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Abstract

This supplementary material contains the computational details of linear Dyna
algorithms on Mountain-car. The matrix F is very large and relatively dense, e.g.,
30, 0002 for state-action model. This leads to very slow online performance. We
avoided the computation of F , and used a least-squares computation of projection.

1 Least-squares Computation of Projection

Gradient descent estimation of F and projecting directly using F lead to a very slow online per-
formance because F is not sparse, although ΦTDPΦ and ΦTDΦ are both sparse. Notice that we
only need F for projection operation. In our experiment of Dyna(k)-lambda (and linear Dyna),
we applied a least-squares computation of the projection, which makes use of Matlab backslash
operator.

In particular, a projection L(k)φ̃ = (λγ)k−1γFtφ̃ was computed by decomposing into

Ftφ̃ = (ΦTPT
t DtΦ)(ΦTDtΦ)−1φ̃

= Gt · (E−1
t φ̃),

where Gt and Et are very sparse, and updated every time step by

Gt+1 = Gt + ~φt+1φ
T
t ,

and
Et+1 = Et + φtφ

T
t .

First,E−1
t φ̃ is computed by Matlab backslash operator, “Et\φ̃”, and then the result is left multiplied

by Gt. Both operations can take advantage of the sparsity. For linear Dyna with state features, pro-
jection using Fa was also computed similarly. For linear Dyna, f is also computed by the backslash
operation

f = Et \ bt,

where b is updated by
bt+1 = bt + φtrt.
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Further, we do not have to compute l(k) explicitly because it is only used in generating the simulated
reward:

r̃(k) = (l(k))T φ̃

= (f (∞) − (L(k))T f (∞))T φ̃

= (f (∞))T φ̃ − (f (∞))T (L(k)φ̃),

where (L(k)φ̃) is already computed by the least-squares projection. (f (∞) is also computed by
backslash operation using the LSTD rule.)

The two tricks make projection much more efficient, and greatly reduce CPU time per time step of
Dyna algorithms.

All E matrices were initialized to I , and all G matrices were initialized to 0 for linear Dyna algo-
rithms in Mountain-car.
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