Supplementary Materials for
Nimble: Lightweight and Parallel GPU Task
Scheduling for Deep Learning

Appendix A Proofs on the Stream Assignment Algorithm of Nimble
In this section, we provide detailed proofs on the theorems presented in Section 4.2.

Problem Setting We assume that the computation graph of a neural network is given. The compu-
tation graph is represented as a finite DAG G = (V, E). Also, we are given a set of GPU streams
S = {s1,82,- -+, 5y} Algorithm 1 must find a stream assignment f : V' — S, which satisfies the
following conditions:

¢ Maximum logical concurrency. If u, v € V and there exists no path between v and v in G, then
fluw) # f(v).

¢ Minimum number of synchronizations. Among such functions, f incurs the smallest number of
synchronizations across streams.

Here we define important concepts and terminologies used in the following proofs.

Definition 1. For a graph G = (V, E), a synchronization plan A C F is a set of edges on which
synchronizations are planned to be performed (regardless of stream assignments).

Definition 2. For a stream assignment f on G = (V, E), a synchronization plan A C FE is safe if it
satisfies the following condition.

For any (u,v) € E, f(u) = f(v) or there exists a path P C E from u to v such that P N A # (.

In other words, the plan A is safe when the execution order between every pair of adjacent nodes u
and v is guaranteed: either by assigning them to the same streams or by performing a synchronization
somewhere after u and before v.

Notation. We denote by mingyn.(G, f) the minimum number of synchronizations required when
applying f to the graph G. That is,

MiNsync(G, f) = min{|A| € Z>o | A C E is safe for f on G}

A.1 Proof of Theorem 1
Theorem 1 includes two statements, which are presented here as Theorem and Theorem{1-2}
respectively.

Theorem 1-1. A stream assignment | satisfies maximum logical concurrency on a computation
graph G if and only if | satisfies maximum logical concurrency on the minimum equivalent graph G'.

Proof of Theorem[I-1| By definition of MEG, G’ has the same reachability relation as G. Thus, if
no path exists between a pair of nodes in G, then there is no path between the same pair of nodes in
G’, and vice versa. O

Prior to the proof of Theorem[I-2] we describe and prove Lemma|[I]and Lemma[2]

Lemma 1. For a minimum equivalent graph G' = (V, E') of G, if (u,v) € E’, then {(u,v)} is the
only path in G from u to v.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Proof of Lemma|ll We will prove by contradiction. Suppose there is another path P C E from u
to v that goes through w € V. By the definition of MEG, G’ must preserve reachability from u to
w and w to v. Consequently, removing the edge (u,v) from E’ does not change the reachability
relation. This is contradictory to the definition of MEG, because we can construct another subgraph
G* = (V, E'\ {(u,v)}), where the number of edges of G* is smaller than that of G’ while preserving
the reachability relation. O

Lemma 2. A synchronization plan A C E is safe for a stream assignment f on G if and only if A is
safe for f on G'.

Proof of Lemma[2] We first show that if A is safe for f on G, then A is safe for f on G’. We will
prove by contradiction. Suppose A is safe for f on G but not safe for f on G’. Then there is an edge
(u,v) € E' such that f(u) # f(v) and (u,v) ¢ A. Since G’ is the MEG of G and (u,v) € E’,
{(u,v)} is the only path in G from u to v by Lemma[l] Consequently, (u,v) € E is an edge that
f(u) # f(v) and every path in G from u to v does not include any edge in A, which is contradictory
to the assumption that A is safe for f on G.

Next, we show that if A is safe for f on G’, then A is safe for f on G. We will prove by contradiction.
Suppose A is safe for f on G’ but not safe for f on G. Then there is an edge (u,v) € E \ E’ such
that f(u) # f(v) and every path from « to v in G does not include any edge in A. Since (u,v) ¢ E’
and G’ preserves the same reachability relation as G, there must exist a node w; € V such that
(u,wy) € E’ and a path from w; to v exists in G’. As every path from u to v in G does not include
any edge in A, f(u) = f(w;) must hold to meet the assumption that A is safe for f on G’. Then,
we have two vertices wy and v such that f(w;) # f(v) and every path from w; to v in G does not
include any edge in A. Since G is a finite DAG, if we repeat this process, we end up with two vertices
wy, and v with the following conditions: (wy,,v) € E’, f(w,) # f(v), and (w,,v) ¢ A, which
contradicts the assumption that A is safe for f on G’. O

Theorem 1-2. For any stream assignment f that satisfies maximum logical concurrency on G, the
following equation holds.

minsync<G7 f) = minsync(Gl, f)

That is, the minimum number of synchronizations required for f on G is equal to the minimum number
of synchronizations required for f on G'.

Proof of Theorem[I-2] This directly follows from Lemma 2] O

A.2 Proof of Theorem 2

Prior to the proof of Theorem [2] we clarify the meaning of the set of the stream assignments. Let
F={f|f:V — S}. We can define an equivalence relation ~ on F' as follows.

For stream assignments g, h € F, g ~ h if and only if g = o o h for some permutation o over S.

Note that any permutation on S does not affect the degree of logical concurrency and the number
of synchronizations of a stream assignment. In other words, for stream assignments g, h € F' such
that g ~ h, it directly follows that 1) g meets maximum logical concurrency if and only if h meets
maximum logical concurrency, and 2) minsy,.(G’, g) = minsync(G’, h). Therefore, if two stream
assignments can be converted to one another by some permutation on S, we do not differentiate the
two stream assignments. Furthermore, we do not differentiate a stream assignment f € F from its
equivalence class [f], because we only consider which nodes are mapped to the same streams, but do
not consider the exact value of f. From now on, we identify [f], the equivalence class of f, as f.

Remark. The set of the stream assignments [F is as follows.

F={l/11r5:V—5}

Theorem 2. Let M be the set of the matchings of the bipartite graph B obtained from G’, and F 4,
be the set of the stream assignments that satisfy maximum logical concurrency on G'. Then one-to-one
correspondence ® : Ml — [, .. exists.

Proof of Theorem 2] We construct ® according to Step 4 and Step 5 of Algorithm 1.

First, we show that ®(m) € F,,, 4, i.e., ®(m) meets maximum logical concurrency, for any matching
m € M. We prove this by contradiction. Choose an arbitrary matching m € M and suppose
that ®(m) does not satisfy maximum logical concurrency. In other words, suppose that a pair of
nodes v;, v; € V exists such that there is no path from v; to v; in G’ but &(m)(v;) = ®(m)(v;).
Since v; and v; are mapped to the same stream, it follows from Step 4 that there exists a sequence
of edges {(@i, Yy)s (Thys Yks), -+ » (T, y;)} € m. This, in turn, means that there exists a path
{(vi, vry), (Vky, Uiy), - -+ 5 (U, ;) } © EY, which is contradictory to the assumption. Therefore, for
any m € M, ®(m) meets maximum logical concurrency.

Secondly, we show that ® is injective. Again, we will prove by contradiction. Suppose that ®(m;) =
®(mo) for some matchings m; # mo. Since my # mao, there exists an edge (z;,y;) € Ep thatis
included in either of the two matchings. Without loss of generality, assume (x;, y;) € m;. Then the
equation ®(m,)(v;) = ®(m1)(v;) holds, and so does the equation ®(myz)(v;) = ®(m2)(v;). The
latter equation implies that there exists a sequence of edges {(x;, Yk,), (Thy s Uks), -+ > (T, Y5)} C

ma. This, in turn, means that a path from v; to v; other than than edge (vi, vj) exists in E’, which is
contradictory to the assumption that G’ is the MEG of the graph G by Lemma

Lastly, we demonstrate that ® is surjective. Assume that an arbitrary stream assignment f € F,, .. is
given. We construct my C Ep in such a way that (z;,y;) € my if and only if f(v;) = f(v;) and
(vs,v;) € E'. Then ®(my) = f follows by definition of ®. O

A.3 Proof of Theorem 3

Definition 3. For a stream assignment f on G’, we define Q(f) C V as follows.

Q(f)={veV|3IpeVst (pv) € E and f(p) = f(v)}

That is, a node v € V is included in Q(f) if and only if it has at least one parent node which is
mapped to the same stream as v by f.

Definition 4. For a stream assignment f that satisfies maximum logical concurrency on G’, we
define a function R¢(v) : Q(f) — V as follows.

Ry :v—ps.t(p,v) € E and f(p) = f(v)
Lemma 3. The function R; is well-defined.

Proof of Lemma[3] By definition of Q(f), Ry(v) exists for any v € Q(f). What we have to show
is the uniqueness of such p for each v. Suppose Ip1,ps € V such that (p1,v), (p2,v) € E' and
f(p1) = f(p2). Since f satisfies maximum logical concurrency, there is a path between p; and
pe. Without loss of generality, assume that there is a path from p; to ps. Then (p1,v) € E’ can be
removed from the MEG of G, which contradicts the assumption that G’ is MEG of G. O

Lemma 4. For a stream assignment | that satisfies maximum logical concurrency on G’,

minsync(Glaf) = |El‘ - |Q(f)|

Proof of Lemmad], We first show that mingy,.(G’, f) < |E'| — |Q(f)|. For any node v € Q(f),
there exists an edge (Ry(v),v) € E’. Observe that synchronization on the edge (R(v),v) is
redundant because f(Rs(v)) = f(v). Thus, among all of the edges in E’, we can guarantee that at
least |Q(f)| edges do not require synchronizations.

Conversely, we show that mingy,.(G’, f) > |E'| — |Q(f)|. Let A € E’ be a safe synchronization
plan for f on G’ such that |A| = minsy,.(G’, f). Select an arbitrary node v € V and let I, C E’ be
the set of the incoming edges to v in G'. If v ¢ Q(f), for any edge e = (p,v) € I,, e € A. This is
because, by Lemma {e} is the only path between p and v, and, therefore, any safe synchronization
plan must include the edge e. If v € Q(f), any edge e € I, other than (R;(v), v) must be included
in A. Thus, the following inequality holds.

minsyncz Z |]v‘+ Z (‘IU|_1)

vEQ(f) veEQ(S)
Clearly, the righthand side is equal to |E'| — |Q(f)]-

Theorem 3. For any matching m € M, the following equation holds.
minsync(le(I)(m)) = |El| - |m|

Proof of Theorem[3] Let m € M be a matching of the bipartite graph B. By Theorem [2] and
Lemma (4] it suffices to show |Q(®(m))| = |m|. For this purpose, we define a function ¥,, :
Q(®(m)) — m and demonstrate that ¥,,, is a bijection.

We first define a function H : E' — Ep as H : (v;,v;) — (x;,y;). Since we construct the bipartite
graph B in the same manner as H, it is trivial that the function H is bijective. Now we define ¥,,, as

Ui (v) = H(Re(m)(v),v), Vv Q(P(m))

We can easily confirm that ¥, is injective. Since H is bijective, if ¥,,(u) = ¥,,(v) then
(Ra(m)(w),u) = (Ro@m)(v),v). Thus, u = v follows.

Next, we show that U, is surjective. Select an arbitrary edge (z;,y;) € m. Since (z;,y;) € Ep,
(vs,v5) € E'. Also, by definition of ®, ®(m)(v;) = ®(m)(v;). Thus, it follows that v; € Q(P(m))
and R () (v;) = v;. That is, the first coordinate of W,,,(v;) is ;. In addition, from the definition
of ¥,, and H, it is clear that the second coordinate of W,,(v;) is y;. To sum up, it follows that
U, (v;) = (xi,y;), 1.e., Uy, is surjective.

Since ¥,,, is a bijection between Q(®(m)) and m, cardinality of the two sets are equal. O

A4 Time Complexity Analysis

Since the computation graph G = (V, E) is a finite DAG, its minimum equivalent graph can be
obtained in O(V3) time [4]]. To convert G’ into the bipartite graph B, Nimble computes the transitive
closure of G’, which again takes O(V3) time. Additionally, in calculating a maximum matching of
the bipartite graph B, Nimble uses Ford-Fulkerson method [3]] which costs O(V E) time. To sum up,
the stream assignment algorithm of Nimble takes O(V3) time in total. Note that Nimble computes
the stream assignment once before the AoT scheduling, so the time spent on Algorithm 1 is amortized
over iterations. Therefore, the time spent on the stream assignment algorithm can be considered
negligible.

Appendix B Details on Evaluation Setup

The experiments to evaluate the performance of Nimble, which are described in Section 5, use the
implementations of the neural networks from various open-source repositories. We summarize the
information below.
* torchvision repository{ﬂ
— ResNet-50, ResNet-101, Inception-v3, MobileNetV2
* Pretrained models for PyTorch repositoryE]
— NASNet-A (mobile), NASNet-A (large)
* PyTorch Image Models repositoryﬂ
— EfficientNet-BO, EfficientNet-B5
« Differentiable Architecture Search repositoryﬂ
— AmoebaNet, DARTS
NVIDIA Deep Learning Examples repositoryE]
— BERT

L]

'"https://github.com/pytorch/vision
https://github.com/Cadene/pretrained-models.pytorch
*https://github.com/rwightman/pytorch-image-models
‘nttps://github.com/quark0/darts
Shttps://github.com/NVIDIA/DeeplearningExamples

https://github.com/pytorch/vision
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/rwightman/pytorch-image-models
https://github.com/quark0/darts
https://github.com/NVIDIA/DeepLearningExamples

301[-==" PyTorch =3 TensorRT 1%0-00
8251 HEl TorchScript [Nimble
3 I Caffe2
@ 204
j=})
)
© 151
2
T 10
& 5.93 4.90 b]
I -
0 £=== __ _) R _
ResNet-50 ResNet-101 Inception-vd NASNet-A NASNet-A MobileNetV2 EfficientNet EfficientNet
(mobile) (large) BO B5
(a) Results on an NVIDIA Titan RTX GPU.
204| === PyTorch 3 TensorRT P42
g EEl TorchScript [Nimble
§ 15 || HEE Caffe2
[=}
)
g 10
¥
a
& 54 3.64 3490 4|i|482

o

ResNet-50 ResNet-101 Inception-vd NASNet-A NASNet-A MobileNetV2 EfficientNet EfficientNet
(mobile) (large) BO B5

(b) Results on an NVIDIA Titan Xp GPU.

Figure 1: Relative inference speedup of Nimble and other systems (batch size 1).

44 == PyTorch 44 == PyTorch 4 A == PyTorch
Il TorchScript [l TorchScript Il TorchScript
3.10] Nimble [Nimble [Nimble

B 0 B 0 B
MobileNetV2 EffNet-BO ResNet-50 MobileNetV2 EffNet-BO ResNet-50 MobileNetV2 EffNet-BO ResNet-50
CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-10

(a) Training with batch size 64. (b) Training with batch size 128. (c) Training with batch size 256.
Figure 2: Relative training speedup of Nimble and TorchScript.

Throughout the evaluation, TorchScript modules are created through PyTorch’s tracing API. For
Caffe2, TensorRT and TVM, PyTorch models are first converted into ONNX [[1] models and then
parsed by the respective parsers of the systems. For the evaluation on inference latency, we use syn-
thetic 224 x 224 RGB images as inputs, except for Inception-v3, NASNet-A (large), and EfficientNet-
B5. For these neural networks, the inputs are larger size images - 299 x 299 for Inception-v3,
331 x 331 for NASNet-A (large), and 456 x 456 for EfficientNet-B5 - following the description
in the original literature [3, [7, 6]. For the evaluation on training, we use 224 x 224 RGB images
for the ImageNet dataset, and 32 x 32 RGB images for the CIFAR-10 dataset. We use a sequence
length of 128 in the experiments with BERT, following the setting used for pretraining in the original
literature [2]].

Appendix C Evaluation Results on Various GPUs

In addition to the evaluation results described in Section 5, we attach results on the different types of
GPUs: NVIDIA Titan RTX and NVIDIA Titan Xp. We keep the other experimental settings the same.
Note that we exclude TVM from this set of experiments because TVM needs to tune the kernels
separately for each type of GPU for a long time. Figure [I] shows that Nimble achieves significant
speedup across various GPU architectures ranging from Pascal to Turing.

Appendix D Evaluation Results on Different Training Batch Sizes

We also present results on the performance of Nimble when training the neural networks with varying
batch sizes. We use an NVIDIA V100 GPU, following the setting described in Section 5. Figure 2]
shows that Nimble can achieve performance improvement in the training of the neural networks on
the CIFAR-10 dataset even when the batch size is sufficiently large.

References

[1] ONNX: Open neural network exchange. https://github.com/onnx/onnxl

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL-HLT, 2019.

[3] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399-404, 1956.

[4] Harry T. Hsu. An algorithm for finding a minimal equivalent graph of a digraph. Journal of the ACM,
22(1):11-16, 1975.

[5] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In CVPR, 2016.

[6] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
ICML, 2019.

[7] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for
scalable image recognition. In CVPR, 2018.

https://github.com/onnx/onnx

	Proofs on the Stream Assignment Algorithm of Nimble
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Time Complexity Analysis

	Details on Evaluation Setup
	Evaluation Results on Various GPUs
	Evaluation Results on Different Training Batch Sizes

