
Is Plug-in Solver Sample Efficient for Feature-based
Reinfocement Learning?

Notations We use P = ΦΨ to represent the linear transition model, where Φ ∈ R|S||A|×K is the
feature matrix consisting of feature vectors φ(s, a) and Ψ is the corresponding unknown matrix from
ψ. Proposition 1 means that Φ can be factorized as Φ = ΛΦK where Λ ∈ R|S||A|×K is the matrix
of λs,ak and ΦK is the submatrix of Φ. Thus we have P = ΛΦKΨ = ΛPK. In addition, if we have
feature Φ and state-action pairs K, we can compute Λ and Λ can also be regarded as feature. Thus,
we will use Φ and φ to represent Λ and λ in Appendix C and Appendix D.

We use Pπ ∈ R|S||A|×|S||A| to denote the transition distributions on state action pairs that are
induced by policy π. P ∗ ∈ R|S||A|×|S||A| is the transition matrix induced by optimal policy π∗.
PK ∈ R|K|×|S| is the submatrix of P consisting of rows in K. P̂π, P̂ ∗, P̂K, P̄K, P̃π, P̃ ∗, P̃K are
defined in a similar manner. We use P (s, a) to denote the row vector of P that corresponds to (s, a).

For a vector V , we use V 2, |V |,
√
V and < to denote the component-wise square, absolute value,

square root and less-than. We define V ars,a(V ) := P (s, a)V 2 − (P (s, a)V )2, V arK(V ) =

[V ars1,a1(V ), · · · , V arsK ,aK ] ∈ RK and V arP (V ) ∈ R|S||A| to consist of all V ars,a(V ). A
detailed description is provided in [1]. We use 1 to denote a column vector with all components to be
1. We use [H] to denote {0, 1, · · · , H − 1}.

A Additional Preliminary

Finite Horizon Markov Decision Process A Finite Horizon Markov decision process (FHMDP)
is described by the tupleM = (S,A, P, r,H), which differs from DMDP only in that the discount
factor γ is replaced by the horizon H . The value function of policy π is defined as:

V πh (s) := E

[
H−1∑
t=h

r(st, πt(s
t))|sh = s

]
,

which depends on state s and time step h. The target of the agent is to learn a policy π =
(π0, · · · , πH−1), πh : S → A,∀h ∈ [H] that maximize the total reward V π0 (s) from any initial
state s. It is well known that the optimal policy for FHMDP maximizes the value function in each
time step:

V ∗h (s) := V π
∗

h (s) = max
π

V π(s),∀s ∈ S, h ∈ [H].

The action-value or Q-function Qπh and optimal Q-function Q∗ are defined similarly as in DMDP.
The relation between Q-function and value function is:

V πh (s) = Qπh(s, πh(s)), Qπh(s, a) = r(s, a) + γP (s, a)V πh+1.

If the value function of a policy π is ε-close to the optimal value function in all time steps, the policy
is called a ε-optimal policy:

Q∗h(s, a) ≥ Qπh(s, a) ≥ Q∗h(s, a)− ε, ∀(s, a), h ∈ [H].

Without loss of generality, we assume r ∈ [0, 1] and then we have V πh ∈ [0, H − h]. Note that in
a normal FHMDP, the reward in each time step is identical, but in our analysis, we will construct
FHMDPs with different rewards in each step.

Preprint. Under review.



Two Player Turn-based Stochastic Game A discounted turn-based two-player zero-sum stochas-
tic games (2-TBSG) is described as the tuple G = (Smax,Smin,A, P, r, γ). It is a generalized
version of DMDP which includes two players competing with each other. Player 1 aims to maximize
the total reward with policy π1 while player 2 aims to minimize it with policy π2. We denote policy
π := (π1, π2) to be the overall policy. Given policy π, the value function and Q-function can be
defined as in DMDP.

From the perspective of player 1, if the policy of player 2 π2 is given, the 2-TBSG degenerates to a
DMDP, so the optimal policy exists for player 1. This optimal policy depends on π2, so we call it the
counter policy to π2 and denote it as c1(π2). Similarly we can define c2(π1) as the counter policy of
π1 for player 2. For simplicity, we ignore the subscript in c1 and c2 when it is clear in the context.

To solve a 2-TBSG, our goal is to find the Nash equilibrium policy π∗ = (π∗1 , π
∗
2), where π∗1 =

c(π∗2), π∗2 = c(π∗1). For this policy, neither player can benefit from change its policy alone.

We give the following well-known properties of 2-TBSG without proof (see. e.g. [4]), which can be
regarded as generalized optimality property in DMDP.

• V c(π2),π2 = maxπ1
V π1,π2

• V π1,c(π1) = maxπ2 V
π1,π2

• V π∗1 ,π∗2 = minπ2
V c(π2),π2

• V π∗1 ,π∗2 = maxπ1
V π1,c(π1)

Our target is to find an ε-optimal policy π = (π1, π2) such that
∣∣Qπ(s, a) −Q∗(s, a)

∣∣ ≤ ε,∀(s, a)
for some ε > 0.

B Empirical Model Construction

In this section, we prove Proposition 1, Proposition 2 and Proposition 3, which give the theoretical
guarantees of our model construction algorithm (Algorithm 1).

Proof of Proposition 1. Here we prove the three arguments in Proposition 1.

1. As P̂K(s′|sk, ak) = count(sk,ak,s
′)

N , P̂K is an unbiased estimate of PK. Hence we have

EP̂ (s′|s, a) = E
∑
k∈K

λs,ak P̂K(s′|sk, ak) =
∑
k∈K

λs,ak P (s′|sk, ak) = P (s′|s, a),

where the last equality is from P = ΛPK.

2. We have that ∑
k∈K

λs,ak =
∑
k∈K

∑
s′∈S

λs,ak P (s′|sk, ak)

=
∑
s′∈S

∑
k∈K

λs,ak P (s′|sk, ak)

=
∑
s′∈S

P (s′|s, a)

= 1.

Thus we have
∑
k∈K λ

s,a
k = 1. Then we have∑
s′∈S

P̂ (s′|s, a) =
∑
s′∈S

∑
k∈K

λs,ak P̂K(s′|sk, ak)

=
∑
k∈K

∑
s′∈S

λs,ak P̂K(s′|sk, ak)

=
∑
k∈K

λs,ak

= 1.
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3. If λs,ak ≥ 0,∀k ∈ K, (s, a) ∈ (S,A), then we have

P̂ (s′|s, a) =
∑
k∈K

λs,ak P̂K(s′|sk, ak) ≥ 0,

as every component is non-negative.

Remark 1. Proposition 1 implies that when anchor-state condition is satisfied, Λ is a probability
matrix. Thus P = ΛPK is factorized as a probability matrix into two probability transition matrix.

Proof of Proposition 2. Combining Proposition 1 and Assumption 1, we directly have that∑
s′∈S P̂ (s′|s, a) = 1, P̂ (s′|s, a) ≥ 0 for all (s′, s, a). Therefore P̂ is an eligible transition kernel.

With Assumption 1 or not, we always have EP̂ (s′|s, a) = P (s′|s, a), which means P̂ is an unbiased
estimate of P .

Proof of Proposition 3. We consider the following case. Suppose K = {(s1, a1), · · · , (sK , aK)}.
For a specific (s, a) /∈ K, we have λs,as1,a1 = 1+L

2 , λs,as2,a2 = 1−L
2 and λs,ask,ak = 0 for k 6= 1, 2. For all

other (s′, a′) 6= (s, a), we set

λs
′,a′

s′′,a′′ =

{
1{(s′′,a′′)=(s′,a′)} if(s′, a′) ∈ K
1
K otherwise

It is easy to check that {λs,ak } is valid (We can set Φ = Λ and with state-action set K, then
the corresponding linear combination coefficients are Λ as ΦK = I). We set P (s1|s1, a1) =
L−1
L+1 , P (s2|s1, a1) = 2

L+1 and P (s1|s2, a2) = 1. Other transition distribution can be defined
arbitrarily to construct an eligible P .

As count(s1, a1, s1) follows a binomial distribution with p = P (s1|s1, a1) = L−1
L+1

and count(s2, a2, s1) = N as P (s1|s2, a2) = 1, the estimate of P (s1|s, a) =∑
k∈K λ

s,a
k P (s1|sk, ak) = 0 is

P̂ (s1|s, a) =
∑
k∈K

λs,ak P̂ (s1|sk, ak)

= λs,as1,a1
count(s1, a1, s1)

N
+ λs,as2,a2

count(s1, a1, s1)

N

=
L+ 1

2

count(s1, a1, s1)

N
− L− 1

2
.

P̂ (s1|s, a) is a translated and scaled binomial distribution with zero mean. By central-limit theorem,√
NP̂ (s1|s, a) converges to Gaussian distribution with zero mean. Therefore, there exists constant

C that if N ≥ C, we have P(P̂ (s1|s, a) ≤ 0) ≥ 1
3 . This means the estimate P̂ is not a probability

transition matrix with probability larger than 1/3.

Remark 2. This example can be generalized to prove that P̂ is not non-negative with probability
larger than 1− 1/3[K/2], by choosing [K/2] such s, a pairs and each pair independently leads to an
ineligible estimate with probability 1/3.

Now we give an example of pseudo MDP to show that the optimality in normal MDP no longer
exists, which means that there is no policy π∗ such that V π

∗
(s) = maxπ V

π(s) for all s ∈ S. Note
that the Bellman operator T π[Q] = r + γPπQ may still be an contraction if ‖Pπ‖1,∞ ≤ 1

γ , but the
monotonicity no longer exist, which means we do not have T π[Q1] ≥ T π[Q2] if Q1 ≥ Q2.

We construct a pseudo MDP with S = {s1, s2},A = {a1, a2}. The transition distributions and
rewards are

P (s1, a1) = [0, 1], P (s1, a2) = [0, 1], P (s2, a1) = [1, 0], P (s2, a2) = [−0.1, 1.1],

r(s1, a1) = 1, r(s1, a2) = 0, r(s2, a1) = 0, r(s2, a2) = 1.
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In this pseudo MDP, there are four policies π1, π2, π3, π4, which correspond to choosing action
(a1, a1), (a1, a2), (a2, a1), (a2, a2) in state (s1, s2). We use V1, V2, V3, V4 ∈ R2 to denote the corre-
sponding value functions. Using Bellman equation, we have that

V1 = [
1

1− γ2
,

γ

1− γ2
], V2 = [0, 0], V3 = [

1

1− γ
,

1

1− γ
],

V4 = [
γ

0.1γ2 − 1.1γ + 1
,

1

0.1γ2 − 1.1γ + 1
].

With some calculation, we have that

argmaxiVi(s1) = 2, argmaxiVi(s2) = 3, if γ ≤ 10

11
.

Therefore, in this pseudo MDP, no policy can achieve optimality in all states and no solver can output
an ε-optimal policy for arbitrary small ε.

C Linear Transition Model with Anchor State Assumption

C.1 Sample Complexity for Discounted MDP

Here we give the formal proof of Theorem 1. First we give the definition of Uπs,a and U∗s,a, which is
the set that contains all possible u for different policies in auxiliary MDP.

Definition 1. (Feasible Set for u) For the auxiliary transition model M̃s,a,u = (S,A, P̃ = ΦP̃K, r +

uΦs,a, γ), Uπs,a is defined as the set of u such that Ṽ πu ∈ [0, 1/(1− γ)]S , and U∗s,a is defined as the
set of u such that Ṽ ∗u ∈ [0, 1/(1− γ)]S .
Remark 3. Obviously, u that satisfies 0 ≤ r + uΦs,a ≤ 1 is in both Uπs,a for arbitrary π and U∗s,a.
Immediately, we have 0 ∈ Uπs,a for arbitrary π and 0 ∈ U∗s,a. Note that both Uπs,a and U∗s,a are
independent of P̂ (s, a) and they are bounded intervals.

Notations We use Ṽs,a,u, Q̃s,a,u and π̃s,a,u to denote value function, action value function and
policy in M̃s,a,u, and we omit (s,a) when there is no misunderstanding.

Lemma 1. For an εPS-optimal policy π̂ in M̂, we have∥∥Q∗ −Qπ̂∥∥∞ ≤ ∥∥Q∗ − Q̂π∗∥∥∞ +
∥∥Q̂π̂ −Qπ̂∥∥∞ + εPS.

Proof. By the definition of V ∗, we have

0 < Q∗ −Qπ̂ = Q∗ − Q̂π
∗

+ Q̂π
∗
− Q̂∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

≤
∣∣Q∗ − Q̂π∗ ∣∣+ 0 + εPS +

∣∣Q̂π̂ −Qπ̂∣∣.
which implies

∥∥Q∗ −Qπ̂∥∥∞ ≤ ∥∥Q∗ − Q̂π∗∥∥∞ +
∥∥Q̂π̂ −Qπ̂∥∥∞ + εPS.

Lemma 2. We have
Q∗ − Q̂π

∗
= (I − γPπ

∗
)−1(P̂ − P )V̂ π

∗
,

Qπ̂ − Q̂π̂ = (I − γP π̂)−1(P̂ − P )V̂ π̂.

Proof. For any policy π,

Qπ − Q̂π = (I − γPπ)−1r − (I − γP̂π)−1r

= (I − γPπ)−1((I − γP̂π)− (I − γPπ))Q̂π

= γ(I − γPπ)−1(Pπ − P̂π)Q̂π

= γ(I − γPπ)−1(P − P̂ )V̂ π.

Set π = π∗ and π = π̂, then we can get the results.
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Lemma 3. For any value function V and state action pair (s, a),

φ(s, a)
√
V arK(V ) =

d∑
k=1

φk(s, a)
√
V arsk,ak(V ) ≤

√
V ars,a(V ).

Proof. Since φ(s, a) is a probability transition matrix, we can use Jensen’s inequality here.

φ(s, a)
√
V arK(V ) ≤

√
φ(s, a)V arK(V )

=

√∑
k∈K

φk(s, a)V arsk,ak(V )

=

√√√√ d∑
k∈K

φk(s, a)(P (sk, ak)V 2 − (P (sk, ak)V )2)

=

√√√√ d∑
k∈K

φk(s, a)P (sk, ak)V 2 −
d∑

k∈K

φk(s, a)(P (sk, ak)V )2

≤

√√√√P (s, a)V 2 −
( d∑
k∈K

φk(s, a)P (sk, ak)V
)2

=
√
P (s, a)V 2 − (P (s, a)V )2

=
√
V ars,a(V ).

The two inequalities are due to Jensen’s inequality and other steps are from P (s, a) =∑
k∈K φk(s, a)P (sk, ak), which is a row vector version of P = ΦPK.

Lemma 4. For any policy π and V π is the value function in a MDP with transition P ,

∥∥(I − γPπ)−1
√
V arP (V π)

∥∥
∞ ≤

√
2

(1− γ)3
.

Proof. Since (1−γ)(I−γPπ)−1 is a probability transition matrix, we can apply Jensen’s inequality,

‖(I − γPπ)−1
√
V arP (V π)‖∞ ≤

√
1

1− γ
√
‖(I − γPπ)−1V arP (V π)‖∞

≤
√

2

1− γ
√
‖(I − γ2Pπ)−1V arP (V π)‖∞

≤
√

2

1− γ

√
Σπ · 1

γ2

≤

√
2

(1− γ)3

The definition of Σ and a detailed proof is given in [6].

Lemma 5. For any value function V1 and V2, we have√
V ars,a(V1 + V2) ≤

√
V ars,a(V1) +

√
V ars,a(V2).

Proof. This Lemma is the triangle inequality for variance.
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Lemma 6. Let uπ = γ(P̂ (s, a)− P (s, a))V̂ π and u∗ = γ(P̂ (s, a)− P (s, a))V̂ ∗, then we have

Q̂π = Q̃πuπ , Q̂
∗ = Q̃π̂

∗

u∗ = Q̃∗u∗ , −
1

1− γ
≤ uπ ≤ 1

1− γ
, − 1

1− γ
≤ u∗ ≤ 1

1− γ
.

Proof. Using the Bellman equation Qπ = (I − γPπ)−1r, we have

Q̃πuπ = (I − γP̃π)−1(r + Φs,a · γ(P̂ (s, a)− P (s, a))V̂ π)

= (I − γP̃π)−1((I − γP̂π)Q̂π + γΦ(P̂K − P̃K)V̂ π)

= (I − γP̃π)−1((I − γP̂π)Q̂π + γ(P̂ − P̃ )V̂ π)

= (I − γP̃π)−1(I − γP̃π)Q̂π

= Q̂π.

Similarly, we have Q̂∗ = Q̃π̂u∗ . By the definition of Q̂∗ and the sufficient condition for optimal value,
we have

Q̃π̂
∗

u∗ (s, π̂
∗(s)) = Q̂∗(s, π̂(s)) = max

a
Q̂∗(s, a) = max

a
Q̃π̂
∗

u∗ (s, a).

So, π̂∗ is the optimal policy in M̃s,a,u∗ and Q̂∗ = Q̃π̂u∗ = Q̃∗u∗ .

As 0 ≤ V̂ π ≤ 1
1−γ and 0 ≤ V̂ ∗ ≤ 1

1−γ , we can immediately derive that − 1
1−γ ≤ uπ ≤

1
1−γ , −

1
1−γ ≤ u

∗ ≤ 1
1−γ .

Remark 4. Lemma 6 shows that we can tune a bounded scalar u in M̃s,a,u to recover Q̂, which
implies Q̂, as a function of P̂ (s, a), lies in a one-dimensional manifold in R|S||A|.
Lemma 7. For all u1, u2 ∈ R and policy π,∥∥∥Q̃πu1

− Q̃πu2

∥∥∥
∞
≤ 1

1− γ
|u1 − u2| ,

∥∥∥Q̃∗u1
− Q̃∗u2

∥∥∥
∞
≤ 1

1− γ
|u1 − u2| .

Proof. Using Bellman equation, we have∥∥∥Q̃πu1
− Q̃πu2

∥∥∥
∞

=

∥∥∥∥(I − γP̃π)−1 (r + u1Φs,a)−
(
I − γP̃π

)−1
(r + u2Φs,a)

∥∥∥∥
∞

=

∥∥∥∥(u1 − u2)
(
I − γP̃π

)−1
Φs,a

∥∥∥∥
∞

≤ |u1 − u2|
1

1− γ
‖Φs,a‖∞

≤ |u1 − u2|
1

1− γ
.

Now we prove the second claim. Set π = π∗u1
and π = π∗u2

, we have∥∥∥Q̃∗u1
− Q̃

π∗u1
u2

∥∥∥
∞
≤ |u1 − u2|

1

1− γ
,
∥∥∥Q̃π∗u2u1 − Q̃∗u2

∥∥∥
∞
≤ |u1 − u2|

1

1− γ
.

Using the property of optimal value, we have

− |u1 − u2|
1

1− γ
1 ≤ Q̃

π∗u2
u1 − Q̃∗u2

≤ Q̃∗u1
− Q̃∗u2

≤ Q̃∗u1
− Q̃

π∗u1
u2 ≤

∣∣u1 − u2∣∣ 1

1− γ
1,

which implies
∥∥∥Q̃∗u1

− Q̃∗u2

∥∥∥
∞
≤ |u1 − u2| 1

1−γ .

Remark 5. Lemma 7 shows that Q̃u is robust to u. This property implies that an ε-net on u can form
an ε/(1− γ)-net on Q̂u.
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Lemma 8. For a given finite set Bπs,a ⊂ Uπs,a ∩ [− 1
1−γ ,

1
1−γ ] and δ ≥ 0, with probability greater

than 1− δ, it holds for all u ∈ Bπs,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
Ṽ πu

∣∣∣ ≤
√

2 log
(
4
∣∣Bπs,a∣∣ /δ)
N

√
V ars,a(Ṽ πu ) +

2 log
(
4
∣∣Bπs,a∣∣ /δ)

(1− γ)3N
.

Similarly, For a given finite set B∗s,a ⊂ U∗s,a ∩ [− 1
1−γ ,

1
1−γ ] and δ ≥ 0, with probability greater than

1− δ, it holds for all u ∈ B∗s,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
Ṽ ∗u

∣∣∣ ≤
√

2 log
(
4
∣∣B∗s,a∣∣ /δ)
N

√
V ars,a(Ṽ ∗u ) +

2 log
(
4
∣∣B∗s,a∣∣ /δ)

(1− γ)3N
.

Proof. This is the direct application of Beinstein’s inequality as Ṽ πu and Ṽ ∗u is independent of
P̂ (s, a).

Lemma 9. For a given finite set Bπ
∗

s,a ⊂ Uπ
∗

s,a ∩ [− 1
1−γ ,

1
1−γ ] and B∗s,a ⊂ U∗s,a ∩ [− 1

1−γ ,
1

1−γ ] and
δ ≥ 0, with probability greater than 1− 2δ, it holds for all u ∈ Bπ∗s,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗
∣∣∣ ≤

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π∗) +

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ)

(1− γ)3N

+ min
u∈Bπ∗s,a

∣∣∣uπ∗ − u∣∣∣ 1

1− γ

1 +

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

 ,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗
∣∣∣ ≤

√
2 log

(
4
∣∣B∗s,a∣∣ /δ)
N

√
V ars,a(V̂ ∗) +

2 log
(
4
∣∣B∗s,a∣∣ /δ)

(1− γ)3N

+ min
u∈B∗s,a

|u∗ − u| 1

1− γ

1 +

√
2 log

(
4
∣∣B∗s,a∣∣ /δ)
N

 .

Proof. For the first claim, we have∣∣∣(P (s, a)− P̂ (s, a))V̂ π
∗
∣∣∣

(a)

≤
∣∣∣(P (s, a)− P̂ (s, a))Ṽ π

∗

u

∣∣∣+
∣∣∣(P (s, a)− P̂ (s, a))(V̂ π

∗
− Ṽ π

∗

u )
∣∣∣

(b)

≤

√
2 log(4

∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(Ṽ π∗u ) +

2 log(4
∣∣Bπ∗s,a∣∣ /δ)

(1− γ)3N
+
∥∥∥V̂ π∗ − Ṽ π∗u ∥∥∥

∞

(c)

≤

√
2 log(4

∣∣Bπ∗s,a∣∣ /δ)
N

(√
V ars,a(V̂ π∗) +

√
V ars,a(Ṽ π∗u − V̂ π∗)

)
+

2 log(4
∣∣Bπ∗s,a∣∣ /δ)

(1− γ)3N
+
∥∥∥V̂ π∗ − Ṽ π∗u ∥∥∥

∞

(d)

≤

√
2 log(4

∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π∗) +

2 log(4
∣∣Bπ∗s,a∣∣ /δ)

(1− γ)3N

+
∥∥∥V̂ π∗ − Ṽ π∗u ∥∥∥

∞

1 +

√
2 log(4

∣∣Bπs,a∣∣ /δ)
N


7



(e)

≤

√
2 log(4

∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π∗) +

2 log(4
∣∣Bπ∗s,a∣∣ /δ)

(1− γ)3N

+
∣∣∣uπ∗ − u∣∣∣ 1

1− γ

1 +

√
2 log(4

∣∣Bπ∗s,a∣∣ /δ)
N

 .

(a) is due to triangle inequality, (b) is from Lemma 8, (c) is from Lemma 5, (d) is due to the fact
that

√
V ar(V ) ≤ V and (e) is from Lemma 7. As this equality holds for all u ∈ Bπ∗s,a, we can

take minimum in the RHS, which proves the first claim. The second claims can proved in the same
manner.

Lemma 10. For any given ε and all (s, a) ∈ K, with probability larger than 1− δ,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗
∣∣∣ ≤

√√√√2 log
(

32K/δ (1− γ)
3
ε
)

N

√
V ars,a(V̂ π∗)

+
2 log

(
32K/δ (1− γ)

3
ε
)

(1− γ) 3N
+


√√√√2 log

(
32K/δ (1− γ)

3
ε
)

N
+ 1

 ε (1− γ)

4
,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗
∣∣∣ ≤

√√√√2 log
(

32K/δ (1− γ)
3
ε
)

N

√
V ars,a

(
V̂ ∗
)

+
2 log

(
32K/δ (1− γ)

3
ε
)

(1− γ) 3N
+


√√√√2 log

(
32K/δ (1− γ)

3
ε
)

N
+ 1

 ε (1− γ)

4
.

For simplicity, we set c (δ, γ, ε) = 2 log
(

32K/δ (1− γ)
3
ε
)

and we use c to represent c (δ, γ, ε) as
it includes only log factors.

Proof. We setBπ
∗

s,a to be the evenly spaced elements in the interval U∗s,a∩ [− 1
1−γ ,

1
1−γ ] and

∣∣Bπ∗s,a∣∣ =
4

(1−γ)3ε . Then for any u′ ∈ U∗s,a ∩ [− 1
1−γ ,

1
1−γ ], we have minu∈Bπ∗s,a |u

′ − u| ≤ (1− γ)2ε/4. Note

that uπ
∗ ∈ U∗s,a ∩ [− 1

1−γ ,
1

1−γ ]. Then Lemma 9 implies this result. Similarly we can prove the
second claim.

Lemma 11. With probability larger than 1− δ,∣∣∣(P − P̂ )V̂ π
∗
∣∣∣ ≤√ c

N

√
V arP (V̂ π∗) +

[
c

(1− γ) 3N
+

(√
c

N
+ 1

)
ε (1− γ)

4

]
1,

∣∣∣(P − P̂ )V̂ ∗
∣∣∣ ≤√ c

N

√
V arP (V̂ ∗) +

[
c

(1− γ) 3N
+

(√
c

N
+ 1

)
ε(1− γ)

4

]
1.

Proof.∣∣∣(P − P̂ )V̂ π
∗
∣∣∣ =

∣∣∣Φ(PK − P̂K)V̂ ∗
∣∣∣

(a)

≤ Φ
∣∣∣(PK − P̂K)V̂ ∗

∣∣∣
(b)

≤ Φ

√
c

N

√
V arK(V̂ π∗) + Φ

[
c

(1− γ) 3N
+

(√
c

N
+ 1

)
ε (1− γ)

4

]
1

8



(c)

≤
√

c

N

√
V arP

(
V̂ π∗

)
+

[
c

(1− γ) 3N
+

(√
c

N
+ 1

)
ε (1− γ)

4

]
1.

(a) is due to Φ is non-negative, (b) is from Lemma 10 and (c) is from Lemma 3. The second claim
can be proved in the same manner.

Lemma 12. With probability larger than 1− δ, and π̂ is a εPS-optimal policy in M̂ .∥∥∥Q∗ − Q̂π∗∥∥∥
∞
≤ γ

1− α

(√
c

N (1− γ)
3 +

c

(1− γ)
2

3N
+

(√
c

N
+ 1

)
ε

4

)
,

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞
≤ γ

1− α

(√
c

N (1− γ)
3 +

c

(1− γ)
2

3N
+

(√
c

N
+ 1

)(
ε

4
+

εPS

1− γ

))
.

where α = α(δ, γ, ε,N) =
√

c(δ,γ,ε)
N(1−γ)2 .

Proof. ∥∥∥Q∗ − Q̂π∗∥∥∥
∞

=

∥∥∥∥(I − γPπ∗)−1 (P̂ − P) V̂ π∗∥∥∥∥
∞

(a)

≤
∥∥∥∥(I − γPπ∗)−1 [√ c

N

√
V arP

(
V̂ π∗

)
+

c

(1− γ) 3N
+

(√
c

N
+ 1

)
ε

4 (1− γ)

]∥∥∥∥
∞

(b)

≤
√

c

N (1− γ)
3 +

√
c

N

∥∥∥Q∗ − Q̂π∗∥∥∥
1− γ

+
c

(1− γ)
2

3N
+

(√
c

N
+ 1

)
ε

4
.

(a) is from Lemma 11 and (b) is from Lemma 4. Solving for
∥∥∥Q∗ − Q̂π∗∥∥∥

∞
proves the first claim.∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞

=

∥∥∥∥(I − γP π̂)−1 (P̂ − P) V̂ π̂∥∥∥∥
∞

(a)

≤
∥∥∥∥(I − γP π̂)−1 (P̂ − P) V̂ ∗∥∥∥∥

∞
+

∥∥∥∥(I − γP π̂)−1 (P̂ − P)(V̂ π̂ − V̂ ∗)∥∥∥∥
∞

(b)

≤
∥∥∥∥(I − γP π̂)−1 [√ c

N

√
V arP (V̂ ∗) +

c

(1− γ)3N
+

(√
c

N
+ 1

)
ε

4(1− γ)

]∥∥∥∥
∞

+
εPS

1− γ
(c)

≤
∥∥∥∥(I − γP π̂)−1 [√ c

N

√
V arP

(
V π̂ + V̂ π̂ − V π̂ + V̂ ∗ − V̂ π̂

)
+

c

(1− γ)3N

+

(√
c

N
+ 1

)
ε

4(1− γ)

]∥∥∥∥
∞

+
εPS

1− γ

(d)

≤

∥∥∥∥∥
√

c

N

(
I − γP π̂

)−1√
V arP

(
V̂ π̂
)∥∥∥∥∥
∞

+

√
c

N

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

1− γ
+

c

(1− γ)23N

+

(√
c

N
+ 1

)(
ε

4
+

εPS

1− γ

)
(e)

≤
√

c

N(1− γ)3
+

√
c

N

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞

1− γ
+

c

(1− γ)23N
+

(√
c

N
+ 1

)(
ε

4
+

εPS

1− γ

)
.

(a), (c), (d) are due to triangle inequality, (b) is from Lemma 11 and (e) is from Lemma 4. Solving
for
∥∥∥Qπ̂ − Q̂π̂∥∥∥

∞
proves the second claim.

9



Proof of Theorem 1. From Lemma 1, with probability larger than 1− δ, we have∥∥∥Q∗ −Qπ̂∥∥∥
∞

(a)

≤
∥∥∥Q∗ − Q̂π∗∥∥∥

∞
+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞
+ εPS

(b)

≤ γ

1− α

[
2

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4

)
+

(√
c

N
+ 1

)
εPS

1− γ

]
+ εPS

(a) is from Lemma 1 and (b) is from Lemma 12. For N ≥ C log(CK(1−γ)−1δ−1ε−1)
(1−γ)3ε2 with proper

constant C, we have γ
1−α(δ,γ,ε,N)

(√
c(δ,γ,ε)
N + 1

)
≤ 2, thus

∥∥∥V ∗ − V π̂∥∥∥
∞
≤ ε+

3εPS

1− γ
,

which completes the proof.

Now we prove Theorem 2, where the transition model P can be approximated by linear transition
model, i.e. P = P̄ + Ξ = ΦP̄K + Ξ, where P̄ is a linear transition model and Ξ is the approximation
error matrix. We set ξ = ‖Ξ‖1,∞ .

Lemma 13. For any value function V and state action pair (s, a),

φ(s, a)
√
V arK(V ) =

∑
k∈K

φk(s, a)
√
V arsk,ak(V ) ≤

√
V ars,a(V ) + 2

√
3ξ

(1− γ)2
.

Proof. Since φ(s, a) is a probability transition matrix, we can use Jensen’s inequality here.

φ(s, a)
√
V arK(V )

≤
√
φ(s, a)V arK(V )

=

√∑
k∈K

φk(s, a)V arsk,ak(V )

=

√∑
k∈K

φk(s, a) (P (sk, ak)V 2 − (P (sk, ak)V )
2
)

=

√∑
k∈K

φk(s, a)P (sk, ak)V 2 −
∑
k∈K

φk(s, a) (P (sk, ak)V )
2

=

√∑
k∈K

φk(s, a)
(
P̄ (sk, ak)V 2 + Ξ(sk, ak)V 2

)
−
∑
k∈K

φk(s, a)
((
P̄ (sk, ak) + Ξ(sk, ak)

)
V
)2

≤
√∑
k∈K

φk(s, a)P̄ (sk, ak)V 2 −
∑
k∈K

φk(s, a)
(
P̄ (sk, ak)V

)2
+

√
3ξ

(1− γ)2

≤
√
P̄ (s, a)V 2 −

∑
k∈K

φk(s, a)
(
P̄ (sk, ak)V

)2
+

√
3ξ

(1− γ)2

=

√
P̄ (s, a)V 2 −

(
P̄ (s, a)V

)2
+

√
3ξ

(1− γ)2

10



≤
√
P (s, a)V 2 − (P (s, a)V )

2
+ 2

√
3ξ

(1− γ)2

=
√
V ars,a(V ) + 2

√
3ξ

(1− γ)2
.

Lemma 14. With probability larger than 1− δ, and π̂ is a εPS-optimal policy in K̂.∥∥∥Q∗ − Q̂π∗∥∥∥
∞
≤ γ

1− α

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4
+ 8

√
ξ

(1− γ)4

)
,

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞
≤ γ

1− α

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)(
ε

4
+

εPS

1− γ

)

+ 8

√
ξ

(1− γ)4

)
.

Proof. ∥∥∥Q∗ − Q̂π∗∥∥∥
∞

=

∥∥∥∥(I − γPπ∗)−1 (P̂ − P )V̂ π
∗
∥∥∥∥
∞

=

∥∥∥∥(I − γPπ∗)−1 (ΦP̂K − ΦP̄K − ΞK

)
V̂ π
∗
∥∥∥∥
∞

≤
∥∥∥∥(I − γPπ∗)−1 Φ

(
P̂K − P̄K − ΞK

)
V̂ π
∗
∥∥∥∥
∞

+
2ξ

(1− γ)2

=

∥∥∥∥(I − γPπ∗)−1 Φ
(
P̂K − PK

)
V̂ π
∗
∥∥∥∥
∞

+
2ξ

(1− γ)2

≤
∥∥∥∥(I − γPπ∗)−1 [√ c

N

(√
V arP

(
V̂ π∗

)
+ 2

√
3ξ

(1− γ)2

)
+

c

(1− γ)3N

+

(√
c

N
+ 1

)
ε

4(1− γ)

]∥∥∥∥
∞

+
2ξ

(1− γ)2

≤
√

c

N(1− γ)3
+

√
c

N

∥∥∥Q∗ − Q̂π∗∥∥∥
1− γ

+
c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4
+ 8

√
ξ

(1− γ)4
.

Solving for
∥∥∥Q∗ − Q̂π∗∥∥∥

∞
proves the first claim. The second claim can be proved in a similar

manner.

Proof of Theorem 2. From Lemma 1, with probability larger than 1− δ, we have∥∥∥Q∗ −Qπ̂∥∥∥
∞

≤
∥∥∥Q∗ − Q̂π∗∥∥∥

∞
+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞
+ εPS

≤ γ

1− α

[
2

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4
+ 8

√
ξ

(1− γ)4

)

+

(√
c

N
+ 1

)
εPS

1− γ

]
+ εPS
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For N ≥ C log(CK(1−γ)−1δ−1)ε−1

(1−γ)3ε2 with proper constant C, we have γ
1−α

(√
c
N + 1

)
≤ 2, thus∥∥∥V ∗ − V π̂∥∥∥

∞
≤ ε+

3εPS

1− γ
+

16
√
ξ

(1− γ)2,

which completes the proof.

C.2 Sample Complexity for Finite Horizon MDP

Here we prove the sample complexity result for FHMDP using the auxiliary MDP technique. The
difference with DMDP is that here we need to tune the reward in each time step.

Definition 2. (Auxiliary Model) For an estimated transition model M̂ = (S,A, P̂ = ΦP̂K, r, γ) and
a given anchor state pair (s, a), the auxiliary transition model is M̃s,a,u = (S,A, P̃ = ΦP̃K , r̃

u
h =

r + uhΦs,a, γ), where

P̃K(s′, a′) =

{
P̂ (s′, a′) if (s′, a′) 6= (s, a)

P (s, a) otherwise,

Φs,a is the column of Φ that corresponds to anchor state (s, a), r̃uh is the reward in step h and
u = (u0, u1, · · · , uH−1) is a H dimensional vector that will be determined latter.

Remark 6. The reward in M̃s,a,u may not be stationary, which means r̃u0 , r̃
u
1 , · · · , r̃uH−1 can be

different.

Definition 3. (Feasible Set for u) For the auxiliary transition model M̃s,a,u, Uπs,a is defined as
the set of u such that Ṽ πh,u ∈ [0, H − h]S ,∀h ∈ [H] and U∗s,a is defined as the set of u such that
Ṽ ∗h,u ∈ [0, H − h]S ,∀h ∈ [H].

Remark 7. u that satisfies 0 ≤ r + uhΦs,a ≤ 1,∀h ∈ [H] is in both Uπs,a and U∗s,a for arbitrary
π. Immediately we have 0 ∈ Uπs,a and 0 ∈ U∗s,a for arbitrary π. Note that both Uπs,a and U∗s,a are
independent of P̂ (s, a) and are intervals.

Notations For simplicity, we ignore (s, a) in functions of auxiliary transition modelMs,a,u. We
use Ṽ πh,u, Q̃

π
h,u to denote value function and Q-function in step h and π̃∗u to be the optimal policy in

Ms,a,u.

Lemma 15. For a εPS-optimal policy π̂ = (π̂0, · · · , π̂H−1) in M̂, we have∥∥∥Q∗0 −Qπ̂0∥∥∥∞ ≤ ∥∥∥V ∗0 − V̂ π∗0

∥∥∥
∞

+
∥∥∥V̂ π̂0 − V π̂0 ∥∥∥∞ + εPS.

Proof.

0 < Q∗0 −Qπ̂0 = Q∗0 − Q̂π
∗

0 + Q̂π
∗

0 − Q̂∗0 + Q̂∗0 − Q̂π̂0 + Q̂π̂0 −Qπ̂0
≤
∣∣∣Q∗0 − Q̂π∗0 ∣∣∣+ 0 + εPS +

∣∣∣Q̂π̂0 −Qπ̂0 ∣∣∣ ,
which implies

∥∥Q∗0 −Qπ̂0∥∥∞ ≤ ∥∥∥Q∗0 − Q̂π∗0 ∥∥∥∞ +
∥∥∥Q̂π̂0 −Qπ̂0∥∥∥∞ + εPS.

Lemma 16. For FHMDP, we have

Qπ0 − Q̂π0 =

H−1∑
h=0

h−1∏
i=0

Pπi(P − P̂ )V̂ πh+1.
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Proof. Using Bellman equation, we have

Qπ0 − Q̂π0 = (r + PV π1 )− (r + P̂ Ṽ π1 )

= P (V π1 − V̂ π1 ) + (P − P̂ )Ṽ π1

= Pπ0(Qπ1 − Q̂π1 ) + (P − P̂ )Ṽ π1

= Pπ0Pπ1(Qπ2 − Q̂π2 ) + Pπ0(P − P̂ )Ṽ π2 + (P − P̂ )Ṽ π1

=

H−1∑
h=0

h−1∏
i=0

Pπi(P − P̂ )V̂ πh+1.

The last equality is derived by iteratively expand Qπh − Q̂πh.

Lemma 17. For any policy π and V π is the value function in a MDP with transition P ,∥∥∥∥∥
H−1∑
h=0

h−1∏
i=0

Pπi
√
V arP (V πh+1)

∥∥∥∥∥
∞

≤
√

2H3.

Proof. The proof is similar to the case in DMDP and can be found in [3].

Lemma 18. Let uπh =
(
P̂ (s, a)− P (s, a)

)
V̂ πh+1,∀h ∈ [H] and u∗h =(

P̂ (s, a)− P (s, a)
)
V̂ ∗h+1,∀h ∈ [H], then we have

Q̂πh = Q̃πh,uπ , Q̂
∗
h = Q̃π̂h,u∗ = Q̃∗h,u∗ , |uπh| ≤ H − h− 1, |u∗h| ≤ H − h− 1,∀h ∈ [H].

Proof. We provethis argument by mathematical induction. When h = H − 1, we have uπh =(
P̂ (s, a)− P (s, a)

)
V̂ πH = 0 and Q̂πh = r = r + uπhΦs,a = Q̃πh,uπ .

If the argument holds for h+ 1, then we have

Q̂πh = r + P̂ V̂ πh+1

= r + P̂ Ṽ πh+1

= r + Φ
(
P̂K − P̃K

)
V̂ πh+1 + P̃ Ṽ πh+1

= r +
(
P̂ (s, a)− P (s, a)

)
V̂ πh+1Φs,a + P̃ Ṽ πh+1

= r + uπhΦs,a + P̃ Ṽ πh+1

= Q̃πh,uπ .

As V̂ πh+1 ∈ [0, H − h− 1], we have uπh = (P̂ (s, a)−P (s, a))V̂ πh+1 ∈ [h+ 1−H,H − h− 1]. The
proof for π̂∗ is identical.

Lemma 19. For all u, u′ ∈ RH and policy π,∥∥∥Q̃πh,u − Q̃πh,u′∥∥∥∞ ≤ (H − h) ‖u− u′‖∞ ,
∥∥∥Q̃∗h,u − Q̃∗h,u′∥∥∥∞ ≤ (H − h) ‖u− u′‖∞ .

Proof. We prove the first claim:∥∥∥Q̃πh,u − Q̃πh,u′∥∥∥∞ =
∥∥∥(r + uhΦs,a + P̃ V πh,u

)
−
(
r + u′hΦs,a + P̃ V πh,u′

)∥∥∥
∞

≤ ‖(uh − u′h)Φs,a‖∞ +
∥∥∥P̃π (Q̃πh+1,u − Q̃πh+1,u′

)∥∥∥
∞

13



≤ |uh − u′h|+
∥∥∥Q̃πh+1,u − Q̃πh+1,u′

∥∥∥
∞

≤
H−1∑
i=h

|ui − u′i|

≤ (H − h) ‖u− u′‖∞

The proof for the second claim is identical.

Lemma 20. For a given finite set Bπ
∗

s,a ⊂ Uπ
∗

s,a ∩ [−H,H]H and δ ≥ 0, with probability greater than
1− δ, it holds for all u ∈ Bπs,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
Ṽ π
∗

h,u

∣∣∣ ≤
√

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(Ṽ π

∗
h,u)+

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ) (H − h)

3N
.

Similarly, For a given finite set B∗s,a ⊂ U∗s,a ∩ [−H,H]H and δ ≥ 0, with probability greater than
1− δ, it holds for all u ∈ B∗s,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
Ṽ ∗h,u

∣∣∣ ≤
√

2 log
(
4
∣∣B∗s,a∣∣ /δ)
N

√
V ars,a(Ṽ ∗h,u)+

2 log
(
4
∣∣B∗s,a∣∣ /δ) (H − h)

3N
.

Proof. This is the direct application of Beinstein’s inequality as Ṽ πh,u and Ṽ ∗h,u is independent of
P̂ (s, a).

Lemma 21. For a given finite set Bπ
∗

s,a ⊂ Uπ
∗

s,a ∩ [−H,H]H and B∗s,a ⊂ U∗s,a ∩ [−H,H]H and
δ ≥ 0, with probability greater than 1− 2Hδ, it holds for all u ∈ Bπ∗s,a and h ∈ [H] that

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗

h

∣∣∣ ≤
√

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π

∗
h )+

2 log
(
4|Bπ∗s,a|/δ

)
(H − h)

3N

+ min
u∈Bπ∗s,a

∥∥∥uπ∗ − u∥∥∥
∞

(H − h)

1 +

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

 ,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ ≤
√

2 log
(
4
∣∣B∗s,a∣∣ /δ)
N

√
V ars,a(V̂ ∗h )+

2 log
(
4
∣∣B∗s,a∣∣ /δ) (H − h)

3N

+ min
u∈B∗s,a

‖u∗ − u‖∞ (H − h)

1 +

√
2 log

(
4
∣∣B∗s,a∣∣ /δ)
N

 .

Proof. We have∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗

h

∣∣∣
(a)

≤
∣∣∣(P (s, a)− P̂ (s, a)

)
Ṽ π
∗

h,u

∣∣∣+
∣∣∣(P (s, a)− P̂ (s, a)

)(
V̂ π
∗

h − Ṽ π
∗

h,u

)∣∣∣
(b)

≤

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(Ṽ π

∗
h,u) +

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ) (H − h)

3N
+
∥∥∥V̂ π∗h − Ṽ π

∗

h,u

∥∥∥
∞

(c)

≤

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

(√
V ars,a(V̂ π

∗
h ) +

√
V ars,a

(
Ṽ π
∗

h,u − V̂ π
∗

h

))

14



+
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ) (H − h)

3N
+
∥∥∥V̂ π∗h − Ṽ π

∗

h,u

∥∥∥
∞

(d)

≤

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π

∗
h ) +

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ) (H − h)

3N

+
∥∥∥V̂ π∗h − Ṽ π

∗

h,u

∥∥∥
∞

1 +

√
2 log

(
4
∣∣Bπs,a∣∣ /δ)
N


(e)

≤

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

√
V ars,a(V̂ π

∗
h ) +

2 log
(
4
∣∣Bπ∗s,a∣∣ /δ) (H − h)

3N

+
∥∥∥uπ∗ − u∥∥∥

∞
(H − h)

1 +

√
2 log

(
4
∣∣Bπ∗s,a∣∣ /δ)
N

 .

(a) is due to triangle inequality, (b) is from Lemma 20, (c) is from Lemma 5, (d) is due to the fact
that

√
V ar(V ) ≤ V and (e) is from Lemma 19. As this equality holds for all u ∈ Bπ∗s,a, we can

take minimum in the RHS, which proves the first claim. The second claims can proved in the same
manner.

Lemma 22. For any given ε and all (s, a) ∈ K, with probability larger than 1− 2Hδ,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗

h

∣∣∣ ≤√2H log(32KH3/δε)

N

√
V ars,a(V̂ π

∗
h ) +

2H2 log(32KH3/δε)

3N

+

(√
2H log(32KH3/δε)

N
+ 1

)
ε

4H
,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ ≤√2H log(32KH3/δε)

N

√
V ars,a(V̂ ∗h ) +

2H2 log(32KH3/δε)

3N

+

(√
2H log(32KH3/δε)

N
+ 1

)
ε

4H
.

For simplicity, we set c = c(δ,H, ε) = 2 log(64KH4/δε).

Proof. We set Bπ
∗

s,a to be the evenly spaced elements in the interval Uπ
∗

s,a ∩ [−H,H]H and
∣∣Bπ∗s,a∣∣ =(

4H3

ε

)H
. Then for any u′ ∈ Uπ∗s,a ∩ [−H,H]H , we have minu∈Bπ∗s,a ‖u

′ − u‖∞ ≤ ε/4H2. Note

that uπ
∗ ∈ U∗s,a ∩ [−H,H]H . Combining this with Lemma 21 implies the result. Similarly we can

prove it for B∗s,a.

Lemma 23. For any given ε and all (s, a) ∈ K, with probability larger than 1− 2Hδ,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ π
∗

h

∣∣∣ ≤√2 min{K, |S|} log(32KH3/δε)

N

√
V ars,a(V̂ π

∗
h )

+
2 min{K, |S|}H log(32KH3/δε)

3N
+

(√
2 min{K, |S|} log(32KH3/δε)

N
+ 1

)
ε

4H
,

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ ≤√2 min{K, |S|} log(32KH3/δε)

N

√
V ars,a(V̂ ∗h )

+
2 min{K, |S|}H log(32KH3/δε)

3N
+

(√
2 min{K, |S|} log(32KH3/δε)

N
+ 1

)
ε

4H
.
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Proof. Lemma 22 is proved by constructing a ε/4H-net on V̂ π
∗

h via auxiliary MDP. Note that

V̂ ∗h = max
a

Q̂∗h = max
a

(r + ΦP̂KV̂
∗
h+1),

which means V̂ ∗h lies in a K-dimensional manifold in [0, H]S . We can make an ε/4H-net on this
manifold with O( 4H3

ε )min{K,|S|} points. With similar analysis as Lemma 22, we can prove this
claim.

Proof of Theorem 3. From Lemma 15, with probability larger than 1− δ, we have∥∥∥Q∗0 −Qπ̂0∥∥∥∞ ≤ ∥∥∥Q∗0 − Q̂π∗0 ∥∥∥∞ +
∥∥∥Q̂π̂0 −Qπ̂0∥∥∥∞ + εPS

≤ 1

1− α

[
2

(√
cH3 min{H,K, |S|}

N
+
cH2 min{H,K, |S|}

3N

+

(√
c

N
+ 1

)
ε

4

)
+

(√
c

N
+ 1

)
εPSH

]
+ εPS,

where α = α(δ,H, ε,N) =
√

c(δ,H,ε)H2

N and the second inequality can be derived as in DMDP from

Lemma 22 and Lemma 23. For N ≥ C log(CKHδ−1ε−1)H3 min{H,K,|S|}
ε2 with proper constant C, we

have 1
1−α (

√
c
N + 1) ≤ 2, thus we have∥∥∥V ∗0 − V π̂0 ∥∥∥∞ ≤ ε+ 3εPSH.

C.3 Sample Complexity for 2-TBSG

The value concentration becomes a little more tricky in 2-TBSG. The proof is similar to the case for
DMDP, which only differs in the attendance of counter policy. The counter policy in 2-TBSG can be
seen as the optimal policy in a DMDP induced by the policy of the opponent.

Definition 4. (Auxiliary Model) For a estimated transition model M̂ = (S1,S2,A, P̂ = ΦP̂K, r, γ)

and a given anchor state pair (s, a), the auxiliary transition model is M̃s,a,u = (S1,S2,A, P̃ =

ΦP̃K , r + uΦs,a, γ), where

P̃K(s′, a′) =

{
P̂ (s′, a′) if (s′, a′) 6= (s, a)

P (s, a) otherwise,

Φs,a is the column of Φ that corresponds to anchor state (s, a) and u is a variable that will be
determined latter.

Notations For simplicity, we ignore (s, a) in functions of auxiliary transition model Ms,a,u.
c(π1), ĉ(π1), c̃u(π1) are the counter policies for π1 inM,M̂,M̃s,a,u. When it is clear in the context,
we use c as the counter policy function for π2 as well. π∗ = (π∗1 , π

∗
2), π̂∗ = (π̂∗1 , π̂

∗
2), π̃∗ = (π̃∗1 , π̃

∗
2)

are the equilibrium policies in M,M̂,M̃s,a,u. We use Ṽ πu , Q̃
π
u to denote value function and Q-

function and π̃u to be the optimal policy inMs,a,u.

Definition 5. (Feasible Set for u) For the auxiliary transition model M̃ , Uπs,a is defined as the set of
u so that Ṽ πu ∈ [0, 1/(1− γ)]S and U∗s,a is defined as the set of u so that Ṽ ∗u ∈ [0, 1/(1− γ)]S .

Lemma 24.
V c(π2),π2 ≥ V π

∗
1 ,π
∗
2 , V π1,c(π1) ≤ V π

∗
1 ,π
∗
2 .
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Lemma 25.
Qπ1,c(π1)(s, a) ≥ Qπ1,c(π1)(s, c(π1)(s)), ∀s ∈ S2

Qπ
∗
1 ,π
∗
2 (s, a)

{
≥ Qπ∗1 ,π∗2 (s, π∗2(s)) ∀s ∈ S2
≤ Qπ∗1 ,π∗2 (s, π∗1(s)) ∀s ∈ S1.

These two equalities are also the sufficient condition for counter policy and equilibrium policy.

Proof. The proof of Lemma 24 and 25 can be found in [2].

Lemma 26. Let π̂ = (π̂1, π̂2) be a εPS-optimal policy in M̂ .

− (
∥∥∥Qĉ(π∗2 ),π∗2 − Q̂ĉ(π∗2 ),π∗2∥∥∥

∞
+
∥∥∥Qπ̂1,π̂2 − Q̂π̂1,π̂2

∥∥∥
∞

+ εPS)1 ≤ Q∗ −Qπ̂1,π̂2

≤ (
∥∥∥Qπ∗1 ,ĉ(π∗1 ) − Q̂π∗1 ,ĉ(π∗1 )∥∥∥

∞
+
∥∥∥Qπ̂1,π̂2 − Q̂π̂1,π̂2

∥∥∥
∞

+ εPS)1.

Proof. We prove the second inequality and the first one can be proved by symmetry.

Q∗ −Qπ̂1,π̂2

=Q∗ −Qπ
∗
1 ,ĉ(π

∗
1 ) +Qπ

∗
1 ,ĉ(π

∗
1 ) − Q̂π

∗
1 ,ĉ(π

∗
1 ) + Q̂π

∗
1 ,ĉ(π

∗
1 ) − Q̂∗ + Q̂∗ − Q̂π̂ +Qπ̂ − Q̂π̂

≤Qπ
∗
1 ,ĉ(π

∗
1 ) − Q̂π

∗
1 ,ĉ(π

∗
1 ) + Q̂∗ − Q̂π̂ +Qπ̂ − Q̂π̂

≤
(∥∥∥Qπ∗1 ,ĉ(π∗1 ) − Q̂π∗1 ,ĉ(π∗1 )∥∥∥

∞
+
∥∥∥Qπ̂1,π̂2 − Q̂π̂1,π̂2

∥∥∥
∞

+ εPS

)
1

Lemma 27. Let uπ1 = γ
(
P̂ (s, a)− P (s, a)

)
V̂ π1,ĉ(π1), uπ2 =

γ
(
P̂ (s, a)− P (s, a)

)
V̂ ĉ(π2),π2 , u∗ = γ

(
P̂ (s, a)− P (s, a)

)
V̂ π̂
∗
1 ,π̂
∗
2 , we have

Q̂π1,ĉ(π1) = Q̃
π1,ĉ(π1)
uπ1 = Q̃

π1,c̃(π1)
uπ1 , Q̂ĉ(π2),π2 = Q̃

ĉ(π2),π2

uπ2 = Q̃
c̃(π2),π2

uπ2 , Q̂∗ = Q̃
π̂∗1 ,π̂

∗
2

u∗ = Q̃∗u∗ .

Proof. The proof of the first equality in two arguments are identical to Lemma 6. Combining with
Lemma 25, we have the second equality.

Lemma 28. ∥∥∥Q̃π1,c̃u1 (π1)
u1 − Q̃π1,c̃u2 (π1)

u2

∥∥∥ ≤ |u1 − u2| 1

1− γ
,∥∥∥Q̃∗u1

− Q̃∗u2

∥∥∥ ≤ |u1 − u2| 1

1− γ

Proof. The proof is identical to Lemma 7.

Lemma 29. With probability larger than 1− δ, and π̂ is a εPS-optimal policy in M̂ .∥∥∥Qπ∗1 ,ĉ(π∗1 ) − Q̂π∗1 ,ĉ(π∗1 )∥∥∥
∞
≤ γ

1− α

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4

)
,

∥∥∥Qπ̂ − Q̂π̂∥∥∥
∞
≤ γ

1− α

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)(
ε

4
+

εPS

1− γ

))
.

where c and α is defined as in Lemma 10 and Lemma 12.

Proof. The proof is identical to Lemma 12 as we have Lemma 27 and Lemma 28 in 2-TBSG, which
is the counterpart of Lemma 6 and Lemma 7.
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Proof of Theorem 4. From Lemma 26, with probability larger than 1− δ, we have

Q∗ −Qπ̂1,π̂2

≤
(∥∥∥Qπ∗1 ,ĉ(π∗1 ) − Q̂π∗1 ,ĉ(π∗1 )∥∥∥

∞
+
∥∥∥Q̂π̂ −Qπ̂∥∥∥

∞
+ εPS

)
1

≤
(

γ

1− α

[
2

(√
c

N(1− γ)3
+

c

(1− γ)23N
+

(√
c

N
+ 1

)
ε

4

)
+

(√
c

N
+ 1

)
εPS

1− γ

]
+ εPS

)
1

For N ≥ C log(CK(1−γ)−1δ−1ε−1)
(1−γ)3ε2 with proper constant C, we have γ

1−α (
√

c
N + 1) ≤ 2, thus

V ∗ − V π̂1,π̂2 ≤ (ε+
3εPS

1− γ
)1.

By symmetry, we have

V ∗ − V π̂1,π̂2 ≥ −(ε+
3εPS

1− γ
)1.

Thus we have ∥∥∥V ∗ − V π̂1,π̂2

∥∥∥
∞
≤ ε+

3εPS

1− γ
,

which completes the proof.

D Sample Complexity in General Linear Case

In the general linear case, the empirical MDP can be a pseudo MDP and hence we cannot get the
optimal policy in the empirical MDP. Even so, the value iteration solver can still be applied to the
pseudo MDP and we prove that it is a sample efficient algorithm. The proof relies on an observation
that a discounted MDP can be approximated by a discounted finite horizon MDP with horizon
H = O(1/(1− γ) log ε−1). We use V̂ ∗h to represent the result of operating value iteration for H − h
steps in the empirical model and V ∗h to be the result in true model. The initial value is V̂ ∗H = V ∗H = 0.
We use a similar analysis in FHMDP, but the pseudo MDP leads to some defect of previous proof and
we revised the bound.

Lemma 30. The error of performing value iteration for H steps can be bounded:∥∥∥Q̂∗0 −Q∗0∥∥∥∞ ≤
H−1∑
h=0

γh+1L
∥∥∥(P̂K − PK) V̂ ∗h+1

∥∥∥
∞
.

Proof. The proof is from iteratively using the following inequality.∥∥∥Q̂∗h −Q∗h∥∥∥∞ =
∥∥∥(r + γP̂ V̂ ∗h+1

)
−
(
r + γPV ∗h+1

)∥∥∥
∞

≤
∥∥∥γP (V̂ ∗h+1 − V ∗h+1

)∥∥∥
∞

+
∥∥∥γ (P̂ − P) V̂ ∗h+1

∥∥∥
∞

≤ γ
∥∥∥Q̂∗h+1 −Q∗h+1

∥∥∥
∞

+ γ
∥∥∥(P̂ − P) V̂ ∗h+1

∥∥∥
∞

= γ
∥∥∥Q̂∗h+1 −Q∗h+1

∥∥∥
∞

+ γ
∥∥∥Φ
(
P̂K − PK

)
V̂ ∗h+1

∥∥∥
∞

≤ γ
∥∥∥Q̂∗h+1 −Q∗h+1

∥∥∥
∞

+ γL
∥∥∥(P̂K − PK) V̂ ∗h+1

∥∥∥
∞
.
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The auxiliary MDP technique can be used in the same way to analyze (P̂ − P )V̂ ∗h+1 as in Lemma
22. Here we give two lemmas, which are counterparts of Lemma 19 and Lemma 20 for FHMDP.
Note that the total variance technique is not applicable in pseudo MDP as Lemma 3 no longer holds.
Therefore, we use Hoeffding’s inequality to analyze the concentration.

Lemma 31. For all u, u′ ∈ RH and policy π,∥∥∥Q̃∗h,u − Q̃∗h,u′∥∥∥∞ ≤ (H − h)LH−h‖u− u′‖∞.

Proof. Similar to the proof of Lemma 19, we have∥∥∥Q̃πh,u − Q̃πh,u′∥∥∥∞ =
∥∥∥(r + uhΦs,a + P̃ V πh,u

)
−
(
r + u′hΦs,a + P̃ V πh,u′

)∥∥∥
∞

≤ ‖(uh − u′h)Φs,a‖∞ +
∥∥∥P̃π (Q̃πh+1,u − Q̃πh+1,u′

)∥∥∥
∞

= ‖(uh − u′h)Φs,a‖∞ +
∥∥∥ΦP̃πK

(
Q̃πh+1,u − Q̃πh+1,u′

)∥∥∥
∞

≤ |uh − u′h|+ L
∥∥∥Q̃πh+1,u − Q̃πh+1,u′

∥∥∥
∞

≤
H−1∑
i=h

Li−h |ui − u′i|

≤ (H − h)LH−h ‖u− u′‖∞ .

Lemma 32. For a given finite set B∗s,a ⊂ U∗s,a ∩ [−H,H]H and δ ≥ 0, with probability greater than
1− δ, it holds for all u ∈ B∗s,a that

∣∣∣(P (s, a)− P̂ (s, a)
)
Ṽ ∗h,u

∣∣∣ ≤
√
H2 log

(
2
∣∣B∗s,a∣∣ /δ)

2N
.

Proof. This is the direct application of Hoeffding’s inequality as Ṽ πh,u and Ṽ ∗h,u is independent of
P̂ (s, a).

Lemma 33. For a given finite set Bπ
∗

s,a ⊂ Uπ
∗

s,a ∩ [−H,H]H and B∗s,a ⊂ U∗s,a ∩ [−H,H]H and
δ ≥ 0, with probability greater than 1−Hδ, it holds for all u ∈ B∗s,a, h ∈ [H] that

∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ ≤
√
H2 log

(
2
∣∣B∗s,a∣∣ /δ)

2N
+ min
u∈B∗s,a

‖u∗ − u‖∞(H − h)LH−h.

Proof. Combining Lemma 31 and Lemma 32, we have∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ =
∣∣∣(P (s, a)− P̂ (s, a)

)(
Ṽ ∗h,u + V̂ ∗h − Ṽ ∗h,u

)∣∣∣
≤
∣∣∣(P (s, a)− P̂ (s, a)

)
Ṽ ∗h,u

∣∣∣+
∥∥∥V̂ ∗h − Ṽ ∗h,u∥∥∥∞

≤

√
H2 log

(
2
∣∣B∗s,a∣∣ /δ)

2N
+ ‖u∗ − u‖∞(H − h)LH−h.

As this equality holds for all u ∈ Bπ∗s,a, we can take minimum in the RHS, which proves the first
claim.
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Lemma 34. For any given ε and all (s, a) ∈ K, with probability larger than 1−Hδ,∣∣∣(P (s, a)− P̂ (s, a)
)
V̂ ∗h

∣∣∣ ≤√H4 log(8H3L2/δε)

2N
+

ε

4HL
.

Proof. We set Bπ
∗

s,a to be the evenly spaced elements in the interval Uπ
∗

s,a ∩ [−H,H]H and
∣∣Bπ∗s,a∣∣ =

( 4H3L2H

ε )H . Then for any u′ ∈ Uπ∗s,a ∩ [−H,H]H , we have minu∈Bπ∗s,a ‖u
′ − u‖∞ ≤ ε/4H2L2H .

Note that uπ
∗ ∈ U∗s,a ∩ [−H,H]H . Combining this with Lemma 33 implies the result.

Proof of Theorem 5. From Lemma 34, with probability larger than 1− δ, we have∥∥∥V̂ ∗0 − V ∗0 ∥∥∥∞ ≤ ∥∥∥Q̂∗0 −Q∗0∥∥∥∞
≤
H−1∑
h=0

γh+1L
∥∥∥(P̂K − PK) V̂ ∗h+1

∥∥∥
∞

≤
H−1∑
h=0

γh+1L

(√
H4 log(8H4L2/δε)

2N
+

ε

4HL

)

≤
√
H6L2 log(8H3L2/δε)

2N
+
ε

4

Choosing N ≥ CH6L2 log(CKHL/δε)(ε(1 − γ))−2, we have
∥∥∥V̂ ∗0 − V ∗0 ∥∥∥∞ ≤ ε(1 − γ)/2.

Now we replace H with O((1 − γ)−1 log(1/ε)) and we have ‖V ∗0 − V ∗‖∞ ≤ ε(1 − γ)/2 by the

convergence of value iteration. So we have
∥∥∥V̂ ∗0 − V ∗∥∥∥∞ ≤ ε(1 − γ), which implies the greedy

policy with respect to V̂ ∗0 is an ε-greedy policy in the true MDP [5].
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