
Computational Details of Linear Dyna Algorithms on
Mountain-car

Hengshuai Yao
Department of Computing Science

University of Alberta
Edmonton, AB, Canada T6G2E8

Shalabh Bhatnagar
Department of Computer Science

and Automation
Indian Institute of Science
Bangalore, India 560012

Dongcui Diao
School of Economics and Management

South China Normal University
Guangzhou, China 518055

Abstract

This supplementary material contains the computational details of linear Dyna
algorithms on Mountain-car. The matrix F is very large and relatively dense, e.g.,
30, 0002 for state-action model. This leads to very slow online performance. We
avoided the computation of F , and used a least-squares computation of projection.

1 Least-squares Computation of Projection

Gradient descent estimation of F and projecting directly using F lead to a very slow online per-
formance because F is not sparse, although ΦTDPΦ and ΦTDΦ are both sparse. Notice that we
only need F for projection operation. In our experiment of Dyna(k)-lambda (and linear Dyna),
we applied a least-squares computation of the projection, which makes use of Matlab backslash
operator.

In particular, a projection L(k)φ̃ = (λγ)k−1γFtφ̃ was computed by decomposing into

Ftφ̃ = (ΦTPT
t DtΦ)(ΦTDtΦ)−1φ̃

= Gt · (E−1
t φ̃),

where Gt and Et are very sparse, and updated every time step by

Gt+1 = Gt + ~φt+1φ
T
t ,

and
Et+1 = Et + φtφ

T
t .

First,E−1
t φ̃ is computed by Matlab backslash operator, “Et\φ̃”, and then the result is left multiplied

by Gt. Both operations can take advantage of the sparsity. For linear Dyna with state features, pro-
jection using Fa was also computed similarly. For linear Dyna, f is also computed by the backslash
operation

f = Et \ bt,

where b is updated by
bt+1 = bt + φtrt.

1



Further, we do not have to compute l(k) explicitly because it is only used in generating the simulated
reward:

r̃(k) = (l(k))T φ̃

= (f (∞) − (L(k))T f (∞))T φ̃

= (f (∞))T φ̃ − (f (∞))T (L(k)φ̃),

where (L(k)φ̃) is already computed by the least-squares projection. (f (∞) is also computed by
backslash operation using the LSTD rule.)

The two tricks make projection much more efficient, and greatly reduce CPU time per time step of
Dyna algorithms.

All E matrices were initialized to I , and all G matrices were initialized to 0 for linear Dyna algo-
rithms in Mountain-car.

2


