
A Proofs

A.1 Proof of Proposition 1

We first show that for any T ∈ Tr(U), there exists a f : Rr → R>0 such that (2) holds. Let
T ∈ Tr(U). Because T is a diffeomorphism we have T]ρ(x) = ρ(T−1(x))det(∇T−1(x)). The
inverse of T is given by

T−1(x) =

(
τ−1(U>r x)
U>⊥x

)
,

and so
det(∇T−1(x)) = det(∇τ−1(U>r x)).

Recalling ρ(x) ∝ exp(− 1
2‖x‖22), we have that

ρ(T−1(x)) ∝ ρ(x) exp

(
−1

2
‖τ−1(U>r x)‖22 +

1

2
‖U>r x‖22

)
,

which yields the result of (2) by defining

f(U>r x) = exp

(
−1

2
‖τ−1(U>r x)‖22 +

1

2
‖U>r x‖22

)
det(∇τ−1(U>r x)).

Now we show that for any function f : Rr → R>0 there exists a lazy map T ∈ Tr(U) such that (2)
holds. Let f : Rr → R>0. Denote by ρr (resp. ρ⊥) the density of the standard normal distribution on
Rr (resp. Rd−r). Let τ : Rr → Rr be a map that pushes forward ρr to πr, where πr is the probability
density on Rr defined by πr(yr) ∝ f(yr)ρr(yr). Such a map always exists because the support of
πr (and of ρr) is Rr (see [57] for details). Consider the map Q : Rd → Rd defined by

Q(z) =

(
τ(z1, . . . , zr)

z⊥

)
.

Because ρ = ρr ⊗ ρ⊥, we have Q]ρ(y) = τ]ρr(yr)ρ(y⊥) ∝ f(yr)ρ(y). Finally, the lazy map

T (z) = Urτ(z1, . . . , zr) + U⊥z⊥ = UQ(z)

satisfies
T]ρ(z) = U](Q]ρ)(z) ∝ f((U>z)r)ρ(U>z) ∝ f(U>r z)ρ(z).

This concludes the proof.

A.2 Proof of Relation (3)

We can write

DKL(π||T ?] ρ) = Eπ[log(π/T ?] ρ)] = Eπ[log(π/ρ)]− Eπ[log(T ?] ρ/ρ)]

= DKL(π||ρ)−
∫

log
(
f?(U>r x)

)
π(x)dx

= DKL(π||ρ)−
∫

log (f?(xr))πr(xr)dxr,

where πr(xr) = (U>r )]π(xr) is the marginal posterior. To complete the result, we must show that
f?(xr) = πr(xr)/ρr(xr). By definition of f? we have

f?(xr) =

∫
π(xr + x⊥)

ρ(xr + x⊥)
ρ(x⊥)dx⊥ =

∫
π(xr + x⊥)

ρr(xr)ρ⊥(x⊥)
ρ(x⊥)dx⊥ =

∫
π(xr + x⊥)dx⊥

ρr(xr)
=
πr(xr)

ρr(xr)
,

which concludes the proof.
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A.3 Proof of Proposition 2

Corollary 1 in [59] allows us to write

DKL(π(x)||f∗(U>r x)ρ(x)) ≤ 1

2
Tr
[
(Id − UrU>r )H(Id − UrU>r )

]
.

This result follows from a more general subspace logarithmic Sobolev inequality, a result that applies
to any given projector Pr ∈ Rd×d and bounds expectations of the form

Eπ
[
h2 log

(
h2

Eπ[h2|σ(Pr)]

)]
,

where σ(Pr) denotes the σ-algebra generated by Pr and h is a continuously differentiable function.
Here we take Pr = UrU

>
r , the projector onto the subspace spanned by the first r eigenvectors of

H . The function h is defined in terms of the likelihood model. (See Theorem 1, Corollary 1, and
Example 1 in [59], and their proofs, for details.)

Because U is the matrix containing the first eigenvectors of H , we have our final result,

Tr
[
(Id − UrU>r )H(Id − UrU>r )

]
= λr+1 + . . .+ λd.

A.4 Proof of Proposition 3

We define
R` = DKL((U `r )>)]π`−1||ρr).

Replacing π by π`−1 in (3) allows us to write DKL(π`−1||(T`)]ρ) = DKL(π`−1||ρ)−R` so that

DKL(π`||ρ) = DKL(π||ρ)−
`−1∑
k=1

Rk.

In particular Rk converges to 0 and, because of (5), we have

sup
U∈Rd×d

s.t.UU>=Id

DKL((U>r )]π`−1||ρr) −→
`→∞

0.

By Proposition 14.2 in [28], π`−1 converges weakly to ρ. Then (T1 ◦ . . . ◦ T`)]ρ converges weakly
to π.

B Triangular maps

One class of transport maps we consider in our numerical experiments (i.e., to approximate τ in (1),
as a building block within the lazy structure) are lower triangular maps of the form,

T (x) =


T1(x1)
T2(x1, x2)

...
Td(x1, . . . , xd)

 (7)

where each component Ti is monotonically increasing with respect to xi. We will identify these
transports with the set T> = {T : Rd → Rd |T is triangular and ∂xi

Ti > 0}. For any two distribu-
tions ρ and π on Rd that admit densities with respect to Lebesgue measure (also denoted by ρ and π,
respectively) there exists a unique transport T ∈ T> such that T]ρ = π. This transport is known as
the Knothe–Rosenblatt (KR) rearrangement [9, 11, 33, 47]. Because T is invertible, the density of the
pullback measure T ]π is given by T ]π(x) = π ◦ T (x) det∇T (x), where det∇T (x) is defined by∏d
i=1 ∂xiT

(i)(x1:i). We note here that det∇T (x) is defined formally. Indeed, T does not need to be
differentiable (in fact, T inherits the same regularity as the densities of ρ and π [9, 50]). In §4.4, and
in the additional examples of Appendix F, we consider semi-parametric polynomial approximations
to maps in T>. Specifically, we consider the set T †> ⊂ T> of maps T : (a,x) 7→ T [a](x) defined by

Ti[ci,hi](x) := c[ci](x1:i−1) +

∫ xi

0

(h[hi](x1:i−1, t))
2
dt , (8)
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where a = {(ci,hi)}di=1 denotes the coefficients of polynomials c and h. As discussed in §2, we
compute the transport map (i.e., an approximation to the KR rearrangement) between ρ and π as a
minimizer T ? of

min
T∈T †>

DKL(T]ρ‖π) = min
T∈T †>

Eρ[log ρ/T ]π].

[8, 38, 40, 52] provide more details and discussion.

C Inverse autoregressive flows

Another underlying class of transports that we use in our numerical experiments are inverse auto-
regressive flows (IAFs). Introduced in [31], IAFs are a class of normalizing flows parameterized
using neural networks. IAFs are built as a composition of component-wise affine transformations,
where the shift and scaling functions of each component only depend on earlier indexed variables.
Each component of such a transformation can be expressed as

Ti(x) = mi(x1, . . . xi−1) + si(x1, . . . xi−1)xi

where the functions mi and si are defined by neural networks. These maps are naturally lower
triangular, and the Jacobian determinant is given by the product of the scaling functions of each
component, i.e.,

det(∇T ) =

d∏
i=1

si(x),

allowing for efficient computation. Flows are typically comprised of several IAF stages with the
components either randomly permuted or, as we choose, reversed in between each stage. For the
results of §4.2 and §4.3 we construct IAFs using 4 stacked IAF layers. The autoregressive networks
each use 2 hidden layers with hidden dimension equal to the active dimension of the map (i.e. d in
the non-lazy case and r in the lazy case, unless specified) and ELU activation functions. Each map
was trained using Adam [30] with step size 10−3 for 20000 iterations. The optimization objective
(i.e., the ELBO) was approximated using 100 independent samples from ρ at each iteration.

D Generalized linear models and lazy structure

Here we discuss how generalized linear models may naturally admit lazy structure. We consider a
Bayesian logistic regression problem as an example, but the same result follows for other generalized
linear models. Let M denote the number of observations in a data set and N denote the number
of covariates or features. In §4.2, we considered N = 500 covariates. The low rank problem used
M = 20 observations and the full rank problem used M = 605 observations. For each observation
i = 1, . . . ,M and covariate j = 1, . . . , N , we denote the observed covariates by fij ∈ R, the
observations as yi ∈ {0, 1}, and the model parameters as xj ∈ R. The single observation likelihood
is then defined as

`i(x) = P (x, fi)
yi(1− P (x, fi))

1−yi

where the quantity
P (x, fi) =

(
1 + exp(−xT fi)

)−1
= sigmoid(xT fi)

models the probability that yi = 1. This has the form of a generalized linear model, i.e., the likelihood
depends on a linear function of the covariates, xT fi. The gradient of the log likelihood then has the
form

∇x log(`i(x)) = fih(x; fi, yi)

for some function h. Assuming independence of the observations, the likelihood of the data set can
be written as

∇x log(L(x)) =

M∑
i=1

fih(x; fi, yi) = Fh(x).

The matrix F is often referred to as the design matrix. We can then express the diagnostic matrix H
as

H =

∫
(∇ log(L(x))) (∇ log(L(x)))

T
dπ = F

[∫
(h(x)) (h(x))

T
dπ

]
FT ,
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and so the rank of H is bounded by the rank of the feature matrix F which is at most min(N,M). If
M < N , we are in the exactly lazy setting, where r = M . We also note that F may be low rank due
to redundancy in the measurements, meaning when fi is nearly aligned with fj ; more generally, it
might exhibit some spectral decay.

E The use of HB vs H
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Figure 4: The two trace diagnostics through
out the training of Ur-IAF on the low rank
Bayesian logistic regression problem .

We note in §2 that a practical implementation of Al-
gorithm 1 requires the numerical approximation of the
diagnostic matrix H defined by

H =

∫ (
∇ log

π

ρ

)(
∇ log

π

ρ

)>
dπ.

This poses a challenge as we cannot generate samples
from π. We can obtain an (asymptotically) unbiased es-
timate of H using self-normalized important sampling
(IS), but as we comment in the main text, this estimate
typically has large variance when the IS instrumen-
tal/biasing distribution is far from π. Instead, we can
use the diagnostic matrix HB, where the expectation is
instead taken with respect to the reference density ρ

HB =

∫ (
∇ log

π

ρ

)(
∇ log

π

ρ

)>
dρ.

Unbiased estimates of HB can be computed easily using direct Monte Carlo sampling, but these are
of course biased estimates of H in general. In this section we comment on the use of this biased
estimate in the error bound on the KL divergence, and find that this bias leads to a more conservative
diagnostic.

Figure 5a shows histograms of 100 estimates of Tr(Ĥ) (where Ĥ is a self-normalized IS estimate of
H) and Tr(ĤB) (where ĤB is a Monte Carlo estimate of HB) for the low-rank logistic regression
problem of §4.2. Each estimate was constructed from K = 500 samples. We see that the variance of
Tr(Ĥ) is higher than that of Tr(ĤB). Figure 5b shows similar histograms for Tr(Ĥ`) and Tr(ĤB

` )
after the training of the transport map. We see that the bias has decreased now that the approximate
posterior is close to the true posterior; where indeed HB

` is closer to H`. The variance of the IS
estimate Tr(Ĥ`) has decreased significantly as well. Figure 4 shows the two trace diagnostics
computed throughout the training of the Ur-IAF lazy map. We see that 1

2 Tr(HB
` ) > 1

2 Tr(H`)
throughout the training process, meaning it is a more conservative error bound for this particular
problem.

F Numerical algorithms

Here we describe the numerical algorithms required by the lazy map framework. Algorithm 3
assembles the numerical estimate ĤB via some quadrature rule (e.g. Monte Carlo, Gauss quadrature
[25], sparse grids [51], ect.) of HB =

∫
(∇ log π

ρ )(∇ log π
ρ )>dρ.

Algorithm 4 computes the eigenvectors U satisfying Proposition 2 and discerns between the subspace
of relevant directions span(Ur) and its orthogonal complement span(U⊥).

Algorithm 5 outlines the numerical solution of the variational problem

T [a?] = arg min
T [a]∈T

DKL (T [a]]ρ‖π) . (9)

For the sake of simplicity we fix the complexity the underlying transport class T and the sample size
m used in the discretization of the KL divergence. Alternatively one could adaptively increase the
complexity and the sample size to match a prescribed tolerance, following the procedure described in
[8]. For the examples presented in this work, the variational problem is solved either with the Adam
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Figure 5: Histograms of Tr(HB) and Tr(H) before and after training for the low rank logistic
regression problem.

optimizer [30] or with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method [10].
One could switch to a full Newton method if the Hessian of π or its action on a vector are available.

Algorithms 6 and 7 are numerical counterparts of Algorithms 1 (constructing a lazy map) and 2
(constructing a deeply lazy map) respectively.

Algorithm 3 Given the quadrature rule (xi, wi)
m
i=1 with respect to the base distribution ρ, and the

unnormalized density π, compute an approximation to HB =
∫

(∇ log π
ρ )(∇ log π

ρ )>dρ.

1: procedure COMPUTEH( (xi, wi)
m
i=1, π )

2: Assemble

ĤB =

m∑
i=1

(
∇x log

π(xi)

ρ(xi)

)(
∇x log

π(xi)

ρ(xi)

)T
wi

return ĤB

3: end procedure

Algorithm 4 Given the matrix ĤB ≈ HB, the tolerance ε, and a maximum lazy rank rmax, find the
matrix U := [Ur |U⊥] that satisfies Proposition 2.

1: procedure COMPUTESUBSPACE( ĤB, ε, rmax )
2: Solve the eigenvalue problem ĤBX = ΛX

3: Let r = rmax ∧min{r ≤ d : 1
2

∑
i>r λi ≤ ε}

4: Define Ur = [X:,1, . . . , X:,r] and U⊥ = [X:,r+1, . . . , X:,n]

5: return Ur, U⊥, r
6: end procedure
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Algorithm 5 Given the quadrature rule (xi, wi)
m
i=1 with respect to the base distribution ρ, the

unnormalized target density π, a set of underlying class of transport maps T , a tolerance εmap, find
the optimal map parameters a? such that T [a]]ρ ∝ π by minimizing (9).

1: procedure COMPUTEMAP( (xi, wi)
m
i=1, π, Ta, εmap )

2: Solve (e.g., via a stochastic or deterministic optimization method),

T [a?] = arg min
T [a]∈T

−
m∑
i=1

log(T [a]]π(xi))wi︸ ︷︷ ︸
J [a]

,

based on some stopping criteria, e.g., ‖∇aJ [a?]‖2 < εmap

3: return T [a?]
4: end procedure

Algorithm 6 Given the quadrature rule (xi, wi)
m
i=1 with respect to the base distribution ρ, the

unnormalized density π, the matrix ĤB ≈ HB, the rank truncation tolerance εr, the maximum lazy
rank rmax, the class of transport maps T and the target tolerance εmap for learning the map τ , identify
the optimal lazy map T .

1: procedure LAZYMAPCONSTRUCTION( (xi, wi)
m
i=1, π, ĤB, εr, rmax, T , εmap, )

2: Ur, U⊥, r ← COMPUTESUBSPACE( ĤB, εr, rmax ) . Algorithm 4
3: Define π̂(x) := (Ur|U⊥)]π(x) = π ◦ (Ur|U⊥)x

4: Build the quadrature (xi, wi)
m
i=1 with respect to N (0, Id)

5: Define Tr =
{
T [a](z) =

[
τ [a](z1, . . . , zr)

>, zr+1, · · · , zd
]> ∣∣∣ τ [a] ∈ T

}
6: T [a?]← COMPUTEMAP( (xi, wi)

m
i=1, π̂, Tr, εmap ) . Algorithm 5

7: Define L(z) := (Ur|U⊥) ◦ T [a](z)

8: return L
9: end procedure

Algorithm 7 Given the quadrature rule (xi, wi)
m
i=1 with respect to the base distribution ρ, the target

density π, a stopping tolerance ε and a maximum number of lazy layers `max, compute a deeply lazy
map. See Algorithm 6 for the definition of the remaining arguments.

1: procedure LAYERSOFLAZYMAPSCONSTRUCTION((xi, wi)mi=1, π, ε, r, `max, T , εmap)
2: Set π0 = π and ` = 0

3: Build the quadrature (xi, wi)
m
i=1 with respect to N (0, Id)

4: Compute ĤB
` = COMPUTEH( (xi, wi)

m
i=1, π` )

5: while ` ≤ `max and 1
2 Tr(ĤB

` ) ≥ ε do
6: `← `+ 1

7: T` ← LAZYMAPCONSTRUCTION( (xi, wi)
m
i=1, π`−1, ĤB

` , 0, r, T , εmap ) . Algorithm 6
8: Update T` = T`−1 ◦ T`
9: Compute π` = (T`)

]π

10: Build the quadrature (xi, wi)
m
i=1 with respect to N (0, Id)

11: Compute ĤB
` = COMPUTEH( (xi, wi)

m
i=1, π` )

12: end while
13: return T` = T1 ◦ · · · ◦ T`
14: end procedure
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G Numerical examples: additional details and experiments

In this section, we provide more details concerning our numerical examples and present several other
numerical experiments.

G.1 Additional details: Bayesian logistic regression

Here we provide addition details and results for the Bayesian logistic regression problems discussed
in §4.2. We begin by further describing the UCI Parkinson’s disease data set [1]. The 500 features
we consider consist of the patient sex, and audio extensions from a patient recording. The data set
includes data from 3 independent recordings from 188 Parkinson’s disease patients and a control group
of 64 individuals, totaling 756 observations in all. The low rank problem considers 20 observations
where we use observations from 20 different individuals.

We imposed a non-informative prior of N (0, 102Id) on the parameters. Samples from the prior can
be transformed to match those of a standard normal distribution via a whitening transformation, i.e.

z ∼ N (0, 102Id), Wz :=
1

10
z ∼ N (0, Id),

where we let W denote this whitening operation. We consider the transformed posterior

π̃(x) ∝ L(W−1x)ρ(x)

where the prior has been replaced with a standard normal distribution. This whitened posterior relates
to the true posterior by π̃ = W]π. We see that solving this transformed problem is equivalent to
solving the original, and that working with this whitened problem directly exposes lazy structure
by matching the form of 2. A similar whitening process is followed for each of the numerical
experiments.

Figure 6 shows mean performance metrics through out the training process for each of the maps
considered. Each metric is computed with 500 independent samples. For G3-IAF, the three lazy
layers were trained for 5000, 5000 and 10000 iterations, which can be seen as sharp decreases in the
negative ELBO and trace diagnostics occur. In general we see faster convergence in terms of the
number of iterations for maps using the lazy framework compared to the baselines.

G.2 Additional details: Bayesian neural network

In §4.3 we considered a Bayesian neural network that is also used as a test problem in [36] and
[18]. Bayesian neural networks generate high dimension inference problems, where the parameter
dimension is the number of parameters in the underlying neural network. We considered the UCI
yacht hydrodynamics data set [2]. In our example, the parameter dimension is 581, given an input
dimension of 6, one hidden layer of dimension 20, and output layer of dimension 1. We use sigmoid
activation functions in the input and hidden layer, and a linear output layer. The prior on the model
parameters is taken to be zero mean Gaussian with a variance of 100.

Here we consider affine maps, i.e., maps of the form T (x) = µ+Lx, whereL ∈ Rd×d denotes a lower
triangular matrix and µ ∈ Rd a constant vector. The approximate posteriors in this case are indeed
Gaussian distributions with mean µ and covariance Σ = LLT . We note that the final approximate
posterior given by the G3-affine transport map is also Gaussian given that the composition of affine
functions is affine. Therefore the performance benefits we see may come from avoiding sub-optimal
minima of the KL divergence. We see stabler training in terms of the performance metrics in Figure 7.
For G3-affine, layers were trained for 5000, 5000 and 10000 iterations, where we see sharp decreases
in each of the diagnostics.

G.3 Additional details: High-dimensional elliptic PDE inverse problem

Here we explain how the numerical discretization of the PDE enters the Bayesian inference for-
mulation. We denote by S the map κ 7→ u, mapping the discretized coefficient to the numerical
solution of equation 6. The observation map is defined by the operator Bi(u) :=

∫
D uφi dx, where

φi(x) := exp[−‖si − x‖22/(2δ2)]/γi, {si}ni=1 ∈ D are observation locations, δ = 10−4, and γi are
normalization constants so that

∫
D φi dx = 1 for all i = 1, . . . , n. The parameter-to-observation map
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Figure 6: Mean training plots for the low rank (left) and full rank (right) Bayesian logistic regression
problems across 10 optimization runs. ∗The x-axes include the cost of forming the matrices H` to
determine the subspace U ` in terms of gradient evaluations. Each matrix is computed using 500
gradient evaluations, the same cost as 5 optimization steps.
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Figure 7: (a,b,c) Mean training plots for the Bayesian neural network problem across 10 optimization
runs. ∗The x-axes include the cost of forming the matrices H` to determine the subspace U ` in terms
of gradient evaluations. Each matrix is computed using 581 gradient evaluations, approximately the
same cost as 6 optimization steps. (d) Analogous plot to Figure 2 for the Bayesian neural network
problem. The spectrum of the diagnostic matrices HB

` flatten and fall as the approximation to the
posterior improves with each lazy layer.
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Figure 8: Additional figures for the elliptic problem with unknown diffusion coefficient. Figure (a)
shows the solution u corresponding to the field in Figure 3a. Figures (b) and (c) show the mean and
the standard deviation of the posterior distribution.
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is then defined by F : κ 7→ [B1(S(κ)), . . . , Bn(S(κ))]>. The coefficient κ is endowed with the
distribution κ ∼ N (0, C(x,x′)), where C(x,x′) := exp(−‖x− x′‖2) is the Ornstein–Uhlenbeck
(exponential) covariance kernel. Letting Σ be the discretization of C over the finite element mesh, we
define the likelihood to be Ly(z) ∝ exp

(
−
∥∥y −F(Σ1/2z)

∥∥
Σ−1

obs

)
. We stress here that the model

is computationally demanding: the evaluation of π(z) and∇π(z) require approximately 1 second.

Figure 8 shows the observation generating solution u? = S(κ), the posterior mean E[κ|y?] and the
posterior standard deviation Std[κ|y?].

G.4 Additional example: Log-Gaussian Cox process with sparse observations

We consider an inference problem in spatial statistics for a log-Gaussian Cox point process on a square
domain D = [0, 1]2. This type of stochastic process is frequently used to model spatially aggregated
point patterns [14, 24, 39, 48]. Following a configuration similar to [14, 39], we discretize D into a
64× 64 uniform grid, and denote by si ∈ D the center of the ith cell, for i = 1, . . . , d, with d = 642.
We consider a discrete stochastic process (Yi)

d
i=1, where Yi denotes the number of occurrences/points

in the ith cell. Each Yi is modeled as a Poisson random variable with mean exp(Zi)/d, where (Zi)
is a Gaussian process with covariance Cov(Zi,Zj) = σ2 exp

(
−‖si − sj‖2 /(64β)

)
and mean

E[Zi] = µ, for all i = 1, . . . , d. We consider the following values for the parameters: β = 1/33,
σ2 = 1.91, and µ = log(126)− σ2/2. The (Yi) are assumed conditionally independent given the
(latent) Gaussian field. For interpretability reasons, we also define the intensity process (Λi)

d
i=1 as

Λi = exp(Zi), for i = 1, . . . , d.

The goal of this problem is to infer the posterior distribution of the latent process Λ := (Λ1, . . . ,Λn)
given few sparse realizations of Y := (Yi) at n = 30 spatial locations sk1 , . . . , skn shown in Figure
9a. We denote by y? ∈ Rn a realization of Y obtained by sampling the latent Gaussian field
according to its marginal distribution. Our target distribution is then: πΛ|Y (λ|y?).

Since the posterior is nearly Gaussian, we will run three experiements with linear lazy maps and
ranks r = 1, 3, 5. For the three experiments, the KL-divergence minimized for each lazy layer and
the estimators of HB

` are discretized with m = 100, 300, 500 Monte Carlo samples respectively.

Figures 9b–c show the expectation and few realizations of the posterior, confirming the data provides
some valuable information to recover the field Λ. Figures 9d–e show the convergence rate and the
cost of the algorithm as new layers of lazy maps are added to T`. As we expect, the use of maps
with higher ranks leads to faster convergence. On the other hand the computational cost per step
increases—also due to the fact that we increase the sample size m as the rank increases. Figure 9f
reveals the spirit of the algorithm: each lazy map trims away power from the top of the spectrum of
H , which slowly flattens and decreases. To additionally confirm the quality of T6 for lazy maps with
rank 5, and to produce asymptotically unbiased samples from π, we sample the pullback distribution
T]6π using an MCMC chain of length 104, with a Metropolis independence sampler employing
a N (0, Id) proposal (see [C. Robert and G. Casella, Monte Carlo statistical methods, 2013] for
more details). As explained in [44], the Metropolis independence sampler is effective insofar as the
pullback distribution has been Gaussianized by the map. The reported acceptance rate is 72.6% with
the worst effective sample size (over all d = 4096 chain components) being 26.6% of the total chain.

G.5 Additional example: Estimation of the Young’s modulus of a cantilever beam

Here we consider the problem of estimating the Young’s modulus E(x) of an inhomogeneous
cantilever beam, i.e., a beam clamped on one side (x = 0) and free on the other (x = l). The beam
has a length of l = 10 m, a width of w = 10 cm and a thickness of h = 30 cm. Using Timoshenko’s
beam theory, the displacement u(x) of the beam under the load q(x) is modeled by the coupled PDEs{

d
dx

[
E(x)

2(1+ν)

(
ϕ(x)− d

dxw(x)
)]

= q(x)
κA ,

d
dx

(
E(x)I d

dxϕ(x)
)

= κA E(x)
2(1+ν)

(
ϕ(x)− d

dxw(x)
)
,

(10)

where ν = 0.28 is the Poisson ratio, κ = 5/6 is the Timoshenko shear coefficient for rectangular
sections, A = wh is the cross-sectional area of the beam, and I = wh3/12 is its second moment of
inertia. We consider a beam composed of d = 5 segments each of 2 m length made of different kinds
of steel, with Young’s moduliE? = {Ei}5i=1 = {190, 213, 195, 208, 200 GPa} respectively, and we
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Figure 9: Application of the algorithm on the log-Gaussian Cox process distribution. Figure (a)
shows the intensity field Λ? used to generate the data y? (circles). Figures (b) shows the posterior
expectation. Figure (c) shows four realizations from the posterior π(Λ|y?). Figure (d) shows the
convergence rate of the algorithm as a function of the iterations. Figure (e) shows the cost of the
algorithm for different truncation ranks. Figure (f) shows the decay of the spectrum of H` for lazy
maps with rank 5.
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Figure 10: Application of the algorithm for the estimation of the Young’s modulus of a cantilever
beam. Figure (a) shows the experimental setting with the beam clamped at x = 0, the load applied at
x = l, 20 sensors marked in red, and the true Young’s modulus [GPa] for each segment. Figure (b)
shows the convergence of the algorithm in terms of the variance and trace diagnostics. Figure (c)
shows marginals of the posterior distribution π(E|y?) along with the true values (red).

run the virtual experiment of applying a point mass of 5 kg at the tip of the beam. Observations y? of
the displacement w are gathered at the locations shown in Figure 10a with a measurement noise of
1 mm. We endow E with the prior π(E) = N (200 GPa, 25 · I5) and our goal is to characterize the
posterior distribution π(E|y?) ∝ Ly?(E)π(E). Let S be the map E 7→ w delivering the solution to
(10). Observations are gathered through the operator Bi(w) :=

∫ l
0
wφi dx, where φi are defined the

same way as in Appendix G.3 for locations {si := i · 0.5}20
i=1. Defining the parameter-to-observable

map F : E 7→ [B1(S(E)), . . . , B20(S(E))]>, observations y are assumed to satisfy the model
y = F(E) + ε, where ε ∼ N (0, 10−6 · I20) corresponds to 1 mm of measurement noise.

The algorithm is run with rank 2 lazy maps using triangular polynomial maps of degree 3 as the
underlying transport class. The expectations appearing in the algorithms are approximated using
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Figure 11: Additional results for the estimation of Young’s modulus of a cantilever beam. Figure
(a) shows the mean (dashed black) and the 5, 10, 90, 95-percentiles (thin black) of the marginals of
π(E|y?) compared with the true values (red). Figure (b) shows the distribution of (y? − y)/|y?|,
where y is distributed according to the posterior predictive π(y|y?) = π(y|E)π(E|y?).

m = 100 samples from N (0, I5). Figures 10 and 11 summarize the results. We further confirm
these results by generating an MCMC chain of length 104 using Metropolis-Hastings with aN (0, Id)

independence proposal; the target distribution for MCMC is the pullback T]`π, as in previous examples.
The reported acceptance rate is 68.3% with the worst, best, and average effective sample sizes being
7.0%, 38.7%, and 20.1% of the complete chain. In this example we fix the Poisson ratio, but one
could think of it varying from material to material, and thus estimate it jointly with the Young’s
modulus.

25


