On Efficiency in Hierarchical Reinforcement

Learning
Zheng Wen Doina Precup Morteza Ibrahimi
DeepMind DeepMind DeepMind
zhengwen@google.com doinap@google.com mibrahimi@google.com

Andre Barreto Benjamin Van Roy Satinder Singh

DeepMind DeepMind DeepMind

andrebarreto@google.com benvanroy@google.com baveja@google.com
Abstract

Hierarchical Reinforcement Learning (HRL) approaches promise to provide more
efficient solutions to sequential decision making problems, both in terms of sta-
tistical as well as computational efficiency. While this has been demonstrated
empirically over time in a variety of tasks, theoretical results quantifying the ben-
efits of such methods are still few and far between. In this paper, we discuss
the kind of structure in a Markov decision process which gives rise to efficient
HRL methods. Specifically, we formalize the intuition that HRL can exploit well
repeating "subMDPs", with similar reward and transition structure. We show
that, under reasonable assumptions, a model-based Thompson sampling-style HRL
algorithm that exploits this structure is statistically efficient, as established through
a finite-time regret bound. We also establish conditions under which planning with
structure-induced options is near-optimal and computationally efficient.

1 Introduction

Hierarchical reinforcement learning (HRL) refers to the ability of an agent to act and plan at multiple
levels of temporal abstraction [Sutton et al., 1999, Barto and Mahadevan, 2003]. In principle, this
ability can present several benefits: (1) more efficient exploration, by employing policies that help an
agent circulate more efficiently over the state space; (2) more efficient credit assignment, because
temporally extended models propagate credit over many time steps, and the same stream of data
can be re-used to learn about many possible contingencies (for example, expressed as sub-goals);
and (3) the ability to solve smaller problems and compose the resulting policies and models quickly
in new situations. From a theoretical point of view, (1) has been investigated in recent work [Fruit
et al., 2017]. Aspects (2) and (3) have received empirical validation in a large number of papers,
but not much theoretical analysis, except for some special cases, such as the work of Mann et al.
[2015]. In this paper, we present two general results which highlight the types of problems in which
HRL is expected to provide benefits, in terms of planning speed, as well as in terms of statistical
efficiency. First, as has been highlighted empirically in the past, having repeated structure in the
Markov decision process (MDP) can lead to large speedups in both aspects. Second, in terms of
planning, HRL provides benefits when we are able to "insulate" well sub-problems that can be solved
in isolation, and whose solutions can then be "stitched" together. We formalize the latter intuition.

Contributions: First, we formalize a notion of MDP decomposition into sub-problems, using state
partitions. Second, we show that the existence of hierarchical structure in the environment can lead to
statistically efficient learning, by extending the results in Osband et al. [2013] to establish a regret
bound that separates errors due to sub-optimal planning and errors due to learning. If the original

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

MDP can be decomposed into repeating problems that are relatively small, the expected regret of a
posterior sampling exploration algorithm can be dramatically reduced. Finally, we study planning
under decompositions of the original problem. We establish a relationship between the complexity of
planning and the number of contingencies under which sub-problems are solved, formalized through
a notion of exit profiles. We show formally that near-optimal planning can be obtained much faster if
the original problem can be partitioned into repeated problems that are small and well separated.

2 Problem formulation

Consider a finite-time horizon MDP M = (S, A, P, r, s., So), Where S is a finite state space, A is a
finite action space, P and r respectively encode the transition model and the reward model, s, € S
is a fixed terminal state, and so € S is a fixed initial state'. If the agent takes action a € A at a
non-terminal state s € S\ {s.}, it receives a random reward drawn from distribution r(-|s,), and
transits to the next state s’ € S with probability P(s|s, a). Without loss of generality, we assume
that the support of reward distribution 7(-|s,a) C [0,1],Vs € S\ {s},Va € A. We use 7(s,a) to
denote the mean of r(+|s, a). In this paper, we consider two different but related problems in MDPs:
planning and reinforcement learning (RL).

In the planning setting, the agent knows M, and its goal is to compute a near-optimal policy,
m:S — A, ie., apolicy that maximizes the expected total reward: max, E, {Z;;} rh], where

rh ~ r(:|sp,ap) is the reward received by taking action aj, = 7(sy,) in time period h, and 7 is a
random variable that denotes the time at which the agent enters s.. To simplify the exposition, we
assume that under any policy m, 7 < Tinax With probability 1 and E[r] < H.

In the RL setting, the agent knows S, A, s., Sg, but does not know P or r. The agent will
repeatedly interact with M for T episodes. An episode always starts at sy and ends immediately upon
entering s.. The agent’s goal is to maximize its expected cumulative reward over the 7" episodes,
max Zthl E >, 7tn], where we use ¢ to index episodes and h to index periods in an episode,
ren ~ 7(¢|S¢n, asn) is the reward received in period h of episode ¢ and 7; is the duration of episode ¢.
Note that an RL algorithm might call a planning algorithm to compute a policy (for example, if the
RL algorithm is model-based).

3 Defining sub-problems and hierarchical structure

We would like to capture the intuitive notion of modularity in the context of MDPs. Modularity
allows a large problem to be broken down into sub-problems, which could be tackled and solved inde-
pendently from the rest. Sub-problem solutions could then be "stitched" together to (approximately)
solve the entire problem. Intuitively, if these sub-problems are relatively small and repeated, this
approach can lead to large computational gains. We will now formalize these intuitions for MDPs.

Definition 1 Consider a partition of the non-terminal states S \ {s.} into L disjoint subsets H =
{S:}L|. We define an induced subMDP M; = (S; U &;, A, Pi,r;, E;) as follows:

o S, is the internal state set, and the action space is still A.
The exit state set £; is defined as & = {e € S\ S; : I(s,a) € S; X As.t. P(e|s,a) > 0}.
The state space of M; is S; U &;.

P; and r; are respectively the restriction of P and r to domain S; x A.

The subMDP M terminates once it reaches a state in &; (i.e., an exit state).

Given a partition H of M, consider the set of induced subMDPs, {Mi}le. We define M, the
maximum size of any subMDP, and &, the set of all exit states, as follows:

M =max; |S;U&| and & =UL &, (1)

'Note that the fixed initial state assumption can be easily relaxed to allow for an initial state drawn from any
fixed distribution.

where | - | denotes the cardinality of a set. Intuitively, each subMDP can be viewed as a sub-problem
of the original MDP. We can exploit the fact that some sub-problems may be similar to each other,
by solving only one instance and re-using this solution. We now define the notion of equivalent
subMDPs, in order to capture this idea.

Definition 2 (Equivalent subMDPs) Two subMDPs M; and M ; are equivalent if there is a bijec-
tion f: S;UE — S;UE; s.t. f(S;) =S8, f(&) = &;, and, through f, the subMDPs have the same
transition probabilities and rewards at internal states.

Note that the constraints f(S;) = S; and f(&;) = £; ensure that an internal (or exit) state in M, is
mapped to an internal (or exit) state in M. Let K < L be the number of equivalence classes of
subMDPs induced by a particular partition 7 of M. When there is no repeatable structure, KX = L.
When the partition produces repeatable structure, K < L.

In summary, any state space partition H yields three parameters: the maximum size of an induced
subMDP M, the number of subMDP equivalence classes K, and the total number of exit states |£].
Our analyses will depend on these three quantities, rather than |S|, the number of states in M. While
the results that we will present hold for any MDP M and any partition H, they will offer dramatic
improvements over the standard algorithms only if M exhibits hierarchical structure with respect
to a partition 7{, by which we mean:

1. MK < |S];
2. the number of exit states |£| is small relative to the total number of states |S|.

Intuitively, condition 1 can be satisfied by having small M, small K or both. If the number of
equivalence classes K is small, solving a subMDP once may produce solutions that can be re-used
in many other parts of the original problem. If M is small, all subMDPs have small size, so they
would be relatively easy to solve. Finally, if |£| is small, intuitively we have a small number of states
that connect the sub-problems. We can think of these as “bottleneck” states in M, which have been
shown before to enable computationally efficient planning (see e.g. Sutton et al. [1999], McGovern
and Barto [2001], Stolle and Precup [2002], Simsek and Barto [2009], Solway et al. [2014]).

To make this notion of hierarchical structure more concrete, consider a garbage collecting robot
navigating in a building. The robot’s goal is to maximize the amount of trash it collects before exiting.
The building has L floors, and each floor belongs to one of K floor “types” defined according to
some criterion relevant to the robot. A floor of type i has |&;| < |£] exits to other floors (elevators,
stairs, etc.). When exiting a floor, the agent will either get to another floor or leave the building. Each
floor has L’ rooms, which can also be grouped into K’ groups. Room type j can be divided into
M]’ < M’ regions that define the robot’s current state; some of these regions contain garbage that
should be collected. Rooms are connected through up to |€’| doors. If we think of the robot as an
RL agent and the building as an MDP, the problem can be partitioned at two different levels: each
subMDP can be either a floor or a room. Each of these partitions will result in different values for the
constants appearing in items 1 and 2 above, which will in turn define how efficiently the agent can
solve the problem.

In the next two sections, we will analyze RL (Sec. 4) and planning (Sec. 5), assuming that an agent
starts with a known partition H, in which the equivalence classes of the induced subMDPs are also
known. We will establish results showing that leveraging hierarchical structure allows agents to
achieve better statistical efficiency, in the case of learning, and better computational complexity, in
the case of planning (at the cost of some controlled sub-optimality).

4 Statistically Efficient Learning with Hierarchical Structure

It is natural to think of hierarchical reinforcement learning as what an agent does when it possesses
prior knowledge that the environment obeys hierarchical structure. As we will establish in this section,
hierarchical structure can enable more efficient learning, and the difference can be dramatic if the
MDP exhibits highly repetitive structure. This occurs when the number of subMDPs far exceeds the
number of equivalence classes. We will formally characterize improvements in statistical efficiency
through studying a specific reinforcement learning algorithm that can leverage prior knowledge in
a coherent manner. We expect our qualitative insights to extend to other algorithms that carefully
account for prior knowledge.

4.1 Posterior Sampling for Reinforcement Learning

Posterior sampling for reinforcement learning (PSRL), as introduced by Strens [2000] and analyzed
in Osband et al. [2013] and Gopalan and Mannor [2015], offers an often effective approach to
episodic reinforcement learning. Before each episode of interaction, the agent samples a model of
the environment, possibly in the form of an MDP, from the posterior distribution over environments
conditioned on data gathered over previous episodes. Then, the agent computes an optimal policy
for the sampled model and applies that to select actions over the next episode. To guide exploration,
PSRL relies on representation of epistemic uncertainty in terms of a probability distribution over
environment. The prior distribution reflects the agent’s initial partial knowledge about the environment.
To quantify performance, regret bounds that apply under any prior distribution are established in
Osband et al. [2013]. These bounds do not capture the benefits of greater degrees of prior knowledge,
but subsequent results [Osband and Van Roy, 2014a,b] demonstrate that stronger regret bounds,
reflecting dramatic improvements in agent performance, are possible when the prior distribution
reflects knowledge of special environment structure.

Algorithm 1 offers pseudocode for a generalized form of PSRL. Over each episode, a sampler
produces an MDP M that represents a statistically plausible model of the environment given the
state of knowledge P!. Then, a planner computes a policy 7! that approximately optimizes M".
This policy is executed over the episode, leading to a data set D; made up of the trajectory of states,
actions, and rewards. Finally, the state of knowledge is updated by an inference algorithm.

Ideally, as in the pure form of PSRL, P? encodes a posterior distribution over MDPs, the sampling
algorithm draws M? from P?, the planner computes an optimal policy for M?, and the inference
algorithm applies Bayes’ rule. However, the more flexible generalization of Algorithm 1 can be
applied more broadly, even when it is infeasible to exactly represent, compute, or sample from the
posterior distribution or to identify an optimal policy.

Algorithm 1: PSRL with a Planner, Sampler, and Inferer

Initialization: prior knowledge P°, planning algorithm plan, sampling algorithm sample,
inference algorithm infer;
for episodet =1,2,...7T do
sample M" ~ sample(P?);
plan 7' = plan(M?);
execute 7 over episode ¢, observe D;
infer P! = infer (P!, D;) ;
end

4.2 Hierarchical Reinforcement Learning

We consider posterior sampling for hierarchical reinforcement learning (PSHRL) to be PSRL applied
with a particular kind of prior distribution, and possibly with a planner that is customized for such an
environment. In particular, we will consider priors that include only MDPs that obey hierarchical
structure, as described earlier, for fixed values of M and K. As for the planner, we will alternately
consider an optimal planner and one designed to produce approximately optimal policies more
efficiently by leveraging hierarchical structure, as we will discuss in Section 5.

The per-episode computational complexity of PSHRL depends on the special structure obeyed by P?
and M?, as well as the choice of plan, sample, and infer. As we will show in Section 5, suitable
hierarchical structure can be leveraged to improve computational efficiency. The choice of P,
sample, and infer determine tractability of sampling and inference. Again, suitable hierarchical
structure can allow for more efficient execution of these steps.

Recall that K is the number of subMDP equivalence classes and M is the maximal number of states
per subMDP. Hierarchical structure is especially informative when M K is small relative to the
number of MDP states |S|. This can yield dramatic improvements in statistical efficiency, as we will
establish via a regret bound.

4.3 Regret Bound

For any learning algorithm alg, we define the Bayesian regret over the first 7" episodes as
T
BayesRegret(alg, T) = Z]E [V*(so) - V”t(so)} , (2)
t=1

where V* is the optimal value function of M, and V™" is the value function under policy 7.
The regret is “Bayesian” in the sense that the expectation integrates over M with respect to the
prior distribution P°. Note that minimizing BayesRegret(alg, T') is equivalent to maximizing
ST EV™(s0)] = S E[Xr, 7). We will study BayesRegret(PSRL, T'), which is the
Bayesian regret of PSRL, when applied with a prior that exhibits hierarchical structure.

Recall that, under any policy 7, E[7] < H and 7 < Tiax With probability 1. The following theorem
is our main result on statistical efficiency.

Theorem 1 (Regret Bound) If P° exhibits hierarchical structure with a maximum of M states per
subMDP and K subMDP equivalence classes, sample draws from the posterior distribution, and
infer applies Bayes’ rule, then

BayesRegret(PSRL, T') < E [V*(so) — V™ (s0)] T+ O (H%J\NK/ |A|Tlog(|A|KH7-maxT)),

due to sub-optimal planning due 10 learning

where ™ = plan(M).

Note that the expectation in E [V*(so) — V7 (s¢)] represents an integral with respect to the prior
distribution P° of M. Also note that if plan exactly optimizes M then # = 7*, and there-
fore, E [V*(sg) — V7 (so)] = 0. Approximately optimal planning can contribute to regret a term
E [V*(s0) — V™(s0)] T that grows linearly with the number 7" of episodes. One factor of O(H) in
the second term is due to the magnitude of optimal value E [V *(s()], which can grow with horizon,
and is therefore inevitable.

We show that the hierarchical structure can enable statistically more efficient learning by comparing
to the PSRL regret bound of Osband et al. [2013], which applies for any prior. Assuming that the MDP
has fixed horizon 7 = H and plan always returns an optimal policy, Osband et al. [2013] established

BayesRegret(PSRL, T) < O(H #|S|/|A[T)?, where the O(-) notation hides logarithmic factors.
Our regret bound, under the same assumptions, is o) (H M VEK+/ |A|T), that is, we have replaced

O(|S|) with O(M+/K), which is highlighted in red font in Theorem 1. Notice that if M is treated
as one subMDP, then we have K = L = 1 and M = |S|, hence our regret bound reduces to
that in Osband et al. [2013]. On the other hand, when M VK < |S|, our regret bound conveys a
dramatic improvement. This improvement can be interpreted in terms of two components. First, the
replacement of O(+/|S]) with O(vV/MK) arises because the agent needs to learn about a smaller

number of distinct states in the hierarchical MDP. Second, O(+/[S]) is replaced by O(v/M) because
at each state-action pair in the hierarchical MDP, the agent can transition to at most M successor
states.

The proof of Theorem 1 is partially motivated by analysis in Osband et al. [2013]. However, we
consider a different setting and our results are technically more complex. Specifically, compared
with Osband et al. [2013], Theorem 1 considers hierarchical structure, and allows for both sub-
optimal planning and a random time horizon 7. Please refer to Appendix A for the detailed proof of
Theorem 1.

S Computationally Efficient Planning with Hierarchical Structure

We now turn our attention to the problem of planning in M given a partition 7. This problem has
been tackled in the framework of options, by using option models [Sutton et al., 1999]. Options can

2Some notations in Osband et al. [2013] have different meanings. Specifically, “7" in Osband et al. [2013]
means H and “T" in Osband et al. [2013] means HT'.

Algorithm 2: Planning with Exit Profiles (PEP)

Input: MDP M, £k sets of exit profiles jk one for each equivalent subMDP class k;

Step 1: Option generation
fork=1,2,... K do
For each exit profile J € J, compute one option 7, ; for subMDPs in equivalence class k, and
its associated model;

end

Step 2: Plan with options
Compute a policy for the induced high-level M, which induces a policy 7 for M

Return: 7

be viewed as policies which act in a subset of states, and with which one can associate temporally
extended reward and transition models. The option policies can be thought of as solutions to sub-
problems, generated by an MDP’s structure, and some subgoals, which are additional rewards
associated with particular states [Sutton et al., 1999]. One can view this approach as constructing
options corresponding to subMDPs. To make this problem well defined, one needs to consider
possible combinations of values associated with the exit states of a subMDP. For example, an agent
which is in a room with two doors might consider making either door a subgoal, by giving it a high
reward. An option can then be trained inside the room, which amasses treasure if it makes sense, then
exits through the designated door. We now formalize this intuition through the notion of exit profiles.

Definition 3 (Exit Profile) An exit profile J for subMDP M, is a vector of values J(e),Ve € &,.

Note that from the perspective of a subMDP, the structure outside is summarized in an exit profile J.
An exit profile induces an optimal policy for the subMDP M;, m; 7, which we will think of as an
option. By definition, an exit profile J will induce the same option for equivalent subMDPs.

Once a set of options and associated models have been computed, one can define an induced high-
level MDP M¢ = (Sg, Ag, P9, r%), whose state space S = £ U {s¢} is the union of all exit
states and the initial state sg. For each s € Sg, if s is a state in a subMDP M, then its action space
Ag(s) is the set of options computed for M;. r%(s,; ;) is the expected reward obtained from
s € S; under option 7;_; until this option reaches an exit state e € &;, and P%(e|s, 7; ;) gives the
probability of transitioning to e € &;. These quantities form the option model for 7; ;, defined as
in Sutton et al. [1999], which can be computed at the same time as the option”.

The process of creating a set of options and models corresponding to a set of exit profiles, then using
them to solve M, is summarized in Algorithm 2, which we call Planning with Exit Profiles (PEP).

5.1 Computational Complexity of Planning with Options

PEP is a blueprint for planning with options, which can be instantiated by using different dynamic
programming approaches [Bertsekas, 2015] to implement steps 1 and 2. We will discuss the com-
plexity of this algorithm when using value iteration (VI) for both steps, but similar analyses could be
carried out easily for other algorithms (e.g., policy iteration).

In order to simplify the analysis and ensure that VI terminates in a finite number of steps, we make
the following assumption:

Assumption 1 For M, all its induced subMDPs with exit profiles, and the induced M, the transi-
tion probability graph corresponding to an optimal policy is acyclic.

Under Assumption 1, VI will compute the value function in n iterations under a proper initialization,
where n is the cardinality of the state space (see Section 3.4.1 of Bertsekas [2015]). Under this

3Note that we have no discount factor, due to the finite-time horizon, which simplifies the model and gives
rise to an MDP at the high level as well, instead of an SMDP.

“We make Assumption 1 to simplify the exposition of the computational complexity results. This assumption
is not strictly necessary and can be relaxed.

assumption, the computational complexity of VI in M is O(|S|?|A| M), because by our definition,
M is an upper bound on the number of states into which any state-action pair can transition. Let

X = maxy, \jk\ denote the maximum cardinality of an exit profile set over all equivalent subMDP
classes (see Algorithm 2). The computational complexity of PEP can then be expressed as:
O(KXM?AIM)+O(JEPXM) < O (X[KM?|A| +|E]!]M) . 3)
for step 1 for step 2

Roughly speaking, planning with options will be efficient if XM2?K < O(|S|?) and [£*?X <
O(|S]?|A|), which means that all subMDPs are small, a small number of exit profiles are used to
find options for each equivalent subMDP class, and the total number of exit states |£| is small.

5.2 Performance of Planning with Options

We now provide a performance bound for PEP, based on the “quality"” of the exit profiles. Let
J; C [0, H]I:! be the space of possible exit profiles for subMDP M. Let V;™; denote the value of a
policy 7 for an exit profile J in M,;. We denote V;*; the value of the optimal policy of M; w.r.t. exit
profile J, m; ;. We now define the suboptimality of a set of exit profiles:

Definition 4 (Exit Profile Suboptimality) The suboptimality of a set of exit profiles J for M; is
defined as:

BTN = e, V) m e V0] @

where S? is the set of possible start states in M, and J; is the space of possible exit profiles.

Notice that V;WJJ (s) is the value with exit profile J, under policy m; j that is optimal for another exit

profile J , at the start state s. In other words, the definition of Al(j) ensures that for any exit profile
J, there exists an exit profile in 7 that induces an A;(7)-optimal policy under J. Recall that in
Algorithm 2, for subMDP M; in equivalence class k, exit profiles Jj, are used for option generation.

Thus, we define A = max; Ai(jki), where k; is the equivalence class M; is in. We can also prove
that PEP with VI is near-optimal under Assumption 1 and a mild technical assumption.

Proposition 1 Ifin step 2 of PEP, the agent uses VI with initial V' = 0 to compute a policy T, then
under Assumption 1 and a mild technical assumption, we have: V*(so) — V™ (s9) < A|€|.

Please refer to Appendix B.1 for the proof of this proposition. Roughly speaking, Proposition 1 states
that if the total number of exit states, |£|, is small, and the exit profiles used in PEP have high quality
(A is small), then PEP returns a near-optimal policy.

5.3 Sufficient Conditions for High-Quality Exit Profiles

The previous results indicate that in order to ensure that planning with options is both computationally
efficient and returns a near-optimal policy, we need the set of exit profiles considered by PEP to
have small cardinality (for computational efficiency) and high quality (for near-optimality). We now
discuss how to choose such exit profile sets.

In general, an exit profile set can be chosen based on an e-cover, deﬁn~ed as follows: a finite set j
is an e-cover for J if for any J € 7, there exists J € J s.t. ||J — J||oo < €. We then have the
following result:

Proposition 2 For subMDP M, in equivalence class k, if Jy, is an e-cover for J;, then Az(jk) < 2e.

Please refer to Appendix B.2 for the proof of Proposition 2. Since .7; C [0, H]!€!, there always exists

a finite e-cover Jj, for J; with |jk| < (W 18] . In general, the cardinality of an e-cover is too large to
guarantee PEP’s computational efﬁc1ency However, if max; |&;| is very small (e.g. max; |&;| < 3),
then PEP with e-cover will be computationally efficient.

Another favorable special case is when subMDP M, has deterministic exiting. That is, with any
start state s and under any deterministic policy m, the agent exits M; at a single state e; » € &; with

probability 1. Note that in general e, , depends on both the start state s and the deterministic policy
7. Deterministic exiting will occur if M; has only one exit state, or deterministic transitions. For any
e € &, wedefine J, : & — Ras J.(s) = (H + 1)1[s = e], where 1[-] is the indicator function. We
then have the following result:

Proposition 3 For subMDP M in equivalence class k, if M; has deterministic exiting and T =
{Je: e € &}, then Ay(Jy) = 0.

Please refer to Appendix B.3 for the proof of Proposition 3. Note that in this case || = |&;|. Based

on Proposition 1, if all the subMDPs have deterministic exiting, then we can efficiently compute an
optimal policy 7* for M by using PEP.

6 Summary of Results

learning alg. planner regret bound computation per episode
PSRL VI O(H3|S|\/|A|T) O(|S|?| A/ M)
PSHRL VI O(H? MK +/|AT) O(|S|?|A|M)
PSHRL PEP A|E|T + O(H? MVEVJAT) O(X(M?K|A| + |€]>) M)

Table 1: Algorithm Comparison. Differences in regret bounds and computational complexities are
highlighted in red font. Recall that S and A are the state and action space of M; H is a bound
on the expected time horizon of M; T is the number of interaction episodes; M is the maximum
subMDP size; K is the number of subMDP equivalence classes; £ is the set of all exit states; A and
X respectively measure the quality and the number of exit profiles used in PEP.

In Table 1, we summarize the regret bounds and per-episode computational complexities of three
algorithms: (1) PSRL with value iteration (VI) planning, (2) PSHRL with VI planning, and (3) PSHRL
with PEP planning’. As discussed before, if a partition with many repeated, small subMDPs is
available, the regret bound for (2) is much smaller than (1), since PSHRL exploits hierarchical
structure during learning. Moreover, if all the subMDPs also have few exit states and admit a small
set of high-quality exit profiles, then (3) will be computationally much more efficient than (1) and (2),
and only incurs an additional O(A|E|T) regret compared with (2), due to sub-optimal planning.

7 Related work

Several works have tackled decompositions of MDPs into sub-problems in a classical planning
context [Dean and Lin, 1995, Singh and Cohn, 1998, Meuleau et al., 1998]. The closest related to
our work is the framework of weakly coupled MDPs [Meuleau et al., 1998], which considers an
MDP decomposition into subMDPs, which are then solved independently by planning and whose
solutions are related through a set of constraints. Loose coupling of the sub-problems allows a small
set of such constraints, which intuitively has the same effect as our exit profiles. Sub-tasks with a
small number of exits have been modelled through the notion of bottleneck states [McGovern and
Barto, 2001, Stolle and Precup, 2002, Simsek and Barto, 2009, Solway et al., 2014]. According to
our analysis, the existence of such states would indeed imply a small number of exit profiles, and
hence efficient planning. Some existing work, e.g. Solway et al. [2014], Harutyunyan et al. [2019],
has proposed optimization objectives for identifying such states using information-related criteria.

It is worth pointing out that the “equivalent subMDP" notion used in this paper can be further relaxed.
In particular, rather than assuming that subMDPs in the same class have the same reward/transition
models, we can assume that they have similar reward/transition models. Most results in this paper
can be extended to that case, by leveraging results from planning with approximate models [Jiang
et al., 2016], such as approximate MDP homomorphisms [Ravindran and Barto, 2004], or using
bisimulation metrics to assess the similarity of subMDPs within a class [Ferns et al., 2004]. We leave

SWe assume that the chosen sample and infer in Algorithm 1 can be executed efficiently and most
computation is due to plan, as is typical in model-based RL.

such extensions for future work. Our notion of subMDPs and exit profiles can also be used to model
the use of HRL for transfer learning (see [Taylor and Stone, 2009] for an overview of the latter topic,
which includes both HRL as well as methods for state equivalence).

Finally, we briefly compare this paper with Mann et al. [2015]. To summarize, Mann et al. [2015] dis-
cuss and analyze two algorithms: Option-Fitted Value Iteration (OFVI) and Landmark-Approximate
Value iteration (LAVI). The OFVI analysis relies on the discounted-average concentrability of the
future state distributions in the semi-MDP defined by options, so it is a very different-flavor result.
LAVI relies on options that go to designated landmark states, and which are computed by solving a
deterministic relaxation of the semi-MDP in a neighborhood of landmarks. In our terminology, such
options have a single exit state, and LAVI then solves the problem that jumps between landmarks.
There is no repeating structure in this approach; in fact, each option only applies in a small neighbor-
hood of state space around a landmark. Our result could be applied to the LAVI setup directly, but it
would be hard to compare to their bound directly due to the very different quantities involved.

8 Concluding Remarks

We have presented two theoretical results which illuminate a kind of problem structure that benefits
HRL algorithms. Briefly, the ability to partition an MDP into repeating subMDPs leads to improved
regret bounds for a Thompson sampling-style algorithm that takes advantage of this structure.
Furthermore, we highlighted and formalized a trade-off between the quality and complexity of
planning in MDPs where the structure allows for a small number of problems to be solved. The
insights provided in this work can be used not just to further theoretical understanding of HRL, but
also for two immediate practical goals. First, one could use the structure of MDP we introduced as
a template to build examples to study HRL algorithms under controlled conditions [Osband et al.,
2020]. Second, these results can be turned into objective functions for HRL algorithms that discover
the right structure. This could lead, for example, to algorithms for the discovery of options endowed
with initiation sets (corresponding to the subMDP partitions), or to anytime planning algorithms that
construct exit profiles as needed. Ultimately, we would like to put together the learning and planning
results into a theoretical framework that elucidates the trade-off of three components that are crucial
to RL agents: solution quality (as expressed by the true value of the policy found), sample complexity,
and computational complexity. This trade-off is enabled by HRL, and can be understood through
the lens of the analysis we presented: HRL allows controlling the complexity of the policy class of
an agent, and this control should take into account both the agent’s ability to acquire data and its
available computational resources. We hope to develop this line of inquiry in future work.

Broader Impact

This is a theoretical investigation and as such does not present any foreseeable immediate societal
impact beyond the general concerns over progress in artificial intelligence. Specifically, we focused
on the question of how to design efficient hierarchical agents for reinforcement learning problems
with repeating sub-problem structure. The insights provided have the potential to help practitioners
to build more efficient hierarchical agents for real-world reinforcement learning problems, whose
societal impact depends on the specific application.

Acknowledgments and Disclosure of Funding

All authors of this paper are employees of DeepMind. This paper is not supported by any external
funding.

References

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems: Theory and Applications, 13:41-77, 2003.

Dimitri P Bertsekas. Dynamic programming and optimal control 4th edition, volume ii. Athena
Scientific, 2015.

Thomas Dean and S-H. Lin. Decomposition techniques for planning in stochastic domains. In IJCAI,
1995.

Norman Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI 2004.

Ronan Fruit, Alessandro Lazaric, Matteo Pirotta, and Emma Brunskill. Regret minimization in MDPs
with options without prior knowledge. In NeurIPS, 2017.

Aditya Gopalan and Shie Mannor. Thompson sampling for learning parameterized markov decision
processes. Journal of Machine Learning Research, 40:1-38, 2015.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, and Doina Precup. The
termination critic. In AISTATS, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(51):1563-1600, 2010.

Nan Jiang, Satinder Singh, and Ambuj Tewari. On structural properties of MDPs that bound loss due
to shallow planning. In IJCAI, 2016.

Timothy A. Mann, Doina Precup, and Shie Mannor. Approximate value iteration with temporally
extended actions. JAIR, 53:375-438, 2015.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, pages 361-368, 2001.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Lim, Leonid Peshkin, Leslie P. Kaelbling, and
Thomas Dean. Solving very large weakly coupled Markov Decision Processes. In AAAZ, 1998.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
In Advances in Neural Information Processing Systems 27, pages 1466—1474, 2014a.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. In
Advances in Neural Information Processing Systems 27, pages 604-612, 2014b.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages 3003-3011,
2013.

Tan Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton,
David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In International
Conference on Learning Representations, 2020.

Balaraman Ravindran and Andrew G. Barto. Approximate homomorphisms: A framework for
non-exact minimization in Markov Decision Processes. In Proceedings of the Fifth International
Conference on Knowledge Based Computer Systems, 2004.

Ozgur Simsek and Andrew G. Barto. Skill characterization based on betweenness. In NeurIPS, pages
1497-1504, 2009.

Satinder Singh and David Cohn. How to dynamically merge Markov Decision Processes. In NeurIPS,
1998.

Alec Solway, Carlos Diuk, Natalia Cordova, Debbie Yee, Andrew G. Barto, Yael Niv, and Matthew M.
Botvinick. Optimal behavior hierarchy. PLOS Comp. Bio., 10(8), 2014.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In Lecture Notes in
Computer Science, 2371, pages 212-223, 2002.

Malcolm Strens. A bayesian framework for reinforcement learning. In Proceedings of the 17th
International Conference on Machine Learning, 2000.

10

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211, 1999.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
JMLR, 10:1633-1685, 20009.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.

Inequalities for the L, deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

11

	Introduction
	Problem formulation
	Defining sub-problems and hierarchical structure
	Statistically Efficient Learning with Hierarchical Structure
	Posterior Sampling for Reinforcement Learning
	Hierarchical Reinforcement Learning
	Regret Bound

	Computationally Efficient Planning with Hierarchical Structure
	Computational Complexity of Planning with Options
	Performance of Planning with Options
	Sufficient Conditions for High-Quality Exit Profiles

	Summary of Results
	Related work
	Concluding Remarks

