
R1: No experimental evaluations: We did not focus on experiments as the goal was to demonstrate that our new1

technique for analyzing SA using the smoothed Lyapunov function is applicable for developing bounds for RL that2

can recover state-of-the-art bounds and enable new bounds for off-policy settings (please also see ’How optimal is the3

analysis’).4

R1: The results are only valid for pseudo-contraction updates: Our motivation for studying the SA algorithm in5

this setting is to analyze RL algorithms such as V-trace and Q-learning, which are known to have a contraction operator.6

R1: Consider only martingale-difference noise, and finite state and action spaces: Since we consider the tabular7

method in RL, the underlying Markovian noise can be modeled by martingale differences. When using function8

approximation, Off-policy TD can potentially diverge [36]; studying it is one of our future direction.9

R1: Title is too general: We will make the corresponding changes on the title.10

R2: A number of assumptions made: Assumptions 2.1-2.3 in our paper are standard assumptions for studying SA11

algorithms involving a contraction operator, see Assumption 4.3 and Proposition 4.4 in [5]. Moreover, they are satisfied12

for many RL algorithms such as TD-learning and Q-learning, see Chapter 5 in [5]. Regarding the assumptions for the13

V-trace algorithm, they are from the original paper [17], and we do not make any additional assumptions.14

R2: Novelty compared to prior work: Prior work studies either `2-norm contraction [5,10], or contraction w.r.t.15

‖ · ‖∞ under the condition that the noise is uniformly bounded by a constant [3,4]. We establish convergence rate under16

general norm contraction and noise whose moments scale with the current iterate. (The lack of a smooth potential17

function for analyzing ‖ · ‖∞-contraction SA is a long-standing open problem, and is pointed out in [5], Sec 4.3 page18

154). From a technical approach, we do not decompose the analysis into one for contraction and another for noise (as19

has been standard in prior works [3,4]). Our joint analysis of both is the key to our recursion (Proposition 2.1).20

R2: How optimal is the analysis: The parameters in the Generalized Moreau Envelope can be tuned to tighten the21

bound. Though we do not have formal results on the optimality of our bounds, our approach based on a smooth22

Lyapunov function recovers existing state-of-the-art finite-sample bounds for Q-learning that show only a logarithmic23

dependence on the size of the state-action space [42] in a diminishing step-size regime, and improves over [3,4] in a24

constant step-size regime (see Appendix I of the supplementary materials for details).25

R2: Simple ways to analyze SA with unbounded noise: When we have ‖wk‖ ≤ c‖xk‖ (I think you are assuming that26

x∗ = 0 is the fixed-point) for some small enough c, one can just use triangle inequality (even without taking expectation)27

to obtain a contractive recursion: ‖xk+1‖ ≤ (1 − εk)‖xk‖ + εk‖H(xk)‖ + εk‖wk‖ ≤ (1 − (1 − γ − c)εk)‖xk‖.28

However, in V-trace or Q-learning we have affinely increasing noise: ‖wk‖ ≤ A(1 + ‖xk‖), and as noted in Section 3.229

and Appendix I, the coefficient A is not small enough to apply this idea (and the affineness causes further difficulties).30

R2: Analyze only a particular policy evaluation algorithm: Popular RL algorithms such TD(0), TD(n), TD(λ),31

Q-learning, and V-trace etc. can all be modeled by SA under contraction operator and martingale difference noise [5].32

Thus our result is a broad tool to establish the finite-sample error bound of various RL algorithms.33

R3: Synchronous V-trace: We agree with the reviewer that when performing asynchronous updates, there should be at34

least an additional factor of the dimension in the bound (indeed we see this in Q-learning). We will make this clearer in35

our paper. Studying convergence rates and concentration results for asynchronous V-trace is one of our future direction.36

R3: Regarding Vπρ̄
and Vπ: When there is no clipping, we have Vπρ̄

= Vπ. However, in this case the variance can37

be arbitrarily bad in the update, and is well recognized to be the key problem with off-policy methods. The goal38

of the V-trace algorithm is to reduce the variance by introducing the bias (i.e., introducing the clipper ρ̄). By doing39

that, the variance is reduced to polynomial (quadratic) in ρ̄. As for resulting bias (i.e., the gap between Vπρ̄ and Vπ),40

[17] discusses this at a high-level (Sec 4.1). A precise expression can be derived, but has complex dependencies on41

the behavior policy, target policy, and system parameters/dynamics. We will include this expression in the revised42

Supplementary material.43

R3: Polynomial dependence on ρ̄: We believe that a polynomial dependence on ρ̄ is fundamental for any off-policy44

clipping based algorithms. Specifically, recall that if clipping is triggered, a sample is reweighted by a multiplicative45

factor of ρ̄, which means that the signal and noise are both scaled by this factor. Further if this occurs for a constant46

fraction of time, the resulting noise variance scales order-wise as ρ̄2. Since we are looking at mean-square error, it is47

natural to expect a linear dependence on variance, which is what we see in our results. Thus, we believe that our results48

capture the correct scaling, and thus are significant for V-Trace.49

R3: Minimizing the number of samples: For a given application, we can numerically optimize the parameters (c̄, ρ̄,50

T ) to trade-off between contraction ratio and variance. We will discuss this in the revised draft.51


