
Appendix A Pseudo-Code of Dynamic Programming Algorithm

We describe below the pseudo-code of the DP algorithm presented in Section 4. In the exact DP
algorithm (Section 4.2), we need to set the input family of lower sets L to the set of all lower sets LG.
In the approximate DP algorithm (Section 4.3), on the other hand, we need to set L to LPruned

G .

We can obtain Memory centric strategy in Section 4.4 just by replacing min with max at line 15 in
Algorithm 1.

Algorithm 1: Dynamic programming algorithm.
input :Computational graph G = (V,E), memory budget B, and family of lower sets L
output :Increasing sequence of lower sets

Init DP array
1 opt[L, t] :=∞. (L ∈ L, t = 0, . . . , T (V))
2 opt[∅, 0] := 0.
3 for L ∈ L in ascending order of their set size do
4 for L′ ∈ L s.t. L (L′ and t = 0, . . . , T (V) do
5 V ′ := L′ \ L.
6 M := opt[L, t] + 2M(V ′) +M(δ+(L′) \ L′)) +M(δ−(δ+(L′)) \ L′).
7 ifM > B then
8 continue # Memory constraint
9 t′ := t+ T (V ′ \ ∂(L′)).

10 m′ := opt[L, t] +M(∂(L′) \ L).
11 if opt[L′, t′] > m′ then

Update DP array
12 opt[L′, t′] := m′.
13 optarg[L′, t′] := (L, t).
14 if there exists t0 such that opt[V, t0] <∞ then
15 t∗ := min{t0 | opt[V, t0] <∞}.
16 Compute increasing sequence {L1 ≺ . . . ≺ Lk} by traversing optarg from (V, t∗) in

reverse order.
17 return {L1 ≺ . . . ≺ Lk}
18 else
19 return Impossible

Appendix B Configuration on Chen’s Algorithm

In Chen’s work, the procedure of topological-order in Algorithm 2 (Memory Optimized Gradient
Graph Construction) and the definition of “candidate stage splitting points C” in Algorithm 3
(Memory Planning with Budget) are not clearly defined. In our experiments, we calculated the
topological-order by performing DFS on the computation graph. Meanwhile, we define C to be a
set v of nodes such that the removal of v makes the graph disconnected, and calculated its value by
enumerating the articulation points in the computation graph.

Appendix C Memory Consumption without Liveness Analysis

As an ablation study, we examined the memory consumption of both our algorithm and Chen’s
algorithm without liveness analysis. The result is shown in Table 2.

Our algorithm without liveness analysis worked much better than Chen’s algorithm without liveness
analysis. For example, our algorithm could reduce around 57% of memory in PSPNet, while Chen’s
algorithm reduced only 13%. Both Chen’s algorithm and our algorithm, however, worked more
poorly without liveness analysis than those with liveness analysis. Because we designed memory-
centric strategy to be used with liveness analysis, the memory reduction with memory-centric strategy
without liveness analysis was mediocre.

11

Table 2: The memory consumption without liveness analysis.
Network ApproxDP + MC ApproxDP + TC ExactDP + MC ExactDP + TC Chen’s [2] Vanilla

PSPNet 3.2 GB (-57%) 3.3 GB (-56%) 3.3 GB (-56%) 3.3 GB (-56%) 7.6 GB (-13%) 9.4 GB
U-Net 6.8 GB (-21%) 6.8 GB (-21%) 6.8 GB (-21%) 6.8 GB (-21%) >=11.4 GB 9.1 GB

ResNet50 4.7 GB (-42%) 4.4 GB (-45%) 4.7 GB (-42%) 4.4 GB (-45%) 6.7 GB (-22%) 8.9 GB
ResNet152 2.8 GB (-61%) 2.8 GB (-61%) 2.8 GB (-61%) 2.8 GB (-61%) 4.1 GB (-48%) 9.2 GB

VGG19 5.5 GB (-34%) 5.5 GB (-34%) 5.5 GB (-34%) 5.5 GB (-34%) 6.3 GB (-26%) 7.0 GB
DenseNet161 1.9 GB (-70%) 2.0 GB (-69%) 1.9 GB (-70%) 2.0 GB (-69%) 3.4 GB (-55%) 8.5 GB
GoogLeNet 6.0 GB (-29%) 6.0 GB (-29%) 6.0 GB (-29%) 6.0 GB (-29%) >=11.4 GB 8.5 GB

For PSPNet, the approximate DP yielded slightly better results than the exact DP. This is because
a small amount of memory that will be temporarily allocated during the computation of each node
(e.g., convolutional node) is not taken into the account in our definition of the memory cost Mv

and thus such a memory allocation may slightly change the peak memory consumption from our
expectation. The actual difference between “ApproxDP+MC” and “ExactDP+MC” of the peak
memory consumption in PSPNet was 67 MB.

We observed that Chen’s algorithm without liveness analysis worked worse than vanilla run in U-Net
and GoogLeNet. This is because the vanilla run of Chainer conducts some local memory reduction
by default. For example, for a pair of functions of the form “h=conv(x); a=relu(h)” at an activation
layer of the network, the vanilla run of Chainer releases h after the computation of a if h is not
called from other functions. Meanwhile, Chen’s algorithm without liveness analysis does not perform
such a local-level optimization. Thus, it is possible that some recomputation algorithms without
liveness analysis perform worse than the vanilla run with a local-level optimization for some network
architectures.

12

	Introduction
	Preliminaries
	General Recomputation Problem
	Methods
	Naive Approach: An Exhaustive Search
	Exact DP Algorithm
	Approximate DP Algorithm
	Memory-Centric Strategy

	Experiments
	Memory Reduction
	Computational Time

	Related Work
	Conclusion
	Pseudo-Code of Dynamic Programming Algorithm
	Configuration on Chen's Algorithm
	Memory Consumption without Liveness Analysis

