
Appendix

A Average Uplift in Terms of the Individual Uplift

U(π) =

∫∫ ∑
t=−1,1

yp(y | t,x)π(t | x)p(x)dydx−
∫∫ ∑

t=−1,1

yp(y | t,x)1[t = −1]p(x)dydx

=

∫∫
y[p(y | t = 1,x)π(t = 1 | x)− p(y | t = −1,x)π(t = 1 | x)]p(x)dydx

=

∫∫
y[p(y | t = 1,x)− p(y | t = −1,x)]π(t = 1 | x)p(x)dydx

=

∫
u(x)π(t = 1 | x)p(x)dx. (15)

B Area Under the Uplift Curve and Ranking

Define the following symbols:

• Cα := Pr[f(x) < α],

• U(α; f) :=
∫
u(x)1[α ≤ f(x)]p(x)dx,

• Rank(f) := E[1[f(x′) ≤ f(x)][u(x′)− u(x)]],

• AUUC(f) :=
∫ 1

0
U(α; f)dCα.

Then, we have

AUUC(f) =

∫ ∞
−∞

U(α)
dCα
dα

dα

=

∫ ∞
−∞

U(α)pf(x)(α)dα

=

∫
Rd

U(f(x))p(x)dx

=

∫∫
1[f(x) ≤ f(x′)]u(x′)p(x′)dx′p(x)dx

= E[1[f(x) ≤ f(x′)]u(x′)]

(= E[1[f(x) ≤ f(x′)][y+ − y−]]),

where y+ ∼ p(y | x′, t = 1) and y− ∼ p(y | x′, t = −1).

Assuming Pr[f(x′) = f(x)] = 0, we have

Rank(f) := E[1[f(x) ≥ f(x′)][u(x)− u(x′)]]

= E[1[f(x) ≥ f(x′)]u(x)]

−E[1[f(x) ≥ f(x′)]u(x′)]

= AUUC(f)−E[(1− 1[f(x) ≤ f(x′)])u(x′)]

= E[u(x)]− 2 AUUC(f).

Thus, Rank(f) = 2(AUUC(f) − AUUC(r)), where r : Rd → R is the random ranking scoring function
that outputs 1 or −1 with probability 1/2 for any input x. Rank(f) is maximized when f(x) ≤ f(x′) ⇐⇒
u(x) ≤ u(x′) for almost every pair of x ∈ Rd and x ∈ Rd. In particular, f = u is a maximizer of the
objective.

C Proof of Lemma 1

Lemma 1. For every x such that p1(x) 6= p2(x), u(x) can be expressed as

u(x) = 2×
Ey∼p1(y|x)[y]−Ey∼p2(y|x)[y]

Et∼p1(t|x)[t]−Et∼p2(t|x)[t]
. (16)
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Proof.

Ey∼p1(y|x)[y]−Ey∼p2(y|x)[y] =

∫ ∑
τ=−1,1

yp(y | x, t = τ)p1(t = τ | x)dy

−
∫ ∑

τ=−1,1

yp(y | x, t = τ)p2(t = τ | x)dy

=

∫ ∑
τ=−1,1

yp(y | x, t = τ)(p1(t = τ | x)− p2(t = τ | x))dy

=
∑

τ=−1,1

Ey∼p(y|x,t=τ)[y](p1(t = τ | x)− p2(t = τ | x))

= Ey∼p(y|x,t=1)[y](p1(t = 1 | x)− p2(t = 1 | x))

+ Ey∼p(y|x,t=−1)[y](1− p1(t = 1 | x)− 1 + p2(t = 1 | x))

= u(x)(p1(t = 1 | x)− p2(t = 1 | x)).

When p1(t = 1 | x) 6= p2(t = 1 | x), it holds that

u(x) =
Ey∼p1(y|x)[y]−Ey∼p2(y|x)[y]

p1(t = 1 | x)− p2(t = 1 | x)

= 2×
Ey∼p1(y|x)[y]−Ey∼p2(y|x)[y]

Et∼p1(t|x)[t]−Et∼p2(t|x)[t]
.

D Proof of Lemma 2

Lemma 2. For every x such that p1(x) 6= p2(x), u(x) can be expressed as

u(x) = 2× E[z | x]

E[w | x]
,

where E[z | x] and E[w | x] are the conditional expectations of z given x over p(z | x) and w given x over
p(w | x), respectively.

Proof. We have

E[z | x] =

∫
ζ

[
1

2
p1(y = ζ | x) +

1

2
p2(y = −ζ | x)

]
dζ

=
1

2

∫
ζp1(y = ζ | x)dζ +

1

2

∫
ζp2(y = −ζ | x)dζ

=
1

2

∫
yp1(y | x)dy − 1

2

∫
yp2(y | x)dy

=
1

2
Ey∼p1(y|x)[y]− 1

2
Ey∼p2(y|x)[y].

Similarly, we obtain

E[w | x] =
1

2
Et∼p1(t|x)[t]−

1

2
Et∼p2(t|x)[t].

Thus,

2× E[z | x]

E[w | x]
= 2×

Ey∼p1(y|x)[y]−Ey∼p2(y|x)[y]

Et∼p1(t|x)[t]−Et∼p2(t|x)[t]
= u(x).

E Proof of Theorem 2

We restate Theorem 2 below.
Theorem 2. Assume that n1 = n2, ñ1 = ñ2, p1(x) = p2(x), W := infx∈X |µw(x)| > 0, MZ :=
supz∈Z |z| < ∞, MF := supf∈F,x∈X |f(x)| < ∞, and MG := supg∈G,x∈X |g(x)| < ∞. Then, the
following holds with probability at least 1− δ that for every f ∈ F ,

Ex∼p(x)[(f(x)− u(x))2] ≤ 1

W 2

[
sup
g∈G

Ĵ(f, g) +Rn,ñF,G +

(
Mz√

2n
+
Mw√

2ñ

)√
log

2

δ
+ εG(f)

]
,
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whereMz := 4MYMG+M2
G/2,Mw = 2MFMG+M2

G/2,Rn,ñF,G := 2(MF +4MZ)Rn
p(x,z)(G)+2(2MF +

MG)Rñ
p(x,w)(F ) + 2(MF +MG)Rñ

p(x,w)(G).

Define J(f, g) and Ĵ(f, g) as in Section 3.2 and denote
εG(f) := sup

g∈L2(p)

J(f, g)− sup
g∈G

J(f, g).

Definition 1 (Rademacher Complexity). We define the Rademacher complexity of H over N random variables
following probability distribution q by

RN
p (H) = EV1,...,VN ,σ1,...,σN

[
sup
h∈H

1

N

N∑
i=1

σih(Vi)

]
,

where σ1, . . . , σN are independent, {−1, 1}-valued uniform random variables.
Lemma 3. Under the assumptions of Theorem 2, with probability at least 1− δ, it holds that for every f ∈ F ,

J(f, g) ≤ Ĵ(f, g) + RF,G +

(
Mz√
n

+
Mw√
ñ

)√
log

2

δ
.

To prove Lemma 3, we use the following lemma, which is a slightly modified version of Theorem 3.1 in Mohri
et al. [22].
Lemma 4. Let H be a set of real-valued functions on a measurable space D. Assume that M :=
suph∈H,v∈D h(v) < ∞. Then, for any h ∈ H and any D-valued i.i.d. random variables V, V1, . . . , VN
following density q, we have

E[h(V )] ≤ 1

N

N∑
i=1

h(Vi) + 2RN
q (H) +

√
M2

N
log

1

δ
. (17)

Proof of Lemma 4. We follow the proof of Theorem 3.1 in Mohri et al. [22] except that we set the constant Bφ
in Eq. (28) to M/m when we apply McDiarmid’s inequality (Section M).

Now, we prove Lemma 3.

Proof of Lemma 3. For any f ∈ F , g ∈ G, x′, x̃′ ∈ X , z′ ∈ Z := {y,−y | y ∈ Y}, and w′ ∈ {−1, 1}, we
define hz and hw as follows:

hz(x
′, z′; g) := −4z′g(x′)− 1

2
g(x′)2,

hw(x̃′, w′; f, g) := w′f(x̃′)g(x̃′)− 1

2
g(x̃′)2.

Denoting Hz := {(x′, z′) 7→ hz(x
′, z′; g) | g ∈ G}, we have

sup
h∈Hz ,x′∈X ,z′∈Z

∣∣h(x′, z′)
∣∣ ≤ 4MZMG +

1

2
M2
G =: Mz <∞,

and thus, we can apply Lemma 4 to confirm that with probability at least 1− δ/2,

E(x,z)∼p(x,z)[hz(x, z; g)] ≤ 1

n

∑
(xi,zi)∈Sz

hz(xi, zi; g) + 2Rn
p (Hz) +

√
M2
z

n
log

2

δ
,

where {(xi, zi)}ni=1 =: Sz are the samples defined in Section 4.1. Similarly, it holds that with probability at
least 1− δ/2,

E(x̃,w)∼p(x,w)[hw(x̃, w; f, g)] ≤ 1

ñ

∑
(x̃,wi)∈Sw

hw(x̃i, wi; f, g) + 2Rñ
p (Hw) +

√
M2
w

ñ
log

2

δ
,

where Hw := {(x̃′, w′) 7→ hw(x̃′, w′; f, g) | f ∈ F, g ∈ G}, Mw := MFMG + M2
G/2, and

{(x̃i, wi)}ni=1 =: Sw are the samples defined in Section 4.1. By the union bound, we have the following
with probability at least 1− δ:

E(x,z)∼p(x,z)[hz(x, z; g)] + E(x̃,w)∼p(x,w)[hw(x̃, w; f, g)] (18)

≤ 1

n

∑
(xi,zi)∈Sz

hz(xi, zi, g) +
1

ñ

∑
(x̃,wi)

hw(xi, wi, f, g) (19)

+ 2(Rn
p (Hz) + Rñ

p (Hw)) +

(
Mz√
n

+
Mw√
ñ

)√
log

2

δ
, (20)
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Using some properties of the Rademacher complexity including Talagrand’s lemma, we can show that

Rn
p (Hz) ≤ (MF + 4MZ)Rn

p (G), (21)

Rñ
p (Hw) ≤ (2MF +MG)Rñ

p (F ) + (MF +MG)Rñ
p (G). (22)

Clearly,

Ĵ(f, g) =
1

n

∑
(xi,zi)∈Sz

h(xi, zi; g) +
1

ñ

∑
(x̃i,wi)∈Sw

h(x̃i, wi; f, g),

J(f, g) = E(x,z)∼p(x,z)[hz(x, z; g)] + E(x̃,w)∼p(x,z)[hw(x̃, w; f, g)].

From Eq. (20), Eq. (21), and Eq. (22), we obtain

J(f, g) ≤ Ĵ(f, g) + RF,G +

(
Mz√
n

+
Mw√
ñ

)√
log

2

δ
, (23)

where

RF,G := 2(MF + 4MZ)Rn
p (G) + 2(2MF +MG)Rñ

p (F ) + 2(MF +MG)Rñ
p (G).

Finally, we prove Theorem 2.

Proof of Theorem 2. From Lemma 3, with probability at least 1− δ, it holds that for all f ∈ F

sup
g∈G

J(f, g) ≤ sup
g∈G

Ĵ(f, g) + RF,G +

(
Mz√
n

+
Mw√
ñ

)√
log

2

δ
. (24)

Moreover, recalling W := infx∈X |µw(x)| and supg∈L2(p) J(f, g) = E[(µw(x)f(x)− µz(x))2], we have

E
[
(f(x)− u(x))2

]
= E

[(
f(x)− µz(x)

µw(x)

)2
]

(25)

≤ 1

W 2
E[(µw(x)f(x)− µz(x))2] (26)

=
1

W 2

[
εG(f) + sup

g∈G
J(f, g)

]
. (27)

Combining Eq. (24) and Eq. (27) yields the inequality of the theorem.

F Proof of Corollary 1

Corollary 1. Let F = {x 7→ α>φ(x) | ‖α‖2 ≤ ΛF }, G = {x 7→ β>ψ(x) | ‖β‖2 ≤ ΛG}, and assume
that rF := supx∈X ‖φ(x)‖2 <∞ and rG := supx∈X ‖ψ(x)‖2 <∞, where ‖·‖2 is the L2-norm. Under the
assumptions of Theorem 2, it holds with probability at least 1− δ that for every f ∈ F ,

Ex∼p(x)[(f(x)− u(x))2] ≤ 1

W 2

sup
g∈G

Ĵ(f, g) +
Cz

√
log 2

δ
+Dz

√
2n

+
Cw

√
log 2

δ
+Dw

√
2ñ

+ εG(f)

 ,
where Cz := r2GΛ2

G + 4rGΛGMY , Cw := 2r2FΛ2
F + 2rF rGΛFΛG + r2GΛ2

G, Dz := r2GΛ2
G/2 + 4rGΛGMY ,

and Dw := r2GΛ2
G/2 + 4rF rGΛFΛG.

Proof. Under the assumptions, it is known that the Rademacher complexity of the linear-in-parameter model F
can be upper bounded as follows [22]:

RN
p (F ) ≤ rFΛF√

N
.

We can bound RN
p (G) similarly. Applying these bounds to Theorem 2, we obtain the statement of Corollary 1.
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G Proof of Theorem 3

We prove the following, formal version of Theorem 3.

Theorem 3. Under the assumptions of Corollary 1, it holds with probability at least 1 − δ that E[(f̂(x) −
u(x))2] ≤ (4en,δ + 2εFG + εF )/W 2, where εFG := supf∈F εG(f), and εF := inff∈F J(f), f̂ ∈ F is any
approximate solution to inff∈F supg∈G Ĵ(f, g) satisfying supg∈G Ĵ(f̂ , g) ≤ inff∈F supg∈G Ĵ(f, g) + en,δ ,
and

en,δ :=
Cz

√
log 2

δ
+Dz

√
2n

+
Cw

√
log 2

δ
+Dw

√
2ñ

.

Proof. Let J(f) := supg∈L2 J(f, g) = E[(µw(x)f(x) − µz(x))2], JG(f) := supg∈G J(f, g), ĴG(f) :=

supg∈G Ĵ(f, g). Let f̃ ∈ F be any approximate solution to inff∈F J(f) satisfying J(f̃) ≤ εF + en,δ .

As a special case of Eq. 24, we can prove that with probability at least 1 − δ, it holds for every f ∈ F that
JG(f) ≤ ĴG(f) + en,δ . From Corollary 1, it holds that with probability at least 1− δ,

J(f̂) ≤
[
J(f̂)− JG(f̂)

]
+
[
JG(f̂)− ĴG(f̂)

]
+
[
ĴG(f̂)− ĴG(f̃)

]
+
[
ĴG(f̃)− JG(f̃)

]
+
[
JG(f̃)− J(f̃)

]
+ J(f̃)

≤ εFG + en,δ + en,δ

+ en,δ + εFG + [εF + en,δ]

≤ 4en,δ + 2εFG + εF .

Since E[(f̂(x)− u(x))2] ≤ 1
W2 J(f̂), we obtain the bound in Theorem 3.

H Binary Outcomes

When outcomes y take on binary values, e.g., success or failure, without loss of generality, we can assume
that y ∈ {−1, 1}. Then, by the definition of the individual uplift, u(x) ∈ [−2, 2] for any x ∈ Rd. In
order to incorporate this fact, we may add the following range constraints on f : −2 ≤ f(x) ≤ 2 for every
x ∈ {xi}ni=1 ∪ {x̃i}ñi=1.

I Cases Where p1(x) 6= p2(x) or (n1, ñ1) 6= (n1, ñ1)

So far, we have assumed that p1(x) = p2(x), m1 = m2, and n1 = n2. The proposed method can be adapted
to the more general case where these assumptions may not hold.

Let rk(x) = n
2nk
· p(x)
pk(x)

and r̃k(x) = ñ
2ñk
· p(x)
pk(x)

, k = 1, 2, for every x with pk(x) > 0. Let ki := 1 if the

sample xi originally comes from p1(x), and ki := 2 if it comes from p2(x). Similarly, define k̃i ∈ {1, 2}
according to whether x̃i comes from p1(x) or p2(x). Then, unbiased estimators of the three terms in the
proposed objective Eq. (10) are given as the following weighted sample averages using rk and r̃k:

Ex∼p(x)[wf(x)g(x)] ≈ 1

ñ

ñ∑
i=1

[wif(x̃i)g(x̃i)r̃k̃i(x̃i)],

Ex∼p(x)[zg(x)] ≈ 1

n

n∑
i=1

[zig(xi)rki(xi)]

Ex∼p(x)[g(x)2] ≈ 1

2n

n∑
i=1

[g(xi)
2rki(xi)] +

1

2ñ

ñ∑
i=1

[g(x̃i)
2r̃k̃i(x̃i)].

The density ratios pk(x)/p(x) can be accurately estimated using i.i.d. samples from pk(x) and p(x) [21, 23,
35, 38].

J Unbiasedness of the Weighted Sample Average

Below, we show that the weighted sample averages are unbiased estimates. We only prove for E[wf(x)g(x)]
since the other cases can be proven similarly. The expectation of the weighted sample average transforms as
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follows:

1

ñ

ñ∑
i=1

E
x̃
(k)
i ∼pk(x),t

(k)
i ∼pk(t|x̃

(k)
i )

[
wif(x̃i)g(x̃i)r̃k̃i(x̃i)

]

=
1

ñ

∑
k=1,2

ñk∑
i=1

Ex∼pk(x),t∼pk(t|x)

[
(−1)k−1tf(x)g(x)

ñ

2ñk
· p(x)

pk(x)

]
=

1

2

∑
k=1,2

Ex∼p(x),t∼pk(t|x)

[
(−1)k−1tf(x)g(x)

]
=

∫∫
(−1)k−1t

∑
k=1,2

1

2
pk(t | x)f(x)g(x)p(x)dtdx

=

∫∫
wp(w | x)f(x)g(x)p(x)dtdx

= Ex∼p(x),w∼p(w|x)[wf(x)g(x)].

K Gaussian Basis Functions Used in Experiments

The l-th element of φ(x) = (φ1(x), . . . , φbf (x))> is defined by

φl(x) := exp

−
∥∥∥x− x(l)

∥∥∥2
σ2

 ,

where x(l), l = 1, . . . , bf , are randomly chosen training data points. We used bf = 100 and σ = 25 for all
experiments. ψ is defined similarly.

L Justification of the Sub-Sampling Procedure

Suppose that we want a sample subset Sk following the treatment policy pk(t | x). For each sample
(xi, ti, yi) ∼ p(x, t, y) in the original dataset, we randomly add it into Sk with probability proportional
to pk(ti | xi)/p(ti | xi). Then,

p(xi, ti, yi | (xi, ti, yi) ∈ Sk) =
p((xi, ti, yi) ∈ Sk | xi, ti, yi)p(xi, ti, yi)∫ ∑

yi,ti
p((xi, ti, yi) ∈ Sk | xi, ti, yi)p(xi, ti, yi)dxi

=
pk(ti | xi)p(yi | xi, ti)p(xi)∫ ∑

yi,ti
pk(ti | xi)p(yi | xi, ti)p(xi)dxi

= pk(ti | xi)p(yi | xi, ti)p(xi).

This means that the subsamples Sk preserve the original p(y | x, t) and p(x) but follow the desired treatment
policy pk(t | x).

M McDiarmid’s Inequality

Although McDiarmid’s inequality is a well known theorem, we present the statement to make the paper
self-contained.

Theorem 4 (McDiarmid’s inequality). Let ϕ : DN → R be a measurable function. Assume that there exists a
real number Bϕ > 0 such that ∣∣ϕ(v1, . . . , vN )− ϕ(v′1, . . . , v

′
N )
∣∣ ≤ Bϕ, (28)

for any vi, . . . , vN , v1, . . . , v′N ∈ D where vi = v′i for all but one i ∈ {1, . . . , N}. Then, for any D-valued
independent random variables V1, . . . , VN and any δ > 0 the following holds with probability at least 1− δ:

ϕ(V1, . . . , VN ) ≤ E[ϕ(V1, . . . , VN )] +

√
B2
ϕN

2
log

1

δ
.
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