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Abstract

Nonconvex-concave min-max problem arises in many machine learning applica-
tions including minimizing a pointwise maximum of a set of nonconvex func-
tions and robust adversarial training of neural networks. A popular approach to
solve this problem is the gradient descent-ascent (GDA) algorithm which unfortu-
nately can exhibit oscillation in case of nonconvexity. In this paper, we introduce
a “smoothing“ scheme which can be combined with GDA to stabilize the oscilla-
tion and ensure convergence to a stationary solution. We prove that the stabilized
GDA algorithm can achieve an O(1/✏2) iteration complexity for minimizing the
pointwise maximum of a finite collection of nonconvex functions. Moreover, the
smoothed GDA algorithm achieves an O(1/✏4) iteration complexity for general
nonconvex-concave problems. Extensions of this stabilized GDA algorithm to
multi-block cases are presented. To the best of our knowledge, this is the first
algorithm to achieve O(1/✏2) for a class of nonconvex-concave problem. We il-
lustrate the practical efficiency of the stabilized GDA algorithm on robust training.

1 Introduction

Min-max problems have drawn considerable interest from the machine learning and other engi-
neering communities. They appear in applications such as adversarial learning [1–3], robust opti-
mization [4–7], empirical risk minimization [8, 9], and reinforcement learning [10, 11]. Concretely
speaking, a min-max problem is in the form:

min
x2X

max
y2Y

f(x, y), (1.1)

where X ✓ Rn and Y 2 Rm are convex and closed sets and f is a smooth function. In the
literature, the convex-concave min-max problem, where f is convex in x and concave in y, is well-
studied [12–19]. However, many practical applications involve nonconvexity, and this is the focus
of the current paper. Unlike the convex-concave setting where we can compute the global stationary
solution efficiently, to obtain a global optimal solution for the setting where f is nonconvex with
respect to x is difficult.
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ALGORITHM COMPLEXITY SIMPLICITY MULTI-BLOCK

[22] O(1/✏2.5) TRIPLE-LOOP 7
[23] O(1/✏2.5) TRIPLE-LOOP 7
[20] O(1/✏3.5) DOUBLE-LOOP 7
[24] O(1/✏4) SINGLE-LOOP 4

THIS PAPER O(1/✏2) SINGLE-LOOP 4

Table 1: Comparison of the algorithm in this paper with other works in solving
problem (1.2). Our algorithm has a better convergence rate among others, and the
single-loop and multi-block design make the algorithm suitable for solving large-
scale problems efficiently.

In this paper, we consider the nonconvex-concave min-max problem (1.1) where f is nonconvex in
x but concave of y, as well as a special case in the following form:

min
x

max
y2Y

F (x)T y, (1.2)

where Y = {(y1, · · · , ym)T |
Pm

i=1 yi = 1, yi � 0} is a probability simplex and F (x) =
(f1(x), f2(x), · · · , fm(x))T is a smooth map from Rn to Rm. Note that (1.2) is equivalent to the
problem of minimizing the point-wise maximum of a finite collection of functions:

min
x

max
1im

fi(x). (1.3)

If fi(x) = g(x, ⇠i) is a loss function or a negative utility function at a data point ⇠i, then problem
(1.3) is to find the best parameter of the worst data points. This formulation is frequently used in
machine learning and other fields. For example, adversarial training [3,20], fairness training [20] and
distribution-agnostic meta-learning [21] can be formulated as (1.3). We will discuss the formulations
for these applications in details in Section 2.

Recently, various algorithms have been proposed for nonconvex-concave min-max problems [20,
22–28]. These algorithms can be classified into three types based on the structure: single-loop,
double-loop and triple loop. Here a single-loop algorithm is an iterative algorithm where each
iteration step has a closed form update, while a double-loop algorithm uses an iterative algorithm to
approximately solve the sub-problem at each iteration. A triple-loop algorithm uses a double-loop
algorithm to approximately solve a sub-problem at every iteration. To find an ✏-stationary solution,
double-loop and tripe-loop algorithms have two main drawbacks. First, these existing multi-loop
algorithms require at least O(1/✏2) outer iterations, while the iteration numbers of the other inner
loop(s) also depend on ✏. Thus, the iteration complexity of the existing multi-loop algorithms is more
than O(1/✏2) for (1.2). Among all the existing algorithms, the best known iteration complexity is
O(1/✏2.5) from two triple-loop algorithms [22, 23]. Since the best-known lower bound for solving
(1.2) using first-order algorithms is O(1/✏2), so there is a gap between the existing upper bounds and
the lower bound. Another drawback of multi-loop algorithms is their difficulty in solving problems
with multi-block structure, since the acceleration steps used in their inner loops cannot be easily
extended to multi-block cases, and a standard double-loop algorithm without acceleration can be
very slow. This is unfortunate because the min-max problems with block structure is important for
distributed training [24] in machine learning and signal processing.

Due to the aforementioned two drawbacks of double-loop and triple-loops algorithms, we focus in
this paper on single-loop algorithms in hope to achieve the optimal iteration complexity O(1/✏2)
for the nonconvex-concave problem (1.2). Notice that the nonconvex-concave applications in the
aforementioned studies [20,22–28] can all be formulated as (1.2), although the iteration complexity
results derived in these papers are only for general nonconvex-concave problems. In other words,
the structure of (1.2) is not used in the theoretical analysis. One natural question to ask is: can

we design a single loop algorithm with an iteration complexity lower than O(1/✏2.5) for the

min-max problem (1.2)?

Existing Single-loop algorithms. A simple single-loop algorithm is the so-called Gradient De-
scent Ascent (GDA) which alternatively performs gradient descent to the minimization problem
and gradient ascent to the maximization problem. GDA can generate an ✏-stationary solution for a
nonconvex-strongly-concave problem with iteration complexity O(1/✏2) [28]. However, GDA will
oscillate with constant stepsizes around the solution if the maximization problem is not strongly
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concave [19]. So the stepsize should be proportional to ✏ if we want an ✏-solution. These limitations
slow down GDA which has an O(1/✏5) iteration complexity for nonconvex-concave problems. An-
other single-loop algorithm [24] requires diminishing step-sizes to guarantee convergence and its
complexity is O(1/✏4). [29] also proposes a single-loop algorithm for min-max problems by per-
forming GDA to a regularized version of the original min-max problem and the regularization term
is diminishing. The iteration complexity bounds given in the references [24, 28, 29] are worse than
the ones from multi-loop algorithms using acceleration in the subproblems.

In this paper, we propose a single-loop “smoothed gradient descent-ascent” algorithm with optimal
iteration complexity for the nonconvex-concave problem (1.2). Inspired by [30], to fix the oscillation
issue of GDA discussed above, we introduce an exponentially weighted sequence z

t of the primal
iteration sequence x

t and include a quadratic proximal term centered at zt to objective function.
Then we perform a GDA step to the proximal function instead of the original objective. With this
smoothing technique, an O(1/✏2) iteration complexity can be achieved for problem (1.2) under mild
assumptions. Our contributions are three fold.

• Optimal order in convergence rate. We propose a single-loop algorithm Smoothed-

GDA for nonconvex-concave problems which finds an ✏-stationary solution within O(1/✏2)
iterations for problem (1.2) under mild assumptions.

• General convergence results. The Smoothed-GDA algorithm can also be applied to solve
general nonconvex-concave problems with an O(1/✏4) iteration complexity. This complex-
ity is the same as in [24]. However, the current algorithm does not require the compactness
of the domain X , which significantly extends the applicability of the algorithm.

• Multi-block settings. We extend the Smoothed-GDA algorithm to the multi-block setting
and give the same convergence guarantee as the one-block case.

The paper is organized as follows. In Section 2, we describe some applications of nonconvex-
concave problem (1.2) or (1.3). The details of the Smoothed-GDA algorithm as well as the main
theoretical results are given in Section 3. The proof sketch is given in Section 4. The proofs and the
details of the numerical experiments are in the appendix.

2 Representative Applications

We give three application examples which are in the min-max form (1.2).

1. Robust learning from multiple distributions. Suppose the data set is from n distributions:
D1, · · · , Dn. Each Di is a different perturbed version of the underlying true distribution D0. Robust
training is formulated as minimizing the maximum of expected loss over the n distributions as

min
x2X

max
i

Ea⇠Di [F (x; a)] = min
x2X

max
y2Y

mX

i=1

yifi(x), (2.1)

where Y is a probability simplex, F (x; a) represents the loss with model parameter x on a data
sample a. Notice that fi(x) = Ea⇠Di [F (x; a)] is the expected loss under distribution Di. In
adversarial learning [3,31,32], Di corresponds to the distribution that is used to generate adversarial
examples. In Section 5, we will provide a detailed formulation of adversarial learning on the data
set MNIST and apply the Smoothed GDA algorithm to this application.

2. Fair models. In machine learning, it is common that the models may be unfair, i.e. the models
might discriminate against individuals based on their membership in some group [33,34]. For exam-
ple, an algorithm for predicting a person’s salary might use that person’s protected attributes, such
as gender, race, and color. Another example is training a logistic regression model for classification
which can be biased against certain categories. To promote fairness, [35] proposes a framework to
minimize the maximum loss incurred by the different categories:

min
x2X

max
i

fi(x), (2.2)

where x represents the model parameters and fi is the corresponding loss for category i.

3. Distribution-agnostic meta-learning. Meta-learning is a field about learning to learn, i.e. to
learn the optimal model properties so that the model performance can be improved. One popular
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choice of meta-learning problem is called gradient-based Model-Agnostic Meta-Learning (MAML)
[36]. The goal of MAML is to learn a good global initialization such that for any new tasks, the
model still performs well after one gradient update from the initialization.

One limitation of MAML is that it implicitly assumes the tasks come from a particular distribution,
and optimizes the expected or sample average loss over tasks drawn from this distribution. This
limitation might lead to arbitrarily bad worst-case performance and unfairness. To mitigate these
difficulties, [21] proposed a distribution-agnostic formulation of MAML:

min
x2X

max
i

fi(x� ↵rfi(x)). (2.3)

Here, fi is the loss function associated with the i-th task, x is the parameter taken from the feasible
set X , and ↵ is the stepsize used in the MAML for the gradient update. Notice that each fi is still a
function over x, even though we take one gradient step before evaluating the function. This formula-
tion (2.3) finds the initial point that minimizes the objective function after one step of gradient over
all possible loss functions. It is shown that solving the distribution-agnostic meta-learning problem
improves the worst-case performance over that of the original MAML [21] across the tasks.

3 Smoothed GDA Algorithm and Its Convergence

Before we introduce the Smoothed-GDA algorithm, we first define the stationary solution and the
✏-stationary solution of problem (1.1).

Definition 3.1 Let 1X(x),1Y (y) be the indicator functions of the sets X and Y respectively. A pair
(x, y) is an ✏-solution set of problem (1.1) if there exists a pair (u, v) such that

u 2 rxf(x, y) + @1X(x), v 2 �ryf(x, y) + @1Y (y), and kuk, kvk  ✏, (3.1)
where @g(·) denotes the sub-gradient of a function g. A pair (x, y) is a stationary solution if u =
0, v = 0.

Definition 3.2 The projection of a point y onto a set X is defined as PX(y) = argminx2X
1
2kx �

yk
2.

3.1 Smoothed Gradient Descent Ascent (Smoothed-GDA)

A simple algorithm for solving min-max problems is the Gradient Descent Ascent (GDA) algorithm
(Algorithm 1), which performs a gradient descent to the min problem and a gradient ascent to the
max problem alternatively. It is well-known that with constant step size, GDA can oscillate between
iterates and fail to converge even for a simple bilinear min-max problem: minx2Rn maxy2Rn x

T
y.

To fix the oscillation issue, we introduce a “smoothing” technique to the primal updates. Note that
smoothing is a common technique in traditional optimization such as Moreau-Yosida smoothing [37]
and Nesterov’s smoothing [38]. More concretely, we introduce an auxiliary sequence {z

t
} and

define a function K(x, z; y) as

K(x, z; y) = f(x, y) +
p

2
kx� zk

2
, (3.2)

where p > 0 is a constant, and we perform gradient descent and gradient ascent alternatively on this
function instead of the original function f(x, y). After performing one-step of GDA to the function
K(xt

, z
t; yt), zt is updated by an averaging step. The “Smoothed GDA” algorithm is formally

presented in Algorithm 2. Note that our algorithm is different from the one in [29], as [29] uses an
regularization term ↵t(kxk2 � kyk

2) and requires this term to diminishing.

Algorithm 1 GDA

1: Initialize x
0
, y

0;
2: Choose c,↵ > 0;
3: for t = 0, 1, 2, . . . , do

4: x
t+1 = PX(xt

� crxf(xt
, y

t));
5: y

t+1 = PY (yt + ↵ryf(xt+1
, y

t));
6: end for

Algorithm 2 Smoothed-GDA

1: Initialize x
0
, z

0
, y

0 and 0 < �  1.
2: for t = 0, 1, 2, . . . , do

3: x
t+1 = PX(xt

� crxK(xt
, z

t; yt));
4: y

t+1 = PY (yt+↵ryK(xt+1
, z

t; yt));

5: z
t+1 = z

t + �(xt+1
� z

t),
6: end for
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Notice that when � = 1, Smoothed-GDA is just the standard GDA. Furthermore, if the variable x

has a block structure, i.e., x can be decomposed into N blocks as

x = (xT
1 , · · · , x

T
N )T ,

then Algorithm 2 can be extended to a multi-block version which we call the Smoothed Block Gradi-
ent Descent Ascent (Smoothed-BGDA) Algorithm (see Algorithm 3). In the multi-block version, we
update the primal variable blocks alternatingly and use the same strategy to update the dual variable
and the auxiliary variable as in the single-block version.

Algorithm 3 Smoothed Block Gradient Descent Ascent (Smoothed-BGDA)

1: Initialize x
0
, z

0
, y

0;
2: for t = 0, 1, 2, . . . , do

3: for i = 1, 2, . . . , N do

4: x
t+1
i = PX(xt

i � crxiK(xt+1
1 , x

t+1
2 , · · · , x

t+1
i�1, x

t
i, · · · , x

t
N , z

t; yt));
5: end for

6: y
t+1 = PY (yt + ↵ryK(xt+1

, z
t; yt));

7: z
t+1 = z

t + �(xt+1
� z

t), where 0 < �  1;
8: end for

3.2 Iteration Complexity for Nonconvex-concave Problems

In this subsection, we present the iteration complexities of Algorithm 2 and Algorithm 3 for general
nonconvex-concave problems (1.1). We first state some basic assumptions.

Assumption 3.3 We assume the following.

1. f(x, y) is smooth and the gradients rxf(x, y),ryf(x, y) are L-Lipschitz continuous.

2. Y is a closed, convex and compact set of Rm. X is a closed and convex set.

3. The function  (x) = maxy2Y f(x, y) is bounded from below by some finite constant f >

�1.

Theorem 3.4 Consider solving problem (1.1) by Algorithm 2 (or Algorithm 3). Suppose Assump-
tion 3.3 holds, and we choose the algorithm parameters to satisfy p > 3L, c < 1/(p+ L) and

↵ < min

⇢
1

11L
,

c
2(p� L)2

4L(1 + c(p� L))2

�
,�  min

⇢
1

36
,

(p� L)2

384p(p+ L)2

�
. (3.3)

Then, the following holds:

• (One-block case) For any integer T > 0, if we further let � < 1/
p
T , then there exists a

t 2 {1, 2, · · · , T} such that (xt+1
, y

t+1) is a O(T�1/4)-stationary solution. This means
we can obtain an ✏-stationary solution within O(✏�4) iterations.

• (Multi-block case) If we replace the condition of ↵ in Algorithm 3 by

↵  min

⇢
1

11L
,

c
2(p� L)2

4L(1 + c(p+ L)N3/2 + c(p� L))2

�
(3.4)

and further require �  ✏
2, then we can obtain an ✏-stationary solution within O(✏�4)

iterations of Algorithm 3.

Remark. The reference [24] derived the same iteration complexity of O(✏�4) under the additional
compactness assumption on X . This assumption may not be satisfied for some applications where
X can the entire space.
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3.3 Convergence Results for Minimizing the Point-wise Maximum of Finite Functions

Now we state the improved iteration complexity results for the special min-max problem (1.2). We
claim that our algorithms (Algorithm 2 and Algorithm 3) can achieve the optimal order of iteration
complexity of O(✏�2) in this case.

For any stationary solution of (1.2) denoted as (x⇤
, y

⇤), the following KKT conditions hold:

rF (x⇤)y⇤ = 0, (3.5)
mX

i=1

y
⇤
i = 1, (3.6)

y
⇤
i � 0, 8i 2 [m] (3.7)
µ� ⌫i = fi(x

⇤), 8i 2 [m], (3.8)
⌫i � 0, ⌫iy

⇤
i = 0, 8i 2 [m], (3.9)

where rF (x) denotes the Jacobian matrix of F at x, while µ, ⌫ are the multipliers for the equality
constraint

Pm
i=1 yi = 1 and the inequality constraint yi � 0 respectively.

At any stationary solution (x⇤
, y

⇤), only the functions fi(x⇤) for any index i with y
⇤
i > 0 contribute

to the objective function
PN

i=1 y
⇤
i fi(x

⇤) and they correspond to the worst cases in the robust learning
task. In other words, any function fi(·) with y

⇤
i > 0 at (x⇤

, y
⇤) contains important information of

the solution. We denote a set I+(y⇤) to represent the set of indices for which y
⇤
i > 0. We will make

a mild assumption on this set.

Assumption 3.5 For any (x⇤
, y

⇤) satisfying (3.5), we have ⌫i > 0, 8i /2 I+(y⇤).

Remark. The assumption is called “strict complementarity”, a common assumption in the field of
variation inequality [39,40] which is closely related to the study of min-max problems. This assump-
tion is used in many other optimization papers [6,41–44]. Strict complementarity is generically true
(i.e. holds with probability 1) if there is a linear term in the objective function and the data is from
a continuous distribution (similar to [30, 44]). Moreover, we will show that we can prove Theorem
3.8 using a weaker regularity assumption rather than the strict complementarity assumption:

Assumption 3.6 For any (x⇤
, y

⇤) 2 W
⇤, the matrix M(x⇤) is of full column rank, where

M(x⇤) =
�
JT (x⇤) 1

 
.

We say that Assumption 3.6 is weaker since the strict complementarity assumption (Assumption
3.5) can imply Assumption 3.6 according to Lemma D.7 in the appendix. In the appendix, we will
see that Assumption 3.6 holds with probability 1 for a robust regression problem with a square loss
(see Proposition E.7).

We also make the following common “bounded level set” assumption.

Assumption 3.7 The set {x |  (x)  R} is bounded for any R > 0. Here  (x) =
maxy2Y f(x, y).

Remark. This bounded-level-set assumption is to ensure the iterates would stay bounded. Actu-
ally, assuming the iterates {z

t
} are bounded will be enough for our proof. The bounded level set

assumption, a.k.a. coerciveness assumption, is widely used in many papers [45–47]. Bounded-
iterates-assumption itself is also common in optimization [42, 48, 49]. In practice, people usually
add a regularizer to the objective function to make the level set and the iterates bounded (see [50]
for a neural network example).

Theorem 3.8 Consider solving problem 1.2 by Algorithm 2 or Algorithm 3. Suppose that Assump-
tion 3.3, 3.5 holds and either Assumption 3.7 holds or assume {z

t
} is bounded. Then there exist

constants �0 and �00 (independent of ✏ and T ) such that the following holds:

1. (One-block case) If we choose the parameters in Algorithm 2 as in (3.3) and further let
� < �

0 , then
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(a) Every limit point of (xt
, y

t) is a solution of (1.2).
(b) The iteration complexity of Algorithm 2 to obtain an ✏-stationary solution is O(1/✏2).

2. (Multi-block case) Consider using Algorithm 3 to solve Problem 1.2. If we replace the
condition for ↵ in (3.3) by (3.4) and require � satisfying � < ✏

2 and � < �
00, then we have

the same results as in the one-block case.

4 Proof Sketch

In this section, we give a proof sketch of the main theorem on the one-block cases; the proof details
will be given in the appendix.

4.1 The Potential Function and Basic Estimates

To analyze the convergence of the algorithms, we construct a potential function and study its be-
havior along the iterations. We first give the intuition why our algorithm works. We define the dual
function d(·) and the proximal function P (·) as

d(y, z) = min
x2X

K(x, z; y), P (z) = min
x2X

{max
y2Y

K(x, z; y)}.

We also let

x(y, z) = arg min
x2X

K(x, z; y),

x
⇤(z) = arg min

x2X
max
y2Y

K(x, z; y),

y
t
+(z

t) = PY (y
t + ↵ryK(x(yt, zt), zt; yt)).

Notice that by Danskin’s Theorem, we have ryd(y, z) = ryK(x(y, z), z; y) and rzP (z) = p(z�
x
⇤(z)). Recall in Algorithm 2, the update for xt

, y
t and z

t can be respectively viewed as a primal
descent for the function K(xt

, z
t; yt), approximating dual ascent to the dual function d(yt, zt) and

approximating proximal descent to the proximal function P (zt). We define a potential function as
follows:

�
t = �(xt

, y
t
, z

t) = K(xt
, z

t; yt)� 2d(yt, zt) + 2P (zt), (4.1)
which is a linear combination of the primal function K(·), the dual function d(·) and the proximal
function P (·). We hope the potential function decreases after each iteration and is bounded from
below. In fact, it is easy to prove that �t � f for any t (see appendix), but it is harder to prove
the decrease of �t. Since the ascent for dual and the descent for proximal is approximate, an error
term occurs when estimating the decrease of the potential function. Hence, certain error bounds are
needed.

Using some primal error bounds, we have the following basic descent estimate.

Proposition 4.1 Suppose the parameters of Algorithm 2 satisfy (3.3), then

�
t
� �

t+1
�

1

8c
kx

t
� x

t+1
k
2 +

1

8↵
ky

t
� y

t
+(z

t)k2 +
p�

8
kz

t
� x

t+1
k
2 (4.2)

�24p�kx⇤(zt)� x(yt+(z
t), zt)k2. (4.3)

We would like the potential function �t to decrease sufficiently after each iteration. Concretely
speaking, we want to eliminate the negative term (4.3) and show that the following “sufficient-
decrease” holds for each iteration t:

�
t
� �

t+1
�

1

16c
kx

t
� x

t+1
k
2 +

1

16↵
ky

t
� y

t
+(z

t)k2 +
p�

16
kz

t
� x

t+1
k
2
. (4.4)

It is not hard to prove that if (4.4) holds for t 2 {0, 1, · · · , T � 1}, then there exists a t 2

{1, 2, · · · , T} such that (xt
, y

t) is a C/
p
T�-solution for some constant C > 0. Moreover, if

(4.4) holds for any t, then the iteration complexity is O(1/✏2) and we can also prove that every limit
point of the iterates is a min-max solution. Therefore by the above analysis, the most important thing
is to bound the term kx

⇤(zt)� x(yt+(z
t), zt)k2, which is related to the so-call “dual error bound”.
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If ky
t
� y

t
+(z

t)k = 0, then y
t
+(z

t) is the maximizer of d(y, zt) over y, and thus x
⇤(zt) is the

same as x(yt+(zt), zt). A natural question is whether we can use the term ky
t
� y

t
+(z

t)k to bound
kx

⇤(zt)� x(yt+(z
t), zt)k2? The answer is yes, and we have the following “dual error bound”.

Lemma 4.2 If Assumptions 3.3 and 3.5 hold for (1.2) and there is an R > 0 with kz
t
k  R, then

there exists � > 0 such that if

max{kxt
� x

t+1
k, ky

t
� y

t
+(z

t)k, kxt+1
� z

t
k}  �,

then
kx(yt+(z

t), zt)� x
⇤(zt)k  �5ky

t
� y

t
+(z

t)k.

holds for some constant �5 > 0.

Using this lemma, we can prove Theorem 3.8. We choose � sufficiently small, then when the
residuals appear in (4.2) are large, we can prove that �t decreases sufficiently using the compactness
of Y . When the residuals are small, the error bound Lemma 4.2 can be used to guarantee the
sufficient decrease of �t. Therefore, (4.4) always holds, which yields Theorem 3.8. However, for
the general nonconvex-concave problem 1.1, we can only have a “weaker” bound.

Lemma 4.3 Suppose Assumption 3.3 holds for problem 1.1. Define D(Y ) to be the diameter of Y .
If Assumption 3.3 holds, we have

(p� L)kx⇤(zt)� x(yt+(z
t), zt)k2  (1 + ↵L)kyt � y

t
+(z

t)k ·D(Y )

Note that this is a nonhomogeneous error bound, which can help us bound the term kx
⇤(zt) �

x(yt+(z
t), zt)k only when ky

t
�y

t
+(z

t)k is not too small. Therefore, we say it is “weaker” dual error
bound. To obtain an ✏-stationary solution, we need to choose � sufficiently small and proportional to
✏
2. In this case, we can prove that if �t stops to decrease, we have already obtained an ✏-stationary

solution by Lemma 4.3. By the remark after (4.4), we need O((1/(✏
p
�))2) = O(1/✏4) iterations

to obtain an ✏-stationary solution.

Remark. For the general nonconvex-concave problem (1.1), we need to choose � proportional to
✏
2 and hence the iteration complexity is higher than the previous case. However, it is expected that

for a concrete problem with some special structure, the “weaker” error bound Lemma 4.3 can be
improved, as is the iteration complexity bound. This is left as a future work.

The proof sketch can be summarized in the following steps:

• In Step 1, we introduce the potential function �t which is shown to be bounded below. To
obtain the convergence rate of the algorithms, we want to prove the potential function can
make sufficient decrease at every iterate t, i.e., we want to show �

t
� �

t+1
> 0.

• In Step 2, we study this difference �t��t+1 and provide a lower bound of it in Proposition
4.2. Notice that a negative term (4.3) will show up in the lower bound, and we have to
carefully analyze the magnitude of this term to obtain �t � �

t+1
> 0.

• Analyzing the negative term is the main difficulty of the proof. In Step 3, we discuss how
to deal with this difficulty for solving Problem 1.1 and Problem 1.2 separately.

• Finally, we show the potential function makes a sufficient decrease at every iterate as stated
in (4.4), and conclude our proof by computing the number of iterations to achieve an ✏-
solution (as shown in Lemma B.12 the appendix).

5 Numerical Results on Robust Neural Network Training

In this section, we apply the Smoothed-GDA algorithm to train a robust neural network on MNIST
data set against adversarial attacks [3, 31, 32]. The optimization formulation is

min
w

NX

i=1

max
�i, s.t. |�i|1"

`(f(xi + �i;w), yi), (5.1)

where w is the parameter of the neural network, the pair (xi, yi) denotes the i-th data point, and �i
is the perturbation added to data point i. As (5.1) is difficult to solve directly, researchers [20] have
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Figure 1: Convergence speed of Smoothed-GDA and the algorithm in [20].

proposed an approximation of (5.1) as the following nonconvex-concave problem, which is in the
form of (1.2) we discussed before.

min
w

NX

i=1

max
t2T

9X

j=0

tj`
�
f
�
x
K
ij ;w

�
, yi

�
, T =

(
(t1, · · · , tm) |

mX

i=1

ti = 1, ti � 0

)
, (5.2)

where K is a parameter in the approximation, and x
K
ij is an approximated attack on sample xi by

changing the output of the network to label j. The details of this formulation and the structure of
the network in experiments are provided in the appendix.

Natural FGSM L1 [32] PGD40
L1 [31]

" = 0.2 " = 0.3 " = 0.4 " = 0.2 " = 0.3 " = 0.4

[3] with " = 0.35 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%
[51] with " = 0.35 97.37% 95.47% 94.86% 79.04% 94.41% 92.69% 85.74%
[51] with " = 0.40 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%
[20] with " = 0.40 98.20% 97.04% 96.66% 96.23% 96.00% 95.17 % 94.22%

Smoothed-GDA with " = 0.40 98.89% 97.87% 97.23% 95.81% 96.71% 95.62% 94.51%

Table 2: Test accuracies under FGSM and PGD attacks.

Results: We compare our results with three algorithms from [3, 20, 51]. The references [3, 51]
are two classical algorithms in adversarial training, while the recent reference [20] considers the
same problem formulation as (1.2) and has an algorithm with O(1/✏3.5) iteration complexity. The
accuracy of our formulation are summarized in Table 2 which shows that the formulation (1.2)
leads to a comparable or slightly better performance to the other algorithms. We also compare the
convergence on the loss function when using the Smoothed-GDA algorithm and the one in [20].
In Figure 1, Smoothed-GDA algorithm takes only 5 epochs to get the loss values below 0.2 while
the algorithm proposed in [20] takes more than 14 epochs. In addition, the loss obtained from the
Smoothed-GDA algorithm has a smaller variance.

6 Conclusion

In this paper, we propose a simple single-loop algorithm for nonconvex min-max problems (1.1).
For an important family of problems (1.2), the algorithm is even more efficient due to the dual

error bound, and it is well-suited for problems in large-size dimensions and distributed setting.
The algorithmic framework is flexible, and hence in the future work, we can extend the algorithm to
more practical problems and derive stronger error bounds to attain lower iteration complexity.
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Broader Impact

In this paper, we propose a single-loop algorithm for min-max problem. This algorithm is easy to
implemented and proved to be efficient in a family of nonconvex minimax problems and have good
numerical behavior in robust training. This paper focuses on theoretical study of the algorithms. In
industrial applications, several aspects of impact can be expected:

1. Save energy by improving efficiency. The trick developed in this paper has the potential
to accelerate the training for machine learning problems involving a minimax problem
such robust training for uncertain data, generative adversarial net(GAN) and AI for games.
This means that the actual training time will decrease dramatically by using our algorithm.
Training neural network is very energy-consuming, and reducing the training time can help
the industries or companies to save energy.

2. Promote fairness. We consider min-max problems in this paper. A model that is trained
under this framework will not allow poor performance on some objectives in order to boost
performance on the others. Therefore, even if the training data itself is biased, the model
will not allow some objectives to contribute heavily to minimizing the average loss due to
the min-max framework. In other words, this framework promotes fairness, and model that
is trained under this framework will provide fair solutions to the problems.

3. Provide flexible framework. Our algorithmic framework is flexible. Though in the paper,
we only discuss some general formulation, our algorithm can be easily extended to many
practical settings. For example, based on our general framework for multi-block problems,
we can design algorithms efficiently solving problems with distributedly stored data, de-
centralized control or privacy concern. Therefore, our algorithm may have an impact on
some popular big data applications such as distributed training, federated learning and so
on.
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