Is Plug-in Solver Sample Efficient for Feature-based
Reinfocement Learning?

Notations We use P = @V to represent the linear transition model, where ® € RISIAIXE i the
feature matrix consisting of feature vectors ¢(s, a) and ¥ is the corresponding unknown matrix from

1. Proposition 1 means that ® can be factorized as ® = A®x where A € RISIAIXK jg the matrix
of )\Z’a and Py is the submatrix of ®. Thus we have P = A®x ¥ = A Px. In addition, if we have
feature ¢ and state-action pairs X, we can compute A and A can also be regarded as feature. Thus,
we will use ® and ¢ to represent A and A in Appendix C and Appendix D.

We use P™ ¢ RISIMAIXISIAI to denote the transition distributions on state action pairs that are
induced by policy w. P* € RISIMIXISIIAI js the transition matrlx 1nduced by optimal policy 7*.

P € RIKIXIS| s the submatrix of P consisting of rows in . PTr p* P;C7 P, pr P P;C are
defined in a similar manner. We use P(s, a) to denote the row vector of P that corresponds to (s, a).

For a vector V, we use V2, V], V'V and < to denote the component-wise square, absolute value,
square root and less-than. We define Var, .(V) := P(s,a)V? — (P(s,a)V)?, Varg(V) =
Vars, a,(V),-+ ,Vars, ax] € RE and Varp(V) € RISIAI (o consist of all Varg (V). A
detailed description is provided in [[1]. We use 1 to denote a column vector with all components to be
1. We use [H] to denote {0, 1,--- , H — 1}.

A Additional Preliminary

Finite Horizon Markov Decision Process A Finite Horizon Markov decision process (FHMDP)
is described by the tuple M = (S, A, P, r, H), which differs from DMDP only in that the discount
factor +y is replaced by the horizon H. The value function of policy 7 is defined as:

H-1

Vir(s) == E | 3 r(s! m(s))ls" = s .

t=h
which depends on state s and time step h. The target of the agent is to learn a policy m =
(mo,- -+ ymg—1), 7 : S = A,Yh € [H] that maximize the total reward V7 (s) from any initial
state s. It is well known that the optimal policy for FHMDP maximizes the value function in each
time step:

Vii(s) :=V (s) =maxV™(s),Vs € S,h € [H].

The action-value or Q-function ()}, and optimal Q-function Q* are defined similarly as in DMDP.
The relation between Q-function and value function is:

Vir(s) = Qi (s,mn(s)),  Qf(s,a) =7(s,a) +vP(s,a)Viiiq.

If the value function of a policy 7 is e-close to the optimal value function in all time steps, the policy
is called a e-optimal policy:

Q7 (s,a) > Qr(s,a) > Qi (s,a) — e, V(s,a),h € [H].
Without loss of generality, we assume r € [0, 1] and then we have V;© € [0, H — h]. Note that in

a normal FHMDP, the reward in each time step is identical, but in our analysis, we will construct
FHMDPs with different rewards in each step.

Preprint. Under review.



Two Player Turn-based Stochastic Game A discounted turn-based two-player zero-sum stochas-
tic games (2-TBSG) is described as the tuple G = (Siaz, Smin, A, P,7,7). It is a generalized
version of DMDP which includes two players competing with each other. Player 1 aims to maximize
the total reward with policy 7, while player 2 aims to minimize it with policy m2. We denote policy
7 := (71, 732) to be the overall policy. Given policy =, the value function and Q-function can be
defined as in DMDP.

From the perspective of player 1, if the policy of player 2 7, is given, the 2-TBSG degenerates to a
DMDP, so the optimal policy exists for player 1. This optimal policy depends on 7o, so we call it the
counter policy to 72 and denote it as ¢ (7). Similarly we can define co(71) as the counter policy of
m for player 2. For simplicity, we ignore the subscript in ¢; and c3 when it is clear in the context.

To solve a 2-TBSG, our goal is to find the Nash equilibrium policy 7* = (7§, 73), where 7] =
e(n3), 75 = e(n). For this policy, neither player can benefit from change its policy alone.

We give the following well-known properties of 2-TBSG without proof (see. e.g. [4]), which can be
regarded as generalized optimality property in DMDP.

o Velm)m — max,, V72

o Ymue(m) — max,, V7 "2

o VT2 — ming, ye(ma),m

o VT2 = maxy, yre(m)

Our target is to find an e-optimal policy 7 = (71, 72) such that ‘Q’T(s,a) - Q*(s,a)| < €V(s,a)
for some € > 0.

B Empirical Model Construction

In this section, we prove Proposition 1, Proposition 2 and Proposition 3, which give the theoretical
guarantees of our model construction algorithm (Algorithm 1).

Proof of Proposition 1. Here we prove the three arguments in Proposition 1.

~ t(s1 .ar.s" ~ . .
1. As Pc(s'|sg,ar) = M[\’;’a’“s), Px is an unbiased estimate of Pc. Hence we have

EP(s'|s,a) = E Z )\Z’aﬁ;g(s’|sk,ak) = Z NJUP(S sk, ar) = P(s']s, a),
keK kEK
where the last equality is from P = A Pg.

2. We have that
Z At = Z Z AUP(S sk, ak)

ke kek s'eS

= Z Z ANJUP(S | sk, ak)

s'€S kek
= Z P(s'|s,a)
s'eS
=1.
Thus we have ), .- A, = 1. Then we have

Z P(s'|s,a) = Z Z A3 P (s |k, ar)

s'eS s'eS kek

— Z Z Az’aﬁ;c(s'|sk,ak)

ke s'eS

=) A
keKx
=1



3.IF A > 0,Vk € K, (s,a) € (S, A), then we have
ﬁ(s’|s,a) = Z )\Z’aﬁ;g(s’|sk,ak) >0,
kek

as every component is non-negative.

O

Remark 1. Proposition 1 implies that when anchor-state condition is satisfied, A\ is a probability
matrix. Thus P = APy is factorized as a probability matrix into two probability transition matrix.

Proof of Proposition 2. Combining Proposition 1 and Assumption 1, we directly have that
Y ses P(8'|s,a) =1, P(s'[s,a) > 0 forall (s', s,a). Therefore P is an eligible transition kernel.
With Assumption 1 or not, we always have EP(s'|s,a) = P(s’|s,a), which means P is an unbiased

estimate of P. O
Proof of Proposition 3. We consider the following case. Suppose K ={(s1,a1), -, (sk,ax)}.
For a specific (s, a) ¢ KC, we have A3:?, = L A = 5 Land A5:@, =0 for k # 1,2. For all

other (s',a’) # (s,a), we set

)\S a {1{( s, ”):(s’,a’)} if($l7a,/) & ’C

S// a// - .
7 otherwise

It is easy to check that {\;**} is valid (We can set ® = A and with state-action set X, then
the corresponding linear combination coefficients are A as & = I). We set P(s1|s1,a1) =
%,P(sﬂsl,al) = L%rl and P(s1|s2,a2) = 1. Other transition distribution can be defined
arbitrarily to construct an eligible P.

As count(sy,a,s;) follows a binomial distribution with p = P(s1]s1,a1) = %

and cOQnt(SQ,a2,51) = N as P(si|s2,a2) = 1, the estimate of P(si1]s,a)
2 kek AP (s1]sk, ar) = 01is

P(sys,a) Z Ay “P(s1|s5, ax)

kek
_ \sa count(si,ai,si) Lo count(sy, a, s1)
T 'si,a1 N 52,02 N
_ L+ 1count(si,a1,s1) L—1
T2 N 2

A(sl |s, a) is a translated and scaled binomial distribution with zero mean. By central-limit theorem,
VNP (s1]s, a) converges to Gauss1an distribution with zero mean. Therefore, there exists constant

C thatif N > C, we have P(P(s1]s,a) < 0) > %. This means the estimate P is not a probability
transition matrix with probability larger than 1/3 O

Remark 2. This exam le can be generalized to prove that P is not non- negative with probability
larger than 1 — 1/ 3572 by choosing [K /2] such s, a pairs and each pair independently leads to an
ineligible estimate with probabzllty 1/3.

Now we give an example of pseudo MDP to show that the optimality in normal MDP no longer

exists, which means that there is no policy 7* such that V™ (s) = max, V7 (s) for all s € S. Note
that the Bellman operator 77 [Q] = 7 + vP™Q may still be an contraction if || P™||1,00 < %, but the

monotonicity no longer exist, which means we do not have 77[Q1] > T7[Q2] if Q1 > Qs.

We construct a pseudo MDP with § = {s1, s2}, A = {a1,a2}. The transition distributions and
rewards are

P(sl,al) = [O, 1],P(51,6L2) = [0, 1],P(82,a1) = [1,0},1’3(32,&2) = [—0.1, 1.1],

7"(51,!11) = 1,7"(51,@2) = 0,7”(82,@1) = 0,7’(327(12) =1



In this pseudo MDP, there are four policies 7y, me, 73, 74, Which correspond to choosing action
(a1,a1), (a1, as), (az,a1), (az,az) in state (s1, s2). We use V1, Vo, V3, V4 € R? to denote the corre-
sponding value functions. Using Bellman equation, we have that
1 ¥ 1 1
7777V:0707V:7177
1—192 1—72] 2= [0.01Va [1—7 1—7]
gl 1 ]
0192 = 1.1y + 170192 = 1.1y + 17
With some calculation, we have that

Vi=|

Vi=|

1
argmax, V;(s1) = 2, argmax;V;(s2) = 3,if v < TR

Therefore, in this pseudo MDP, no policy can achieve optimality in all states and no solver can output
an e-optimal policy for arbitrary small e.

C Linear Transition Model with Anchor State Assumption

C.1 Sample Complexity for Discounted MDP

Here we give the formal proof of Theorem 1. First we give the definition of U , and U ,, which is
the set that contains all possible « for different policies in auxiliary MDP.

Definition 1. (Feasible Set for u) For the auxiliary transition model ]\/Z&au = (S, A, pP= <I>13;C, T+
u®*, 5), UT, is defined as the set of u such that Ve [0,1/(1—~)]%, and U¢ , is defined as the
set of u such that V* € [0,1/(1 — ~)]S.

Remark 3. Obviously, u that satisfies 0 < r +u®** < 1is in both U, for arbitrary w and U; ,.
Immediately, we have 0 € U, for arbitrary w and 0 € U ,. Note that both U, and U] , are

independent of ﬁ(s, a) and they are bounded intervals.

Notations We use V; o 4, Qs,¢,u and 75 4 ,, to denote value function, action value function and
policy in M , 4, and we omit (s,a) when there is no misunderstanding.

Lemma 1. For an eps-optimal policy 7 in M, we have

Q" = Q7| <]lQ" = Q™ || . + @7 — Q7| . + eps.

Proof. By the definition of V*, we have
0<Q -Q"=Q -Q  +Q" -Q +Q - Q" +Q" -
<|Q* = Q|+ 0+ eps + |QF — Q7.
which implies ||Q* — Q7||__ < [|Q* — Q' ot ||@% — Q7| + eps. O

Lemma 2. We have

Q —Q" = —~P" ) {(P-
Q" —Q"=(I—~yP") (P P)VT.

Proof. For any policy 7,
Q"= Q" =(I—yP")"'r = (I—4P")7"r
= (I —yP™) (I =yP™) = (I =y P™))Q"
= y(I —yP™)"H(P™ = P7)QT
=~y(I —~P™)"Y(P - P)V".

Set 7 = 7* and ™ = 7, then we can get the results. O



Lemma 3. For any value function V and state action pair (s, a),

d

(s,a)\/Varg(V) = Z or (s, a)\/Varsk,ak(V) < \/Vars’a(V).

Proof. Since ¢(s, a) is a probability transition matrix, we can use Jensen’s inequality here.
B(s,a)\/Varc(V) < \/é(s,a)Varc(V)
Z or(s,a)Vars, q, (V)

keKx

d
= \ > duls,a)(Psk, ar)V? = (P(sy,ar)V)?)

ke

d d
= Z or(s,a)P(sk,ar)V? — Z or(s,a)(P(sk,ar)V)?

ke kex

d
< | P(s,a)V2 — ( Z ¢k(57a)P(3kvak)V)2
keK

= /P(5,a)V2 — (P(s,a)V)?2

=1/Vars (V).

The two inequalities are due to Jensen’s inequality and other steps are from P(s,a) =
> kek Pr(s,a)P(sk, ax), which is a row vector version of P = & Py. O

Lemma 4. For any policy m and V'™ is the value function in a MDP with transition P,

(7 =Py~ Varp (VT < \/E

Proof. Since (1 —+)(I —~P™)~! is a probability transition matrix, we can apply Jensen’s inequality,

T =27 Tarp V) o < 4 7= VT =P Vars (V)

< \/j\/l(f =7 PT) " Warp(V7)lle
2 1
e
2

The definition of X and a detailed proof is given in [6]. O

Lemma 5. For any value function Vi and Vs, we have

VVarea(Vi +V2) < \Varea (Vi) +/Varea(va).

Proof. This Lemma is the triangle inequality for variance. O



Lemma 6. Let u™ = (P(s,a) — P(s,a))V™ and u* = v(P(s,a) — P(s,a))V*, then we have
1 1 1 1

o) . — Q. ——— <UT < — <yt —,
Q u’Q Q u* 7’U; 71_'_)/7 1_7 u 71_7

Proof. Using the Bellman equation Q™ = (I — vP™)~1r, we have

v = (I =7P")" (r+ & - y(P(s,a) — P(s,a))V")
= (I —~vP") (I =vP")Q" +7®(Pc — Pc)V™)
= (I =P")" (I = 7P")Q" +~(P — P)V)
= (I —yP™)~ (I =7 P7)Q"
=qQr.
Similarly, we have @* = ~§*. By the definition of @* and the sufficient condition for optimal value,

we have

~ ~ ~ ~x

Qr.(s,7(s5)) = Q*(s,7(s)) = maXQ*(s, a) = mgXQZ* (s,a).

7T — *
— u* e

So, 7* is the optimal policy in ./\/lS ,a,u* and Q* =

As0 < V7™ < ﬁ and 0 < V* < ﬁ, we can immediately derive that —ﬁ < um <

11 * o 1
1—v> I*WSU Slfv' =

Remark 4. Lemma@shows that we can tune a bounded scalar v in Mj g ,, to recover @), which
implies Q, as a function of P(s, a), lies in a one-dimensional manifold in RISIAL

Lemma 7. For all uy,us € R and policy T,

[(e8

1 ~ ~
< = e =l ||@r, - Q1| <
o) - o)

1
|U1—’LL2 .
-7

Proof. Using Bellman equation, we have

—1

~ ~ o\ -1
e N [ R e R
(o)
~ N1
= ||(u1 — u2) (I — ’yP’r) o34
o0
< lur = ug| 7= 1127l
T
Uy — U .
< fun 217 —
Now we prove the second claim. Set m = Tl';; and m = my_, we have
A =7,
HQul— up OO§|ul—u2| HQu - Qu, oog‘ul_m‘l—’y'
Using the property of optimal value, we have
~7T’Z2 % N Nk - ~7T21 1
—|’LL1 _u2| 1_ 1 g6271«1 _QUQ gQul _ng SQul _Qu2 < ‘ul_u2’1_717
which implies HQ ol < lur —ugl ﬁ O

Remark 5. Lemmalﬂshows that @u is robust to u. This property implies that an e-net on u can form
an e/(1 — ~)-net on Q.



Lemma 8. For a given finite set BS , C UJ, N [—1 177 = A/] and § > 0, with probability greater
than 1 — 9, it holds for all u € BY , that

\/2log (4]Br7,| /5) 5o 2log (4]BI.[/9)

Vars (V) +

‘(P(S, a) — ﬁ(s,a)) ‘Zf <

N (1—-7)3N
Similarly, For a given finite set B , C US , N [—ﬁ, 1—} and § > 0, with probability greater than
1 — 4, it holds for all u € B} , that
_ .y 2log (4|Bz.,| /9) = 2log (4]B1.] /9)
’(P(s, a) — P(s, a)) Vi< \/ N : Vars.(VF) + (- 7)?;]\7 .

Proof. This is the direct application of Beinstein’s inequality as 17“” and ‘N/j is independent of
P(s,a). O

Lemma 9. For a given finite set B”* C U”* [—ﬁ, ﬁ] and B} , C U, N [—ﬁ, ﬁ] and

0 > 0, with probability greater than 1 — 24, it holds for all u € B’T that

2log (4|B7 | /6 = 2log (4|B™ | /6
S \/ Og ( } S,a| / ) V(ITS (Vﬂ-*) _|_ Og ( | S,a| / )

~ %

‘ (P(s, a) — P(s, a)) VT

N @ (1—7)3N
. 1 2log (4 |B7T* )
4+ min |[u" — ‘ 1+ ,
u€BT, YT \/ N

2log (4|Bz | /9) = 2log (4|Bz.]/9)
< \/ ~ Vars.(V*) + 1= )3N

21 4 |\B* 1)
+ min |u* —u| 1 1—&—\/ og( ‘ S’a/)
u€B} , 1—x N

Proof. For the first claim, we have

‘(P(S,a) -

s

(s,a))VT™

)

"U>

(P(s, (s,a))VI

() | 2log(4 yBTr* /8) [ = 2log(4|BIL]/0) | llom  cmr
\/ Va'rs,a(vu ) + W + HV — Vu

) [2log(4 =

(S)\/ og( ’ ’ /%) (\/Vars o V7r )+ \/VarS a — V”“))

210g 4|Bsa|/5

7)3N
(d)\/2log (4|Bz,

-

|(P(s,a) = Pls, a)(V™ = V)

INE

IN

St St
‘v v

+

o0

2log(4 |Br,| /0)
(1—=7)3N

- \/210g(4 y]]?;ay /0)

/9) Vars’a(f}”*) +




(e [2log(4|B7 /6 = 2log(4|B™" | /6§
9, [2108(4|BL| /0) fo 5 2los(d|BrL] /9)
N ’ (1 —-7)3N

. 1 2log(4|Br| /5
P lw 8(4]BL. ] /9)

1—x N

(a) is due to triangle inequality, (b) is from Lemma(8] (c) is from Lemma/[5] (d) is due to the fact
that v/Var(V) < V and (e) is from Lemma As this equality holds for all v € B;:;, we can

take minimum in the RHS, which proves the first claim. The second claims can proved in the same
manner. N

Lemma 10. For any given € and all (s,a) € K, with probability larger than 1 — 9,

21log (321{/5 (1-1)° e)

(P (s,0) = Pls,)) V™| < - Var,o(V™)
2log (32K/8 (1 —~)% € 2log (32K/5 (1 —~)%€ (1
R TR0 N D ) P
‘(P(s,a)—ﬁ(s,a)) ol < 21log (32K/]i(1—v)3e) Vo (7
2log (32K/6 (1 —~)" € 2log (32K/5 (1 —~)"€ (1
(R0 N | FCTT i pres

For simplicity, we set ¢ (0,7,¢) = 2log (32K/(5 (1-~)>* e) and we use c to represent c (0,7, €) as
it includes only log factors.

Proof. We set B?a to be the evenly spaced elements in the interval U , N[~ ﬁ, ﬁ} and |Bf; =
(l—i)%' Then for any v’ € U7, N [~ 1%, 125, we have min, e gre u' = uf < (1 —7)%€/4. Note
that u™ € Ug, N [—ﬁ, ﬁ] Then Lemma@ implies this result. Similarly we can prove the
second claim. O

Lemma 11. With probability larger than 1 — 6,

((P- Py < ﬁ\/Varp(Vﬂ*) + {(1_3)3]\[ + <\/§+ 1) e(tw 1,
’(Pfﬁ)f/* < \/ﬁ\/vaTP(‘?*) + {(1_%3]\] + ( % +1> 6(14_7)] 1.
Proof
’(P—ﬁ)V” :‘@(P,c—ﬁ,c)f/*‘




(a) is due to ® is non-negative, (b) is from Lemma@ and (c) is from Lemma@ The second claim
can be proved in the same manner. O

Lemma 12. With probability larger than 1 — 6, and T is a eps-optimal policy in M.

o 11& < N(lc—y)3+ (1—70)23N+<\/§+1) Z)

o

7_ A7 v ¢ ¢ < € €pPs
HQ @ oo§1a< N(1—7)3+(1—7)23N+( N+1>(4+1v)>'
where o = a(8,7v,¢, N) = Aig Vﬂf))z
Proof.
e

=) -y

() - . ¢

<| (1=2P) [\fﬁ a—aav (Ve ) sa).

+ (1_;23N+ <\/§+1> =

’ proves the first claim.
o0

(2) C +\/7HQ*_QW
“VNa-9)? VN 1y

(a) is from Lemma and (b) is from Lemma Solving for HQ* — @”*

‘ (oo}

(I - yzﬁ)_1 (13 - P) (17% - 17*)

(b) NI [ec ~ c c €
<|[(I—~P" — N — 41—
<) (rarr) Ve = (e )4(1—7>H’O@
€ps
g
(c) 17 [e¢ P P o~ c
< I* Pﬂ' — ™ T __ T * T
_‘( P7) ,/N\/varp(v FVE VALV T )+(1_7)3N

(el
\/E (1- wﬁ)’l Varp (

e >
s (E T () (%)

(a), (¢), (d) are due to triangle mequahty, (b) is from Lemmaﬂ;fl and (e) is from Lemma@ Solving

for HQ% — @%

7T

[HQ“ ‘
TN

(d)
<

proves the second claim. O




Proof of Theorem 1. From Lemma[I] with probability larger than 1 — §, we have
o~ 2o -] +[r -
k(s (U n)s)

" (\/§+ 1> 1€isv} e

+ €ps
o0

(a) is from Lemma 1| and (b) is from Lemma For N > Clog(CI§§1 7’;2 215 ) with proper
constant C, we have 1—a(6’y'y ) <\/ 6(5]’\7’6) + 1) <2, thus
~ 3
|ve-vA|| e+ 2,
[e'e] 1-— Y

which completes the proof.
O

Now we prove Theorem 2, where the transition model P can be approximated by linear transition
model, i.e. P = P+ = = ®Px + =, where P is a linear transition model and = is the approximation
error matrix. We set £ = ||Z||; -

Lemma 13. For any value function V and state action pair (s, a),

o(s,a)\/Varc(V) Z(bk s, a) \/Vars,c a (V) < \/Vars,a(V +2

_ 2°
= (1=7)

Proof. Since ¢(s, a) is a probability transition matrix, we can use Jensen’s inequality here.
o(s,a)\/Vare(V)
<V (s, a)Varg(V)
= Z ¢k(saa)vaTSk,ak (V)

kek
> oil(s,a) (Psk, ar)V? = (P, ar)V)?)
kek

:\/Z Or(5,0) P(sk, ax)V2 — 3 (s, a) (Plsg, a) V)
keK keK

\/Z br(s,a) (P(sk,ar)V? + E(sk, ar)V?) Z o (s, a) ((P(sk,ar) + E(sk, ax)) V)2
keK keK
Z(bk s,a)P(sg,ar)V Z¢k s,a) sk,ak)V)Q + iz
kek kek (1=1)
ke
:\/P(s, a)V2 — (P(s,a)V)2 + a 367)2

10



Lemma 14. With probability larger than 1 — 0, and T is a eps-optimal policy in K.

v c c )\ e ¢
mﬁl_a< vt (Y ) g (1—7)4>’

e

_|_

(P,C _ P;C) e

1

WW 7 ﬁ R
*(ﬁ“)m—”\ S
S\/N<1C—fy>3+ﬁHQ _—Cj *(1—§>2BN+(\/§“>§+8 =

Solving for HQ* — @”*

manner. O

o~ @, < 2 (v + g + (V1) (+125)
§
i)
Proof.

Q-Q7|
|-y @
- (I WP”) o @P,C—@P,C—_,C)V”
< (I 7P“) - (P,C—P,c—_,c)f/“* OO+(1E£7)2

(1- ) 1 “

(

S ‘

proves the first claim. The second claim can be proved in a similar
o0

Proof of Theorem 2. From Lemmal[T] with probability larger than 1 — §, we have
Jor -
< HQ* -Q7||_+|o7-¢"

el e (i)
(\/;—1-1) s ]+€PS

+ €ps
o0

11



For N > Clog(c}ﬁl 7;3),6216 D with proper constant C, we have 2 (/% + 1) < 2, thus

16
<e+ 36PS+ \/52

[y -ve

which completes the proof. O

C.2 Sample Complexity for Finite Horizon MDP

Here we prove the sample complexity result for FHMDP using the auxiliary MDP technique. The
difference with DMDP is that here we need to tune the reward in each time step.

Definition 2. (Auxiliary Model) For an estimated transition model M= (S, A, P= <I>13;C, r,7) and
a given anchor state pair (s, a), the auxiliary transition model is M 4, = (S, A, P = ®Pg, 7} =
r 4+ up®*, ), where

P(s,a)  otherwise,

%szvwwwﬁ&w¢@@

@ js the column of @ that corresponds to anchor state (s,a), 7} is the reward in step h and

u = (ug,u1, - ,upg—1) is a H dimensional vector that will be determined latter.
Remark 6. The reward in M q ., may not be stationary, which means v§,7y,--- 7% _, can be
different.

Definition 3. (Feasible Set for u) For the auxiliary transition model Ms,a,us U ca is defined as
the set of u such that Vh”u € [0,H — h]®,Vh € [H] and U}, is defined as the set of u such that
Vi, €0, H — 1], Vh € [H].

Remark 7. u that satisfies 0 < r + up®>* < 1,Vh € [H] is in both U], and U , for arbitrary
m. Immediately we have 0 € U], and 0 € U; , for arbitrary w. Note that both U , and U; , are

independent of P (s,a) and are intervals.

Notations For simplicity, we ignore (s, a) in functions of auxiliary transition model M , ,,. We
use Vh w Q7 i  to denote value function and Q-function in step h and 7, to be the optimal policy in

Lemma 15. For a epg-optimal policy T = (o, -+ ,Tg—1) in M\ we have
|os - @B <o -V | +||7F - vE|| +ers.
Proof.
0<Q-Q=Q;—-QF +QF —Q+Q—-Q+QF —Qf
< |5 -0 @7 - a3l
which implies [|Q5 — QF |, < @6 — Q5| +]|0F - @F|| _+es. 0
Lemma 16. For FHMDP, we have
H—-1h-1
QG -Q5=> [[PP-P)Vi,.
h=0 =0

12



Proof. Using Bellman equation, we have
Q5 — Q5 = (r + PV{") = (r + PV")
= Py = V) + (P~ PV
= P™(QF —Q7) + (P~ P)IT
= P™P™(QF — Q) + P (P — P)Vf + (P — P)VT"

H—-1h-1 .
=> [P @®-PyVy,.
h=0 i=0

The last equality is derived by iteratively expand Q7 — @Z
Lemma 17. For any policy m and V'™ is the value function in a MDP with transition P,

H—-1h—-1

S I[P Varr(vir,)

h=0 i=0

< V2H3.

o0

Proof. The proof is similar to the case in DMDP and can be found in [3]].

Lemma 18. Ler u] = (ﬁ(s,a) - P(s7a)) ‘A/h’ﬂrpVh € [H] and wuj
(ﬁ(s, a) — P(s,a)) ‘A/,Z‘_H,Vh € [H], then we have

Q= Qg,u"v QZ = Qz,u* = Qz,u*v

up| < H —h—1,|up| < H—h—1,Yh € [H].

Proof. We provethis argument by mathematical induction. When h = H — 1, we have uj
(ﬁ(s, a) — P(s,a)) Vﬁ —0and QT =r =7+ up Pt = ol

h,au™*

If the argument holds for A + 1, then we have

@Z =r+ }3‘7{;1
=r+ }3Y~/h”+1
=r+® (ﬁ,c - 15,c) Vi + PV
—r (13(5, a) — P(s, a)) Um0+ PUT,
=r+uy®>* + ﬁf/;f_i_l
= Qf 4

As Vi, € [0, H —h — 1], we have uf = (P(s,a) — P(s,a))V;7,, € [h+1— H, H —h — 1]. The

proof for 7* is identical.

Lemma 19. For all u,u' € R¥ and policy ,

|@r = Qnu|_ = =mu =l | @ - Qi

< (H=h)flu—ull, -

o0

Proof. We prove the first claim:

@7~ Qi

= H (7" + up @5 + ﬁV;fu) — (7“ + up, @5 + ﬁVhT:u,) HOO

P (Qfyr = Q)|

< lun — up) @ +

13
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< |up — up| + HQZH,u — Qht1,w

H—-1
<> Jus — ]
i=h

< (H =h)[lu—u]l,

o0

The proof for the second claim is identical. O

Lemma 20. For a given finite set B;ra C U;ra N[—H, H" and 6 > 0, with probability greater than
1 — 4, it holds for all u € BY , that

2log (4|B7,| /9) \/7% 2log (4 |Bf;| /) (H — h)
< \/ N Varsﬂ(Vh’u)—i— SN )

Similarly, For a given finite set B , C U7, N [-H, H)" and & > 0, with probability greater than
1 — 4, it holds for all u € B} , that

[(P(s,0) = P(s,0)) Vi,

~

‘(P(S, a) — P(s, a)) ‘7h*u

2log (4]3;@ /6) —— 2log (4\3;@ /6) (H — h)
< \/ N Vars’a(Vhﬁu)—i— SN .

Proof. This is the direct application of Beinstein’s inequality as ‘N/h“ . and ‘N/};"u is independent of
P(s,a). O

Lemma 21. For a given finite set B;ra C Uga N[-H,H)" and B}, c U, N [-H, H" and
0 > 0, with probability greater than 1 — 2H?, it holds for all u € Bf; and h € [H] that

~ ~ 21 4|BT | /6 — 21 4B 1/8) (H — h
‘(P(S,a)—P(&a)) Vi <\/ 8 ( Lvs’a‘/ ) Vars (V7 )+ og (4] 5;}‘\? ) ( )
- ™ 2log (4|B7,| /9)
—i—urené?z u —uHOO(H—h) 1+\/ N ,

‘(P(s,a) - 13(5,@)) vl <

\/ 21og (4|Bz | /6) AL (4|Bz,| /6) (H — h)

N 3N
) . 2log (4|B;"a|/5)
+ S [u* = ull o (H —h) 1+\/ ~

Proof. We have

’(P(s,a) - ﬁ(s, a)) Ah”*

~

(P(s,a) — P(s, a)) Vhﬂu

+ ‘(P(s,a) — 13(3,@)) (‘A/ff* — ~h’f;>
2log (4|Br%] /6 ~—~ 2log (4|BI,|/6) (H—h) ||~ =~
( .|N = ) \/ VaTS,a(VhTu) + ( | 7§]|\/- ) + HVh — Vi

(© [2log(4|B7,|/d = ~ . o
\/ ( A|7V ) ( Varsva(v}l/ )+\/V(l7’s7a (V;L,uiv}z ))
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| 2log (4|B7,|/8) (H = h

3N
@\/mog (4|Bz,

N

o0

/9) S 2log (4|B7,|/8) (H — h)
I Vars (V™) + SN

2log (4 |BT,|/6
w o5 (4] BL,| /9)

Sa* St
+ |7 - v

N

o0

() [2log (4|B7| /6 = 2log (4|B7" | /8) (H — h
S\/ Og( lvs,a /) Var&a(Vh’T*)—i— Og( | s,a|/ )( )

3N
* 2log (4 |BT
u” —uH (H —h) 1—|—\/ og ( .|7V37a /9)

|

(a) is due to triangle inequality, (b) is from Lemma (c) is from LemmaE], (d) is due to the fact
that \/Var(V) < V and (e) is from Lemma As this equality holds for all u € BT, , we can

s,a°
take minimum in the RHS, which proves the first claim. The second claims can proved in the same
manner. O

Lemma 22. For any given € and all (s, a) € K, with probability larger than 1 — 2H0,
2H 1 2KH3/6 = 2H?1 2K H3/§
< | JIREOKETED) [y oy 2H gl H 30

2H log(32K H3 /d€) €
1] &
+ <\/ N + 4H’

N 2H?1og(32K H3 /d¢)
3N

2H log(32K H3 /d¢) €
() o

For simplicity, we set ¢ = ¢(3, H, €) = 21log(64K H*/Je).

‘ (P(s, a) — }/5(57 a)) ‘A/h’r*

Vars,a(f/h*)

‘(P(Sv“) - 13(87a)) V| < \/QHlog(3]2VKH3/§e)

Proof. We set B;T; to be the evenly spaced elements in the interval U S N[—H,H]" and ‘Bg; =

H
(4Igg> . Then for any v’ € U], N [~H, H]", we have min, ¢ g~

u —ul, < e/4H? Note

that u™ € U, s N[—H,H ]#. Combining this with Lemma [21|implies the result. Similarly we can
prove it for B ,. O

Lemma 23. For any given € and all (s, a) € K, with probability larger than 1 — 2H0,

\ (P(s, a) — P(s, a)) vl < \/2 min{ K, ISI}xg(SMHB/&)

2min{ K, |S|} H log(32K H? /¢) 2min{ K, S|} log(32K H3/§e) €
+ 3N + N +1

Vars, (‘Zf* )

‘(P(S»a) — 13(&@)) XA/,;* < \/2min{K7 \5|}}\c])g(32KH3/56)

2min{ K, |S|} H log(32K H? /¢) 2min{ K, S|} log(32K H3/§e) €
* 3N * N M 7

Varsya(‘/};)
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Proof. Lemma is proved by constructing a ¢/4 H-net on 17,1” via auxiliary MDP. Note that
V' = max Q} = max(r + <I>13;C‘7,:‘+1),

which means IA/; lies in a K -dimensional manifold in [0, H]®. We can make an ¢/4H-net on this

manifold with O(@)min{K 1S} points. With similar analysis as Lemma [22, we can prove this
claim.

Proof of Theorem 3. From Lemma [I5] with probability larger than 1 — &, we have
@5 - Q5| <||les -5 _+]||@7 - @i

L[, \/CH3 min{H, K,|S]} cH?min{H, K, |S|}
11—« N 3N

()3 ()]

where « = (9, H, e, N) = 4/ w and the second inequality can be derived as in DMDP from

Lemmaand Lemma For N > € log(CKH(Silei;)Hs min{ 7 KIS1} yigh proper constant C, we
have 2= (/% + 1) < 2, thus we have

IN

+ €ps
oo

IN

HVO* _ ‘/0%

< e+ 3epsH.
o0

C.3 Sample Complexity for 2-TBSG

The value concentration becomes a little more tricky in 2-TBSG. The proof is similar to the case for
DMDP, which only differs in the attendance of counter policy. The counter policy in 2-TBSG can be
seen as the optimal policy in a DMDP induced by the policy of the opponent.

Definition 4. (Auxiliary Model) For a estimated transition model M= (81 ,Sa, A, P= <I>P,C7 )
and a given anchor state pair (s, a), the auxiliary transition model is ./\/ls,a,u = (851,82, A, P =
<I>]3K, r 4+ ud** ~), where

]3’((8,’&,) _ {P(s',a') if (s',a’) # (s,a)

P(s,a)  otherwise,

®5¢ is the column of & that corresponds to anchor state (s,a) and u is a variable that will be
determined latter.

Notations For simplicity, we ignore (s,a) in functions of aux111ary transition model M g ,,.

¢(my),¢(m1), ¢, (1) are the counter policies for 71 in M, M, M s,a,u- When it is clear i in the context,
we use c as the counter policy function for 5 as well. 7 = (771 (T3, 7 = (7,7, 7 = (7, 7L)

are the equlhbrlum policies in M, M MS a,u- We use V7r Q” to denote value function and Q-
function and 7, to be the optimal policy in M57a7u

Definition 5. (Feasible Set for u) For the auxiliary transition model M , Ug , is defined as the set of
uso that V7 € [0,1/(1 — )] and U, is defined as the set of u so that V;; € [0,1/(1 — )]5.

Lemma 24.
ye(ma),m > Vﬂ;,w;’ yse(m) < ety
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Lemma 25.
QT (s,a) > QT (s, ¢(m)(s)), Vs € S

ety {2 @) Vee S,
Q (Sua) {S Qﬂf,ﬂ'; (5771-1‘(3)) Vs € Sy.

These two equalities are also the sufficient condition for counter policy and equilibrium policy.
Proof. The proof of Lemma [24] and 23] can be found in [2]. O

Lemma 26. Let 7 = (71, 7T2) be a epg-optimal policy in M.

- (HQaﬂsms _ Qetma)ms

+ @7 - @n | +es1 <@ - Qr
oo oo

< (HQWLE(WI) _ @ﬂf@(ﬁ) ‘ + HQ%,%Q _ @%1’%2

+ eps)1.

Proof. We prove the second inequality and the first one can be proved by symmetry.
QF — Q717
=Q* — Q™ °m) 4 Qi) _ Qe 4 QTETD) _QF 1 QF — QT + QT — Q7
<Qriem) @ﬂff(ﬁ) + @* — @% + Q7 — @?
< ( Hmewf) _ Qi) ’ n H QF 2 OF1

+ Eps) 1

Lemma 27. Let u™ = ol (13(5, a) — P(s, a)) yme(m), u™? =
o (]3(5, a) — P(s, a)) Velm)me yx = o (]3(5, a) — P(s,a)) V773 we have

PSRN

Q\le’c\(ﬂ—l) QZ}JC("TI) — @Z}rf(’”l)7 @E(Tb)ﬂfz — @i(;;z)aﬂ2 — QC ‘“’2)s7"27 Q Q“177T2 QZ*

Proof. The proof of the first equality in two arguments are identical to Lemmal[§] Combining with
Lemma 23] we have the second equality.

Lemma 28.
@™ - Q™ < - wal
Nk Ak 1
HQul — Q|| < lur — U2|1
Proof. The proof is identical to Lemma 7] O

Lemma 29. With probability larger than 1 — 0, and T is a eps-optimal policy in M.

Lo lza< N(1C—v)3+(1—§)23N+(\/E+1> )
= 1ja< N(lc—v)3+(1—§)23N+(\/§+l> (Z+1€isv>)'

where c and « is defined as in Lemma 10 and Lemma 12.

IN

HQwrf(wr) _ griem)

> o

o]

Proof. The proof is identical to Lemma|[T2]as we have Lemma[27]and Lemma[28]in 2-TBSG, which
is the counterpart of Lemma|[6]and Lemmal7} O
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Proof of Theorem 4. From Lemma [26] with probability larger than 1 — &, we have
Q* _ Qﬁl,ﬁg
< (HQwrf(w;) _ Qrie)

| #]|o7 - Q7| +ers)1
00 00

S(lja H N7 T T <\/§“) i) * (ﬁ“) fisv}

+ €PS> 1

For N > Clog(CK (=)~ 167 ™) vip proper constant C', we have = (/+ + 1) < 2, thus

(1—7)%e?
Vr—VER < (e 4 3eps )1
= 1 . ,Y .
By symmetry, we have
~ = 3
V* — T2 Z _(€+ 1€PS )1
Thus we have 3
e -vam| et 225
00 1-— Yy

which completes the proof.

D Sample Complexity in General Linear Case

In the general linear case, the empirical MDP can be a pseudo MDP and hence we cannot get the
optimal policy in the empirical MDP. Even so, the value iteration solver can still be applied to the
pseudo MDP and we prove that it is a sample efficient algorithm. The proof relies on an observation
that a discounted MDP can be approximated by a discounted finite horizon MDP with horizon
H =0(1/(1—7)loge™1). We use V;* to represent the result of operating value iteration for H — h
steps in the empirical model and V" to be the result in true model. The initial value is ‘7;;, =Vg=0.
We use a similar analysis in FHMDP, but the pseudo MDP leads to some defect of previous proof and
we revised the bound.

Lemma 30. The error of performing value iteration for H steps can be bounded:

@5 -

H-1
S Z A (B R Vi
h=0

Proof. The proof is from iteratively using the following inequality.
o5 @il = -+ 29) 702
<o (Wt v+ [ (P = P) Vi
(o) o0
<7 HQZH - QZHHOO +7 H (P - P) V;HHOO
=7 HQZ-H - QZ-HHOO +7 H‘D (P)C - PIC) V}T-s-lHoo

<@ = @ 22| (B i) B
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The auxiliary MDP technique can be used in the same way to analyze (P P) Vh as in Lemma
[22] Here we give two lemmas, which are counterparts of Lemma[T9]and LemmaJ@l for FHMDP.
Note that the total variance technique is not applicable in pseudo MDP as Lemma 3] no longer holds.
Therefore, we use Hoeffding’s inequality to analyze the concentration.

Lemma 31. For all u,v' € R and policy T,

(@i = @] < (= WLF " u = .

Proof. Similar to the proof of Lemma 19, we have

HQZ,U - Qz,u’

= | (r+ wnere + Pvir,) = (r 4w+ Py )|
P Qi = Qrnr) |
= (= )0 . + || P (Qrr s = e )|

, - ~
< |Uh - Uh| +L HQZJrl,u - QZ+1,u’

H-1
< Z L fug — )
i=h

< (H - h) LA ||u -

< (up —up,) 2> o +

O

Lemma 32. For a given finite set B} , C U, N[—H, H])" and § > 0, with probability greater than
1 — 6, it holds for all u € B} , that

\/ H2log (2| Bz, | /9)

[(P(s.a) = P(s,0)) Wi, | < 2N

Proof. This is the direct application of Hoeffding’s inequality as ‘N/h”u and 17,;*“ is independent of
P(s,a). O

Lemma 33. For a given finite set B”* C U”* N[-H,H)" and B}, c U;, N [-H, H" and

d > 0, with probability greater than 1 — HJ, it holdsfor allu € B ,,h € [H] that
~ ~ H?log (2|Bt.,| /9) "
- *| < s,a . ® _ —h.
‘(P(s,a) P(s7a)) Vil < \/ SN + urer%?a lu* — ulloo (H — h)L

Proof. Combining Lemma [3T]and Lemma[32] we have
‘(P(s, a) — ﬁ(s,a)) XA/,j = ‘(P(s, a) — ﬁ(s, a)) (17;“ + ‘A/h* — YN/;fu)

< ‘(P(s,a) — ﬁ(,s;,a)) ‘7;71

\/H2 log (2 |B;k,a| /5) + | = ufloe(H — h)LH_h.

+ |V - i
o0

IN

2N

As this equality holds for all © € BS .» We can take minimum in the RHS, which proves the first
claim. O
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Lemma 34. For any given € and all (s,a) € K, with probability larger than 1 — H0,

4 372
_ \/H log(8H3L2/0c) ¢
= 2N 4HL

‘(P(s, a) — P(s, a)) v

Proof. We set B;Ta to be the evenly spaced elements in the interval U JN[—H,H)" and ‘B;T; =
(M)H Then for any v’ € US’Ta N [—H, H)", we have min, ¢ g ||/ — ul| < e/4H?L?H.

Note that u™ € Uz, N[—H,H". Combining this with Lemma 33 implies the result. O

Proof of Theorem 5. From Lemma [34] with probability larger than 1 — &, we have

[V —ve | <@ - e

oo

H—-1
<8 (e ) |
o0
h=0

H—-1
H*log(8H*L?/de) €
< h+1L
= };) v ( IN t1HL

672 372
< HS12log(8H3L?/¢) 4 €
- 2N 4
Choosing N > CHSL?log(CKHL/S¢)(e(1 — 7))~2, we have H%* -V < €1 —7)/2.
Now we replace H with O((1 — )~ log(1/€)) and we have ||[Vj — V*||_ < e(1 —~)/2 by the

convergence of value iteration. So we have HVO* -V

< €(1 — «), which implies the greedy
policy with respect to ‘70* is an e-greedy policy in the true MDP [5]].
O
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