D | Microbial decontamination of food |
US5972027A (en) | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US5980548A (en) | 1997-10-29 | 1999-11-09 | Kensey Nash Corporation | Transmyocardial revascularization system |
US6599560B1 (en) | 1997-10-30 | 2003-07-29 | Fsi International, Inc. | Liquid coating device with barometric pressure compensation |
US6212434B1 (en) | 1998-07-22 | 2001-04-03 | Cardiac Pacemakers, Inc. | Single pass lead system |
US6501994B1 (en) | 1997-12-24 | 2002-12-31 | Cardiac Pacemakers, Inc. | High impedance electrode tip |
US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
US6251418B1 (en) | 1997-12-18 | 2001-06-26 | C.R. Bard, Inc. | Systems and methods for local delivery of an agent |
KR100289471B1 (en) | 1998-01-19 | 2001-09-17 | 김충섭 | A controlled/sustained implant delivery containing fentanyls |
US6221425B1 (en) | 1998-01-30 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Lubricious hydrophilic coating for an intracorporeal medical device |
DE69838526T2 (en) | 1998-02-05 | 2008-07-03 | Biosense Webster, Inc., Diamond Bar | Device for releasing a drug in the heart |
CN1163937C (en) | 1998-02-16 | 2004-08-25 | 松下电器产业株式会社 | Manufacture of electron tube |
ES2212821T3 (en) | 1998-03-26 | 2004-08-01 | Biomat B.V. | ENDOVASCULAR EXTENSORS WITH POLYMER COATING. |
US6091978A (en) | 1998-04-07 | 2000-07-18 | Cardiac Pacemakers, Inc. | Removable cap for tissue-insertable connections |
US20010029351A1 (en) | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
US20020188037A1 (en) | 1999-04-15 | 2002-12-12 | Chudzik Stephen J. | Method and system for providing bioactive agent release coating |
ATE219693T1 (en) | 1998-04-27 | 2002-07-15 | Surmodics Inc | BIOACTIVE ACTIVE COATINGS |
US6013099A (en) | 1998-04-29 | 2000-01-11 | Medtronic, Inc. | Medical device for delivering a water-insoluble therapeutic salt or substance |
CN1301197A (en) | 1998-05-19 | 2001-06-27 | 犹金·A·潘凯克 | Pressure feed coating application system |
US6306125B1 (en) | 1998-06-22 | 2001-10-23 | Neovasys, Inc. | Angiogenic implant delivery system and method |
US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
DE19829490A1 (en) | 1998-07-01 | 2000-01-05 | Spectris Gmbh | Method and device for improving a coated surface of paper webs |
US6203732B1 (en) | 1998-07-02 | 2001-03-20 | Intra Therapeutics, Inc. | Method for manufacturing intraluminal device |
US6652581B1 (en) | 1998-07-07 | 2003-11-25 | Boston Scientific Scimed, Inc. | Medical device with porous surface for controlled drug release and method of making the same |
JP2002520287A (en) | 1998-07-10 | 2002-07-09 | ザ・ユニバーシティ・オブ・シドニー | Prophylactic treatment of angiogenesis in macular degeneration |
US6214115B1 (en) | 1998-07-21 | 2001-04-10 | Biocompatibles Limited | Coating |
US6102887A (en) | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
GB2340759B (en) | 1998-08-26 | 2003-05-07 | Bespak Plc | Improvements in drug delivery devices |
US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6290728B1 (en) | 1998-09-10 | 2001-09-18 | Percardia, Inc. | Designs for left ventricular conduit |
US20050147690A1 (en) | 1998-09-25 | 2005-07-07 | Masters David B. | Biocompatible protein particles, particle devices and methods thereof |
US6299980B1 (en) | 1998-09-29 | 2001-10-09 | Medtronic Ave, Inc. | One step lubricious coating |
US6245099B1 (en) | 1998-09-30 | 2001-06-12 | Impra, Inc. | Selective adherence of stent-graft coverings, mandrel and method of making stent-graft device |
US6248112B1 (en) | 1998-09-30 | 2001-06-19 | C. R. Bard, Inc. | Implant delivery system |
US7045015B2 (en) | 1998-09-30 | 2006-05-16 | Optomec Design Company | Apparatuses and method for maskless mesoscale material deposition |
US6202658B1 (en) | 1998-11-11 | 2001-03-20 | Applied Materials, Inc. | Method and apparatus for cleaning the edge of a thin disc |
US6399655B1 (en) | 1998-12-22 | 2002-06-04 | Johns Hopkins University, School Of Medicine | Method for the prophylactic treatment of cataracts |
US6530950B1 (en) | 1999-01-12 | 2003-03-11 | Quanam Medical Corporation | Intraluminal stent having coaxial polymer member |
CA2329213C (en) | 1999-01-22 | 2005-08-09 | Gore Enterprise Holdings, Inc. | Low profile stent and graft combination |
US20040121014A1 (en) | 1999-03-22 | 2004-06-24 | Control Delivery Systems, Inc. | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
US6298272B1 (en) | 1999-03-29 | 2001-10-02 | Cardiac Pacemakers, Inc. | High impedance electrode tip with internal drug delivery capability |
US6368658B1 (en) | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US6607598B2 (en) | 1999-04-19 | 2003-08-19 | Scimed Life Systems, Inc. | Device for protecting medical devices during a coating process |
US6156373A (en) | 1999-05-03 | 2000-12-05 | Scimed Life Systems, Inc. | Medical device coating methods and devices |
US6719805B1 (en) | 1999-06-09 | 2004-04-13 | C. R. Bard, Inc. | Devices and methods for treating tissue |
WO2001008717A1 (en) | 1999-08-03 | 2001-02-08 | Smith & Nephew, Inc. | Controlled release implantable devices |
US6790228B2 (en) | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US7807211B2 (en) | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
CA2348398C (en) | 1999-09-22 | 2007-11-20 | Surmodics, Inc. | Water-soluble coating agents bearing initiator groups and coating process |
US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
US6207337B1 (en) | 1999-10-04 | 2001-03-27 | Xerox Corporation | Immersion coating system |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6521284B1 (en) | 1999-11-03 | 2003-02-18 | Scimed Life Systems, Inc. | Process for impregnating a porous material with a cross-linkable composition |
EP1104681A1 (en) | 1999-12-03 | 2001-06-06 | Biomat B.V. | Wire, tube or catheter with hydrophilic coating |
US6706023B1 (en) | 1999-12-03 | 2004-03-16 | Bionix Development Corporation | Device for irrigation of a blind orifice |
US6254921B1 (en) | 1999-12-08 | 2001-07-03 | Surmodics, Inc. | Coating process and apparatus |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US6360129B1 (en) | 1999-12-13 | 2002-03-19 | Cardiac Pacemakers, Inc. | Mannitol/hydrogel cap for tissue-insertable connections |
US6278018B1 (en) | 1999-12-14 | 2001-08-21 | Surmodics, Inc. | Surface coating agents |
US6730313B2 (en) | 2000-01-25 | 2004-05-04 | Edwards Lifesciences Corporation | Delivery systems for periadventitial delivery for treatment of restenosis and anastomotic intimal hyperplasia |
US6413135B1 (en) | 2000-02-29 | 2002-07-02 | Micron Technology, Inc. | Spacer fabrication for flat panel displays |
US7077848B1 (en) | 2000-03-11 | 2006-07-18 | John Hopkins University | Sutureless occular surgical methods and instruments for use in such methods |
US6478776B1 (en) | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
US8101200B2 (en) | 2000-04-13 | 2012-01-24 | Angiotech Biocoatings, Inc. | Targeted therapeutic agent release devices and methods of making and using the same |
US6638239B1 (en) | 2000-04-14 | 2003-10-28 | Glaukos Corporation | Apparatus and method for treating glaucoma |
US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
US20020046521A1 (en) | 2000-05-01 | 2002-04-25 | Delano Steinacker | Pre-cast building system |
US20020007215A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007213A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007214A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020005206A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
WO2001094103A2 (en) | 2000-06-02 | 2001-12-13 | Sola International, Inc. | Spin coating techniques |
US6723373B1 (en) | 2000-06-16 | 2004-04-20 | Cordis Corporation | Device and process for coating stents |
US6726918B1 (en) | 2000-07-05 | 2004-04-27 | Oculex Pharmaceuticals, Inc. | Methods for treating inflammation-mediated conditions of the eye |
US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
US6534112B1 (en) | 2000-08-01 | 2003-03-18 | Ams Research Corporation | Semi-automatic coating system methods for coating medical devices |
US6743233B1 (en) | 2000-08-02 | 2004-06-01 | Orthopaedic Biosystems, Ltd., Inc. | Medical screw and method of installation |
US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
US6595958B1 (en) | 2000-08-08 | 2003-07-22 | Scimed Life Systems, Inc. | Tortuous path injection device and method |
US6613017B1 (en) | 2000-08-08 | 2003-09-02 | Scimed Life Systems, Inc. | Controlled depth injection device and method |
ATE547080T1 (en) | 2000-08-30 | 2012-03-15 | Univ Johns Hopkins | DEVICES FOR INTRAOCULAR DRUG DELIVERY |
JP2002072436A (en) | 2000-08-31 | 2002-03-12 | Konica Corp | Automatic developing machine for photosensitive material |
US6562136B1 (en) | 2000-09-08 | 2003-05-13 | Surmodics, Inc. | Coating apparatus and method |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US20020111590A1 (en) | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices |
US20020051730A1 (en) | 2000-09-29 | 2002-05-02 | Stanko Bodnar | Coated medical devices and sterilization thereof |
ATE343969T1 (en) | 2000-09-29 | 2006-11-15 | Cordis Corp | COATED MEDICAL DEVICES |
US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6783793B1 (en) | 2000-10-26 | 2004-08-31 | Advanced Cardiovascular Systems, Inc. | Selective coating of medical devices |
DE10053826A1 (en) | 2000-10-30 | 2002-05-16 | Generis Gmbh | Device used for coating loose particulate material with binder and for building up cast model comprises atomizers which apply fluid above prescribed region |
US6626078B2 (en) | 2000-11-30 | 2003-09-30 | Lockheed Martin Corporation | Apparatus for detecting, identifying, and validating the existence of buried objects |
US6545097B2 (en) | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer |
US20020103526A1 (en) | 2000-12-15 | 2002-08-01 | Tom Steinke | Protective coating for stent |
US6471980B2 (en) | 2000-12-22 | 2002-10-29 | Avantec Vascular Corporation | Intravascular delivery of mycophenolic acid |
US6824559B2 (en) | 2000-12-22 | 2004-11-30 | Advanced Cardiovascular Systems, Inc. | Ethylene-carboxyl copolymers as drug delivery matrices |
US20020082679A1 (en) | 2000-12-22 | 2002-06-27 | Avantec Vascular Corporation | Delivery or therapeutic capable agents |
US7077859B2 (en) | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
US20030215564A1 (en) | 2001-01-18 | 2003-11-20 | Heller Phillip F. | Method and apparatus for coating an endoprosthesis |
JP4558274B2 (en) | 2001-02-16 | 2010-10-06 | ステリス インコーポレイテッド | Vapor phase decontamination of containers |
US6435959B1 (en) | 2001-02-22 | 2002-08-20 | Raphael Q. Skrmetta | Assembly for a seafood cleaning machine |
US6713081B2 (en) | 2001-03-15 | 2004-03-30 | The United States Of America As Represented By The Department Of Health And Human Services | Ocular therapeutic agent delivery devices and methods for making and using such devices |
US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US20030039689A1 (en) | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
US20040022853A1 (en) | 2001-04-26 | 2004-02-05 | Control Delivery Systems, Inc. | Polymer-based, sustained release drug delivery system |
US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US7247338B2 (en) * | 2001-05-16 | 2007-07-24 | Regents Of The University Of Minnesota | Coating medical devices |
US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
US6743462B1 (en) | 2001-05-31 | 2004-06-01 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for coating implantable devices |
EP2316394B1 (en) | 2001-06-12 | 2016-11-23 | The Johns Hopkins University | Reservoir device for intraocular drug delivery |
US6673453B2 (en) | 2001-06-12 | 2004-01-06 | Biocoat Incorporated | Coatings appropriate for medical devices |
US20030044514A1 (en) | 2001-06-13 | 2003-03-06 | Richard Robert E. | Using supercritical fluids to infuse therapeutic on a medical device |
US7485113B2 (en) | 2001-06-22 | 2009-02-03 | Johns Hopkins University | Method for drug delivery through the vitreous humor |
US6572644B1 (en) | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US6673154B1 (en) | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
US6682771B2 (en) | 2001-07-02 | 2004-01-27 | Scimed Life Systems, Inc. | Coating dispensing system and method using a solenoid head for coating medical devices |
US6676987B2 (en) | 2001-07-02 | 2004-01-13 | Scimed Life Systems, Inc. | Coating a medical appliance with a bubble jet printing head |
US20050129732A1 (en) | 2001-07-13 | 2005-06-16 | Flow Focusing, Inc. | Biodegradable, antibiotic, controlled release tape |
US20040142013A1 (en) | 2001-07-13 | 2004-07-22 | Flow Focusing, Inc. | Implantable orthopedic surgical devices with controlled release antimicrobial component |
US6497691B1 (en) | 2001-08-24 | 2002-12-24 | Polymer Group, Inc. | Structurally durable, drapeable breathable barrier film compositions and articles |
US20030158598A1 (en) | 2001-09-17 | 2003-08-21 | Control Delivery Systems, Inc. | System for sustained-release delivery of anti-inflammatory agents from a coated medical device |
KR100448209B1 (en) | 2001-09-17 | 2004-09-16 | 주식회사 리젠 바이오텍 | Automatic coating machine |
US6669980B2 (en) | 2001-09-18 | 2003-12-30 | Scimed Life Systems, Inc. | Method for spray-coating medical devices |
US6783968B2 (en) | 2001-09-24 | 2004-08-31 | Clearant, Inc. | Methods for sterilizing preparations of glycosidases |
US20030059520A1 (en) | 2001-09-27 | 2003-03-27 | Yung-Ming Chen | Apparatus for regulating temperature of a composition and a method of coating implantable devices |
US6916321B2 (en) | 2001-09-28 | 2005-07-12 | Ethicon, Inc. | Self-tapping resorbable two-piece bone screw |
US6752959B2 (en) | 2001-10-05 | 2004-06-22 | Pepsico, Inc. | High-speed, low temperature sterilization and sanitization apparatus and method |
US20030088307A1 (en) | 2001-11-05 | 2003-05-08 | Shulze John E. | Potent coatings for stents |
US6517889B1 (en) | 2001-11-26 | 2003-02-11 | Swaminathan Jayaraman | Process for coating a surface of a stent |
US6764470B2 (en) | 2001-12-03 | 2004-07-20 | Roland P. Dimick | Ear plug medication administration device |
US7348055B2 (en) | 2001-12-21 | 2008-03-25 | Surmodics, Inc. | Reagent and method for providing coatings on surfaces |
US6709514B1 (en) | 2001-12-28 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Rotary coating apparatus for coating implantable medical devices |
DE20200223U1 (en) | 2002-01-08 | 2002-03-21 | translumina GmbH, 72379 Hechingen | coating system |
AU2003216379A1 (en) | 2002-02-22 | 2003-09-09 | Control Delivery Systems, Inc. | Method for treating otic disorders |
US20030161937A1 (en) | 2002-02-25 | 2003-08-28 | Leiby Mark W. | Process for coating three-dimensional substrates with thin organic films and products |
US7858143B2 (en) * | 2002-03-15 | 2010-12-28 | Abbott Cardiovascular System Inc. | Apparatus and method for coating stents |
JP2006507021A (en) | 2002-03-18 | 2006-03-02 | メドトロニック・エイヴイイー・インコーポレーテッド | A medical device for delivering an antiproliferative composition to an anatomical site at risk of restenosis |
US6743463B2 (en) | 2002-03-28 | 2004-06-01 | Scimed Life Systems, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
US6969369B2 (en) | 2002-04-22 | 2005-11-29 | Medtronic, Inc. | Implantable drug delivery system responsive to intra-cardiac pressure |
ES2271641T3 (en) | 2002-06-14 | 2007-04-16 | Kansai Paint Co., Ltd. | PRESSURE FEED COATING ROLLER, A ROLLER COATING DEVICE, AND AN AUTOMATIC COATING APPLIANCE USING THIS DEVICE. |
US7097850B2 (en) | 2002-06-18 | 2006-08-29 | Surmodics, Inc. | Bioactive agent release coating and controlled humidity method |
US20040138695A1 (en) | 2002-06-18 | 2004-07-15 | Shu-Tung Li | Coatings of implants |
US20030232087A1 (en) | 2002-06-18 | 2003-12-18 | Lawin Laurie R. | Bioactive agent release coating with aromatic poly(meth)acrylates |
US20030236513A1 (en) | 2002-06-19 | 2003-12-25 | Scimed Life Systems, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
US8211455B2 (en) | 2002-06-19 | 2012-07-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent |
JP2005529620A (en) | 2002-06-21 | 2005-10-06 | ネステク ソシエテ アノニム | Method and apparatus for liquefying powdered fat products, especially during the manufacture of chocolate |
AUPS327802A0 (en) | 2002-06-28 | 2002-07-18 | Moore, John Joseph | Dump bin |
US20040006146A1 (en) | 2002-07-06 | 2004-01-08 | Evans Douglas G. | Resorbable structure for treating and healing of tissue defects |
DE60331552D1 (en) | 2002-08-13 | 2010-04-15 | Medtronic Inc | PHARMACEUTICALS COMPOSITIONS USING POLY (ETHYLENE-CO (METH) ACRYLATE, MEDICAL DEVICE AND METHOD |
US7438925B2 (en) | 2002-08-26 | 2008-10-21 | Biovention Holdings Ltd. | Drug eluting coatings for medical implants |
US7105350B2 (en) | 2002-08-30 | 2006-09-12 | Tropicana Products, Inc. | Closure integrity test method for hot-fill bottling operation |
US20040044404A1 (en) | 2002-08-30 | 2004-03-04 | Stucke Sean M. | Retention coatings for delivery systems |
IE20020739A1 (en) | 2002-09-11 | 2004-03-24 | Henkel Loctite Deutschland Gmb | An apparatus for the application of a curable composition to a fastener |
US6818063B1 (en) | 2002-09-24 | 2004-11-16 | Advanced Cardiovascular Systems, Inc. | Stent mandrel fixture and method for minimizing coating defects |
US7125577B2 (en) | 2002-09-27 | 2006-10-24 | Surmodics, Inc | Method and apparatus for coating of substrates |
US6971813B2 (en) | 2002-09-27 | 2005-12-06 | Labcoat, Ltd. | Contact coating of prostheses |
US7192484B2 (en) | 2002-09-27 | 2007-03-20 | Surmodics, Inc. | Advanced coating apparatus and method |
CA2689424A1 (en) | 2002-09-29 | 2004-04-08 | Surmodics, Inc. | Methods for treatment and/or prevention of retinal disease |
US7103418B2 (en) | 2002-10-02 | 2006-09-05 | Medtronic, Inc. | Active fluid delivery catheter |
AU2003279962A1 (en) | 2002-10-22 | 2004-05-13 | Medtronic Vascular Inc. | Stent with intermittent coating |
DE60329209D1 (en) | 2002-10-22 | 2009-10-22 | Medtronic Vascular Inc | STENT WITH ECCENTRIC COATING |
US6725901B1 (en) | 2002-12-27 | 2004-04-27 | Advanced Cardiovascular Systems, Inc. | Methods of manufacture of fully consolidated or porous medical devices |
US6803070B2 (en) | 2002-12-30 | 2004-10-12 | Scimed Life Systems, Inc. | Apparatus and method for embedding nanoparticles in polymeric medical devices |
US20040137059A1 (en) | 2003-01-09 | 2004-07-15 | Thierry Nivaggioli | Biodegradable ocular implant |
US7041174B2 (en) | 2003-02-19 | 2006-05-09 | Sunmodics,Inc. | Grafting apparatus and method of using |
WO2004073884A1 (en) | 2003-02-21 | 2004-09-02 | Honda Motor Co., Ltd. | Coating system for forming protective layer |
ES2287705T3 (en) | 2003-03-05 | 2007-12-16 | Tokuyama Corporation | METHOD OF MANUFACTURE OF A STRATIFIED BODY. |
US7077910B2 (en) | 2003-04-07 | 2006-07-18 | Surmodics, Inc. | Linear rail coating apparatus and method |
JP2004325064A (en) | 2003-04-11 | 2004-11-18 | Hoshizaki Electric Co Ltd | Ice making mechanism for ice maker |
US7482034B2 (en) | 2003-04-24 | 2009-01-27 | Boston Scientific Scimed, Inc. | Expandable mask stent coating method |
JP4824549B2 (en) | 2003-05-02 | 2011-11-30 | サーモディクス,インコーポレイティド | Controlled release bioactive substance delivery device |
US8246974B2 (en) | 2003-05-02 | 2012-08-21 | Surmodics, Inc. | Medical devices and methods for producing the same |
CN1805719A (en) | 2003-07-10 | 2006-07-19 | 爱尔康公司 | Ophthalmic drug delivery device |
US20050142070A1 (en) | 2003-09-18 | 2005-06-30 | Hartley Jesse W. | Methods and systems for assessing pulmonary disease with drug therapy control |
US7198675B2 (en) | 2003-09-30 | 2007-04-03 | Advanced Cardiovascular Systems | Stent mandrel fixture and method for selectively coating surfaces of a stent |
US7563324B1 (en) | 2003-12-29 | 2009-07-21 | Advanced Cardiovascular Systems Inc. | System and method for coating an implantable medical device |
US20050196518A1 (en) | 2004-03-03 | 2005-09-08 | Stenzel Eric B. | Method and system for making a coated medical device |
US7371424B2 (en) | 2004-04-14 | 2008-05-13 | Boston Scientific Scimed, Inc. | Method and apparatus for coating a medical device using a coating head |
US7654997B2 (en) | 2004-04-21 | 2010-02-02 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
EP1750799A2 (en) | 2004-05-04 | 2007-02-14 | The Cleveland Clinic Foundation | Methods of treating medical conditions by neuromodulation of the sympathetic nervous system |
EP1755696A1 (en) | 2004-05-12 | 2007-02-28 | SurModics, Inc. | Natural biodegradable polysaccharide coatings for medical articles |
US20060110428A1 (en) | 2004-07-02 | 2006-05-25 | Eugene Dejuan | Methods and devices for the treatment of ocular conditions |
US7480528B2 (en) | 2004-07-23 | 2009-01-20 | Cardiac Pacemakers, Inc. | Method and apparatus for monitoring heart failure patients with cardiopulmonary comorbidities |
US20060029720A1 (en) | 2004-08-03 | 2006-02-09 | Anastasia Panos | Methods and apparatus for injection coating a medical device |
JP2006081109A (en) | 2004-09-13 | 2006-03-23 | Toshiba Corp | Recorded video program searching apparatus and recorded video program searching method |
US8271093B2 (en) | 2004-09-17 | 2012-09-18 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements using a backend computing system |
US20060064134A1 (en) | 2004-09-17 | 2006-03-23 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements |
US7958840B2 (en) | 2004-10-27 | 2011-06-14 | Surmodics, Inc. | Method and apparatus for coating of substrates |
US20060116590A1 (en) | 2004-11-30 | 2006-06-01 | Pacesetter, Inc. | Endocardial pressure differential sensing systems and methods |
ATE540705T1 (en) | 2005-09-21 | 2012-01-15 | Surmodics Inc | COVERS AND ARTICLES WITH NATURAL BIODEGRADABLE POLYSACCHARIDES |
US8166909B2 (en) | 2005-11-15 | 2012-05-01 | Surmodics, Inc. | Apparatus and methods for applying coatings |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
US7638156B1 (en) | 2005-12-19 | 2009-12-29 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for selectively coating a medical article |
EP1981559B1 (en) | 2006-02-09 | 2016-11-23 | B. Braun Melsungen AG | Coating method for a folded balloon |
US7718213B1 (en) | 2006-02-24 | 2010-05-18 | Ingo Werner Scheer | Holding device and method for coating a substrate |
US8304012B2 (en) | 2006-05-04 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Method for drying a stent |
US8003156B2 (en) * | 2006-05-04 | 2011-08-23 | Advanced Cardiovascular Systems, Inc. | Rotatable support elements for stents |
US8679573B2 (en) | 2006-06-28 | 2014-03-25 | Advanced Cardiovascular Systems, Inc. | Stent coating method and apparatus |
US7836570B2 (en) | 2006-12-21 | 2010-11-23 | Terronics Development Company | Fixture assembly and methods related thereto |
CN101972492B (en) * | 2007-01-21 | 2014-12-10 | 汉莫堤克股份有限公司 | Medical product for curing body channel narrow and preventing dangerous restenosis |
US8173200B2 (en) | 2007-05-02 | 2012-05-08 | Boston Scientific Scimed, Inc. | Selective application of therapeutic agent to a medical device |
US20100070020A1 (en) | 2008-06-11 | 2010-03-18 | Nanovasc, Inc. | Implantable Medical Device |
US20090018643A1 (en) | 2007-06-11 | 2009-01-15 | Nanovasc, Inc. | Stents |
JP2010533682A (en) | 2007-07-20 | 2010-10-28 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Process for preparing alkylene glycols |
DE102007036685A1 (en) | 2007-08-03 | 2009-02-05 | Innora Gmbh | Improved drug-coated medical devices their manufacture and use |
US8689728B2 (en) | 2007-10-05 | 2014-04-08 | Menendez Adolfo | Apparatus for holding a medical device during coating |
EP2106820A1 (en) | 2008-03-31 | 2009-10-07 | Torsten Heilmann | Expansible biocompatible coats comprising a biologically active substance |
US9364349B2 (en) | 2008-04-24 | 2016-06-14 | Surmodics, Inc. | Coating application system with shaped mandrel |
WO2010096072A1 (en) | 2009-02-17 | 2010-08-26 | The Board Of Trustees Of The University Of Illinois | Methods for fabricating microstructures |
SG175373A1 (en) | 2009-04-28 | 2011-11-28 | Surmodics Inc | Devices and methods for delivery of bioactive agents |
US20110266724A1 (en) | 2009-05-08 | 2011-11-03 | Hoowaki, Llc | Method for manufacturing microstructured metal or ceramic parts from feedstock |
US8720047B2 (en) | 2009-05-08 | 2014-05-13 | Hoowaki, Llc | Method for making microstructured objects |
WO2010131554A1 (en) | 2009-05-14 | 2010-11-18 | テルモ株式会社 | Method of manufacturing balloon catheter and balloon catheter |
US8940356B2 (en) * | 2010-05-17 | 2015-01-27 | Abbott Cardiovascular Systems Inc. | Maintaining a fixed distance during coating of drug coated balloon |
US8389041B2 (en) | 2010-06-17 | 2013-03-05 | Abbott Cardiovascular Systems, Inc. | Systems and methods for rotating and coating an implantable device |
US9084874B2 (en) | 2011-06-10 | 2015-07-21 | Abbott Laboratories | Method and system to maintain a fixed distance during coating of a medical device |
JP5859877B2 (en) | 2012-03-02 | 2016-02-16 | 株式会社日立製作所 | Wind power generator |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
EP2855030B1 (en) | 2012-06-01 | 2019-08-21 | SurModics, Inc. | Apparatus and method for coating balloon catheters |
CA2889062C (en) | 2012-10-25 | 2022-06-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11090468B2 (en) | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9283350B2 (en) | 2012-12-07 | 2016-03-15 | Surmodics, Inc. | Coating apparatus and methods |
CA2911482C (en) | 2013-05-07 | 2023-03-07 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
-
2013
- 2013-05-31 EP EP13729853.5A patent/EP2855030B1/en active Active
- 2013-05-31 US US13/906,599 patent/US9308355B2/en active Active
- 2013-05-31 WO PCT/US2013/043547 patent/WO2013181498A1/en active Application Filing
- 2013-05-31 JP JP2015515223A patent/JP6549482B2/en active Active
- 2013-05-31 MX MX2014014574A patent/MX351261B/en active IP Right Grant
- 2013-05-31 CA CA2874824A patent/CA2874824C/en active Active
-
2014
- 2014-12-17 CR CR20140589A patent/CR20140589A/en unknown
-
2016
- 2016-03-04 US US15/061,234 patent/US9623215B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1281672A (en) * | 1916-04-29 | 1918-10-15 | Simmons Co | Lacquering-machine. |
US4195637A (en) | 1977-10-21 | 1980-04-01 | Schneider Medintag Ag | Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element |
US5041089A (en) | 1987-12-11 | 1991-08-20 | Devices For Vascular Intervention, Inc. | Vascular dilation catheter construction |
US5087246A (en) | 1988-12-29 | 1992-02-11 | C. R. Bard, Inc. | Dilation catheter with fluted balloon |
US5318587A (en) | 1989-08-25 | 1994-06-07 | C. R. Bard, Inc. | Pleated balloon dilatation catheter and method of use |
US5776101A (en) | 1990-10-04 | 1998-07-07 | Schneider (Europe) A.G. | Balloon dilatation catheter |
US5382234A (en) | 1993-04-08 | 1995-01-17 | Scimed Life Systems, Inc. | Over-the-wire balloon catheter |
US5571089A (en) | 1993-06-30 | 1996-11-05 | Cardiovascular Dynamics, Inc. | Low profile perfusion catheter |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US5807331A (en) | 1994-04-20 | 1998-09-15 | Cordis Corporation | Active perfusion dilatation catheter |
US5882336A (en) | 1994-12-30 | 1999-03-16 | Janacek; Jaroslav | Dilation catheter |
US6517515B1 (en) | 1998-03-04 | 2003-02-11 | Scimed Life Systems, Inc. | Catheter having variable size guide wire lumen |
US6394995B1 (en) | 1998-05-15 | 2002-05-28 | X Technologies Inc. | Enhanced balloon dilatation system |
US6623504B2 (en) | 2000-12-08 | 2003-09-23 | Scimed Life Systems, Inc. | Balloon catheter with radiopaque distal tip |
US7163523B2 (en) | 2003-02-26 | 2007-01-16 | Scimed Life Systems, Inc. | Balloon catheter |
US20100040766A1 (en) * | 2008-08-14 | 2010-02-18 | Chappa Ralph A | Method and apparatus for coating balloon catheters |
WO2010024898A2 (en) * | 2008-08-29 | 2010-03-04 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
WO2010146096A1 (en) * | 2009-06-17 | 2010-12-23 | Dot Gmbh | Method and device for coating catheters or balloon catheters |
US20110281019A1 (en) * | 2010-05-17 | 2011-11-17 | Abbott Cardiovascular Systems Inc. | Direct Fluid Coating Of Drug Eluting Balloon |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9364349B2 (en) | 2008-04-24 | 2016-06-14 | Surmodics, Inc. | Coating application system with shaped mandrel |
US9827401B2 (en) | 2012-06-01 | 2017-11-28 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9623215B2 (en) | 2012-06-01 | 2017-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US10507309B2 (en) | 2012-06-01 | 2019-12-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US10099041B2 (en) | 2012-06-01 | 2018-10-16 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9308355B2 (en) | 2012-06-01 | 2016-04-12 | Surmodies, Inc. | Apparatus and methods for coating medical devices |
US11090468B2 (en) | 2012-10-25 | 2021-08-17 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US9283350B2 (en) | 2012-12-07 | 2016-03-15 | Surmodics, Inc. | Coating apparatus and methods |
US10835643B2 (en) | 2013-04-01 | 2020-11-17 | Terumo Kabushiki Kaisha | Drug coating layer |
US9872940B2 (en) | 2013-04-01 | 2018-01-23 | Terumo Kabushiki Kaisha | Drug coating layer |
JP2015009095A (en) * | 2013-07-02 | 2015-01-19 | テルモ株式会社 | Balloon coating method and balloon coating device |
US10610673B2 (en) | 2013-12-21 | 2020-04-07 | Terumo Kabushiki Kaisha | Balloon coating method and balloon coating apparatus |
US10259009B2 (en) | 2013-12-21 | 2019-04-16 | Terumo Kabushiki Kaisha | Balloon coating method and balloon coating apparatus |
WO2015093584A1 (en) * | 2013-12-21 | 2015-06-25 | テルモ株式会社 | Balloon coating method and balloon coating device |
WO2015093585A1 (en) * | 2013-12-21 | 2015-06-25 | テルモ株式会社 | Balloon coating method and balloon coating device |
CN105828868A (en) * | 2013-12-21 | 2016-08-03 | 泰尔茂株式会社 | Balloon coating method and balloon coating device |
CN105828868B (en) * | 2013-12-21 | 2019-11-15 | 泰尔茂株式会社 | Sacculus coating method and sacculus applying device |
US9993629B2 (en) | 2013-12-21 | 2018-06-12 | Terumo Kabushiki Kaisha | Balloon coating method and balloon coating apparatus |
JP2015119802A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon coating method and balloon coating device |
JP2015119801A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon coating method and balloon coating device |
EP3064247A4 (en) * | 2013-12-21 | 2017-08-02 | Terumo Kabushiki Kaisha | Balloon coating method and balloon coating device |
JPWO2015093585A1 (en) * | 2013-12-21 | 2017-03-23 | テルモ株式会社 | Balloon coating method and balloon coating apparatus |
JPWO2015093584A1 (en) * | 2013-12-21 | 2017-03-23 | テルモ株式会社 | Balloon coating method and balloon coating apparatus |
JP2015119805A (en) * | 2013-12-21 | 2015-07-02 | テルモ株式会社 | Balloon shape correction tool and balloon coating method |
US10328245B2 (en) | 2014-04-01 | 2019-06-25 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
WO2015151879A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Positioning method for balloon coating |
JPWO2015151876A1 (en) * | 2014-04-01 | 2017-04-13 | テルモ株式会社 | Balloon coating method |
JPWO2015151879A1 (en) * | 2014-04-01 | 2017-04-13 | テルモ株式会社 | Positioning method for balloon coating |
US20170021142A1 (en) * | 2014-04-01 | 2017-01-26 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
US20170014603A1 (en) * | 2014-04-01 | 2017-01-19 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
CN106163603A (en) * | 2014-04-01 | 2016-11-23 | 泰尔茂株式会社 | Localization method for sacculus coating |
JPWO2015151878A1 (en) * | 2014-04-01 | 2017-04-13 | テルモ株式会社 | Positioning method for balloon coating |
US9901955B2 (en) | 2014-04-01 | 2018-02-27 | Terumo Kabushiki Kaisha | Balloon coating method |
JP2015195962A (en) * | 2014-04-01 | 2015-11-09 | テルモ株式会社 | balloon coating method |
US9901720B2 (en) | 2014-04-01 | 2018-02-27 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
US9937328B2 (en) | 2014-04-01 | 2018-04-10 | Terumo Kabushiki Kaisha | Positioning method for balloon coating |
US10799909B2 (en) | 2014-04-01 | 2020-10-13 | Terumo Kabushiki Kaisha | Balloon coating method |
WO2015151877A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Balloon coating method, coat layer control method and balloon coating device |
WO2015151878A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Positioning method for balloon coating |
WO2015151876A1 (en) * | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Balloon coating method |
CN106163603B (en) * | 2014-04-01 | 2019-11-15 | 泰尔茂株式会社 | Localization method for sacculus coating |
JPWO2015151877A1 (en) * | 2014-04-01 | 2017-04-13 | テルモ株式会社 | Balloon coating method, coat layer control method, and balloon coating apparatus |
US10149925B2 (en) | 2014-05-16 | 2018-12-11 | Terumo Kabushiki Kaisha | Method of reducing the risk of embolization of peripheral blood vessels |
US10143779B2 (en) | 2014-05-16 | 2018-12-04 | Terumo Kabushiki Kaisha | Method of inhibiting thickening of vascular intima |
US10188771B2 (en) | 2014-05-16 | 2019-01-29 | Terumo Kabushiki Kaisha | Method of treating peripheral artery diseases in lower limbs |
JP2016016374A (en) * | 2014-07-09 | 2016-02-01 | 株式会社モリタ東京製作所 | Surface treatment device of flexible tube, surface treatment method of flexible tube, and surface-treated flexible tube |
US10646697B2 (en) | 2015-04-23 | 2020-05-12 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
US10391284B2 (en) | 2015-04-23 | 2019-08-27 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
WO2016171252A1 (en) * | 2015-04-23 | 2016-10-27 | テルモ株式会社 | Balloon coating method, balloon rotation method, and balloon coating device |
EP3251720A4 (en) * | 2015-04-23 | 2018-10-03 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotation method, and balloon coating device |
WO2016171251A1 (en) * | 2015-04-23 | 2016-10-27 | テルモ株式会社 | Balloon coating method, balloon rotation method, and balloon coating device |
US10350394B2 (en) | 2015-04-23 | 2019-07-16 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method, and balloon coating device |
US10806912B2 (en) | 2015-04-23 | 2020-10-20 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method, and balloon coating device |
US9901719B2 (en) | 2015-04-23 | 2018-02-27 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
CN107530528A (en) * | 2015-04-23 | 2018-01-02 | 泰尔茂株式会社 | Sacculus coating method, sacculus spinning solution and sacculus applying device |
US20200390693A1 (en) * | 2017-12-22 | 2020-12-17 | Samsung Bioepis Co., Ltd. | Liquid composition comprising vegf antagonist |
JP2018064998A (en) * | 2018-01-17 | 2018-04-26 | テルモ株式会社 | Balloon coating method and balloon coating device |
US11628466B2 (en) | 2018-11-29 | 2023-04-18 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
US11819590B2 (en) | 2019-05-13 | 2023-11-21 | Surmodics, Inc. | Apparatus and methods for coating medical devices |
Also Published As
Publication number | Publication date |
---|---|
JP2015527092A (en) | 2015-09-17 |
US20160256668A1 (en) | 2016-09-08 |
MX2014014574A (en) | 2015-06-22 |
US20130337147A1 (en) | 2013-12-19 |
EP2855030B1 (en) | 2019-08-21 |
EP2855030A1 (en) | 2015-04-08 |
US9623215B2 (en) | 2017-04-18 |
US9308355B2 (en) | 2016-04-12 |
CA2874824A1 (en) | 2013-12-05 |
JP6549482B2 (en) | 2019-07-24 |
CR20140589A (en) | 2015-02-24 |
MX351261B (en) | 2017-10-06 |
CA2874824C (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9623215B2 (en) | Apparatus and methods for coating medical devices | |
US10507309B2 (en) | Apparatus and methods for coating medical devices | |
CA2911482C (en) | Apparatus and methods for coating medical devices | |
JP6723807B2 (en) | Balloon coating method, balloon rotation method and balloon coating apparatus | |
CA2889062C (en) | Apparatus and methods for coating medical devices | |
US9283350B2 (en) | Coating apparatus and methods | |
US11090468B2 (en) | Apparatus and methods for coating medical devices | |
JP6734843B2 (en) | Balloon coating method, balloon rotation method and balloon coating apparatus | |
JP2016525924A5 (en) | ||
JP6778507B2 (en) | Balloon coating method, balloon rotation method and balloon coating device | |
US11819590B2 (en) | Apparatus and methods for coating medical devices | |
US11628466B2 (en) | Apparatus and methods for coating medical devices | |
JP6832339B2 (en) | Balloon catheter and its manufacturing method and treatment method | |
US20220219194A1 (en) | Coating application system and methods for coating rotatable medical devices | |
JP6793116B2 (en) | Balloon coating method, balloon rotation method and balloon coating device | |
JP6762525B2 (en) | Balloon coating method, balloon rotation method and balloon coating device | |
JP6797547B2 (en) | Balloon coating method and balloon rotation method | |
JP6914612B2 (en) | Balloon catheter and its manufacturing method and treatment method | |
JP6279311B2 (en) | Balloon coating method and balloon coating apparatus | |
JP6907190B2 (en) | Balloon catheter and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13729853 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2874824 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015515223 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/014574 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: CR2014-000589 Country of ref document: CR |