
Factor Graph Neural Net—Supplementary File

A Proof of propositions

First we provide Lemma 8, which will be used in the proof of Proposition 2 and 4.
Lemma 8. Given n non-negative feature vectors f i = [fi0, fi1, . . . , fim], where i = 1, . . . , n,
there exists n matrices Qi with shape nm×m and n vector f̂ i = Qi fTi , s.t.

, [f1, f2, . . . , fn] = [max
i
f̂i0,max

i
f̂i1, . . . ,max

i
f̂i,mn].

Proof. Let

Qi =

0m×m, . . . ,0m×m︸ ︷︷ ︸
i−1 matrices

, I,0m×m, . . . ,0m×m︸ ︷︷ ︸
n−i matrices

> , (8)

then we have that

f̂ i = Qi fTi =

 0, . . . , 0︸ ︷︷ ︸
(i−1)m zeros

, fi0, fi1, . . . , fim, 0, . . . , 0︸ ︷︷ ︸
(n−i)m zeros


>

.

By the fact that all feature vectors are non-negative, obviously we have that [f1, f2, . . . , fn] =
[maxi f̂i0,maxi f̂i1, . . . ,maxi f̂i,mn].

Lemma (8) suggests that for a group of feature vectors, we can use the Q operator to produce
several Q matrices to map different vector to different sub-spaces of a high-dimensional
spaces, and then our maximization aggregation can sufficiently gather information from the
feature groups.
Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

Proof. Without loss of generality, we assume that log φc(xc) > 1. Then let

θic(xi, zc) =
{ 1
|s(c)| log φc(xzc

c), if x̂i = xzc
i ,

−cxi,zc , otherwise, (9)

where cxi,zc
can be arbitrary real number which is larger than maxxc

θc(xc). Obviously we
will have

log φc(xc) = max
zc

∑
i∈s(c)

θic(xi, zc) (10)

Assume that we have a factor c = 1, 2, . . . n, and each nodes can take k states. Then xc can
be sorted as

[x0
c = [x1 = 0, x2 = 0, . . . , xn = 0],

x1
c = [x1 = 1, x2 = 0, . . . , xn = 0],
. . . ,

xk
n−1
c = [x1 = k, x2 = k, . . . , xn = k]],

and the higher order potential can be organized as vector gc =
[log φc(x0

c), log φc(x1
c), . . . , log φc(xk

n−1
c)]. Then for each i the item θic(xi, zc) in (9)

have kn+1 entries, and each entry is either a scaled entry of the vector gc or arbitrary
negative number less than maxxc

θc(xc).
Thus if we organize θic(xi, zc) as a length-kn+1 vector f ic, then we define a kn+1× kn matrix
Qci, where if and only if the lth entry of f ic is set to the mth entry of gc multiplied by

12

1/|s(c)|, the entry of Qci in lth row, mth column will be set to 1/|s(c)|; all the other entries
of Qci is set to some negative number smaller than −maxxc θc(xc). Due to the assumption
that log φc(xc) > 1, the matrix multiplication Qci gc must produce a legal θic(xi, zc).
If we directly define a Q-network which produces the above matrices Qci, then in the
aggregating part of our network there might be information loss. However, by Lemma 8 there
must exists a group of Q̃ci such that the maximization aggregation over features Q̃ci Qci gc
will produce exactly a vector representation of θic(xi, zc), i ∈ s(c). Thus if every tci is a
different one-hot vector, we can easily using one single linear layer Q-network to produce all
Q̃ci Qci, and with aM-network which always output factor feature, we are able to output a
vector representation of θic(xi, zc), i ∈ s(c) at each factor node c.

Given the log potentials represented as a set of rank-1 tensors at each factor node, we need
to show that each iteration of the Max Product message passing update can be represented
by a Variable-to-Factor layer followed by a Factor-to-Variable layer (forming a FGNN layer).
We reproduce the update equations here.

bc→i(zc) =
∑

i′∈s(c),i′ 6=i

max
x′

i

[log φi′c(xi′ , zc) + bi′(xi′)] , (11a)

bi(xi) =θi(xi) +
∑

c:i∈s(c)

max
z

[log φic(xi, zc) + bc→i(zc)]. (11b)

In the max-product updating procedure, we should keep all the decomposed log φi′c(xi′ , zc)
and all the unary potential θi(xi) for use at the next layer. That requires the FGNN to
have the ability to fit the identity mapping. Consider letting the Q network to always
output identity matrix,M([gc, fi]|ΘVF) to always output gc, andM([gc, fi]|ΘFV) to always
output fi. Then the FGNN will be an identity mapping. As Q always output a matrix
and M output a vector, we can use part of their blocks as the identity mapping to keep
log φi′c(xi′ , zc) and θi(xi). The other blocks are used to updating bc→i(zc) and bi(xi).
First we show thatM operators in the Variable-to-Factor layer can be used to construct the
computational graph for the max-marginal operations.
Proposition 3. For arbitrary real valued feature matrix X ∈ Rm×n with xij as its entry in
the ith row and jth column, the feature mapping operation x̂ = [maxj xij]mi=1 can be exactly
parameterized with a 2log2 n-layer neural network with Relu as activation function and at
most 2n hidden units.

Proof. Without loss of generality we assume that m = 1, and then we use xi to denote x1i.
When n = 2, it is obvious that

max(x1, x2) = Relu(x1 − x2) + x2 = Relu(x1 − x2) + Relu(x2)−Relu(−x2)
and the maximization can be parameterized by a two layer neural network with 3 hidden
units, which satisfied the proposition.
Assume that when n = 2k, the proposition is satisfied. Then for n = 2k+1, we can find
max(x1, . . . , x2k) and max(x2k+1, . . . , x2k+1) using two network with 2k layers and at most
2k+1 hidden units. Stacking the two neural network together would results in a network with
2k layers and at most 2k+2. Then we can add another 2 layer network with 3 hidden units
to find max(max(x1, . . . , x2k),max(x2k+1, . . . , x2k+1)). Thus by mathematical induction the
proposition is proved.

The update equations contain summations of columns of a matrix after the max-marginal
operations. However, the VF and FV layers use max operators to aggregate features produced
byM and Q operator. Assume that theM operator has produced the max-marginals, then
we use the Q to produce several weight matrix. The max-marginals are multiplied by the
weight matrices to produce new feature vectors, and the maximization aggregating function
are used to aggregating information from the new feature vectors. We use the following
propagation to show that the summations of max-marginals can be implemented by one
MPNN layer plus one linear layer. Thus we can use the VF layer plus a linear layer to
produce bc→i(zc) and use the FV layer plus another linear layer to produce bi(xi). Hence to
do k iterations of Max Product, we need k FGNN layers followed by a linear layer.

13

Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rm×n>0 with xij as
its entry in the ith row and jth column, there exists a constant tensor W ∈ Rm×n×mn that
can be used to transform X into an intermediate representation yik =

∑
ij xijwijk, such that

after maximization operations are done to obtain ŷk = maxi yik, we can use another constant
matrix Q ∈ Rn×mn to obtain

[
∑
i

xij]nj=1 = Q[ŷk]mnk=1. (12)

Proof. The proposition is a simple corollary of Lemma 8. The tensor W serves as the same
role as the matrices Qi in Lemma 8, which can convert the feature matrix X as a vector,
then a simple linear operator can be used to produce the sum of rows of X, which completes
the proof.

In Lemma 8 and Proposition 4, only non-negative features are considered, while in log-
potentials, there can be negative entries. However, for the MAP inference problem in (2),
the transformation as follows would make the log-potentials non-negative without changing
the final MAP assignment,

θ̃i(xi) = θi(xi)−min
xi

θi(xi), θ̃c(xc) = θc(xc)−min
xc

θc(xc). (13)

As a result, for arbitary PGM we can first apply the above transformation to make the log-
potentials non-negative, and then our FGNN can exactly do Max-Product Belief Propagation
on the transformed non-negative log-potentials.

A.1 A Factor Graph Neural Network Module Recovering the Belief
Propagation

In this section, we give the proofs of Proposition 5 and 6 by constructing two FGNN layers
which exactly recover the belief propagation operation. As lower order factors can always
shrank by higher order factors, we will construct the FGNN layers on an factor graph
H = (V,F , Ê), which satisfies the following condition

1. ∀i ∈ V, the associated θi(xi) satisfies that θi(xi) > 0∀xi ∈ X;

2. ∀f1, f2 ∈ F , |f1| = |f2|;

3. ∀f ∈ F , the corresponding ϕf (xf) can be decomposed as

ϕf (xf) = max
zf∈Z

∑
i∈f

ϕfi(xi, zf), (14)

and ∀i ∈ f, ϕfi(xi, zf) satisfies that ϕfi(xi, zf) > 0.

On factor graph H, we construct a FGNN layer on the directed bipartite graph in Figure 5.

Variable-to-Factor Factor-to-Variable

Figure 5: Directed bipartite graph for constructing FGNN layers. In the Variable-to-Factor sub-
graph, each factor receives the messages from the same number of nodes. On the other hand, for
each Factor-to-Variable sub-graph, each nodes may receives messages from different number of
factors.

14

FGNN Layer to recover (7a) Here we construct an FGNN layer to produce all bf→i(zf).
First we reformulate (7a) as

bf→i(zf) = ϕ̃f (zf)−max
xi

[ϕif (xi, zf) + bi(xi)],

ϕ̃c(zf) =
∑
i∈f

max
xi

[ϕif (xi, zf) + bi(xi)]. (15)

Here we use the Variable-to-Factor sub-graph to implement (15). For each variable node i,
we associated it with an length-|X| vector [bi(xi)]x∈X (Initially bi(xi) = θi(xi)). For each
edge in the sub-graph, assume that f = [i1, i2, . . . , i|f |], then for some ij ∈ f , the associated
feature vector is as length-|f | one-hot vector as follows

[0, 0, . . . , 1︸︷︷︸
The jth entry.

, . . . , 0].

For each factor node f = [i1, i2, . . . , i|f |] in the sub-graph, it is associated with an |f |×|X||Z|
feature matrix as follows 

[ϕfi(xi1 , zf)]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[ϕfi(xi2 , zf)]xi2 =|X|,zf =|Z|
xi2 =1,zf =1
. . .

[ϕfi(xi|f| , zf)]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
Then we construct an MPNN

f̃ i = max
i∈f
Q(ef→i)M(f i, ff), (16)

as follows. The Q(ef→i) is an identity mapping. The M(f i, ff) consists of |f | addition
networks, where the ithj networks will have an |f | × |X||Z| parameter

−∞
−∞
. . .

[ϕfi(xij , zf)]xij
=|X|,zf =|Z|

xij
=1,zf =1

. . .
−∞

 .

In theM-network, the |f | × |X||Z| parameter will be added to the |f | × |X||Z| and then
the result will be reshaped to an |f | × |X| × |Z| tensor. After that the tensor will be added
to the length-|X| feature vector of each nodes (reshaped to 1× 1× |X| × 1 tensor). In that
case, for each ij ∈ f , the ithk will produce

−∞
−∞
. . .

[ϕfi(xik , zf) + bij (xij)]xik
=xij

=|X|,zf =|Z|
xik

=xij
=1,zf =1

. . .
−∞

 .

The |f | |f | × |X| × |Z| tensors will be stacked into an |f | × |f | × |X| × |Z| tensor, and it will
be multiplied by the length-|f | one-hot edge feature vector. That will produce

−∞
−∞
. . .

[ϕfi(xij , zf) + bij (xij)]xij
=|X|,zf =|Z|

xij
=1,zf =1

. . .
−∞

 .

15

Then the max operation over all i ∈ f will produce edge feature matrix
[ϕfi1(xi1 , zf) + bi1(xi1)]xi1 =|X|,zf =|Z|

xi1 =1,zf =1

[ϕfi2(xi2 , zf) + bi2(xi2)]xi2 =|X|,zf =|Z|
xi2 =1,zf =1

. . .

[ϕfi|f|(xi2 , zf) + bi|f|(xi|f|)]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
Then by Proposition 3, we can recover the maximization operation in (15) using an
O(log2 |X|)-layer neural network with at most O(|X|2 log2 |X|) hidden units. After that,
all the other operations are simple linear operations, and they can be easily encoded in
a neural-network without adding any parameter. Thus we can construct an FGNN layer,
which produces factor features for each factor f as follows

[bf→i1(zf)]zf =|Z|
zf =1

[bf→i2(zf)]zf =|Z|
zf =1

. . .

[bf→i|f|(zf)]zf =|Z|
zf =1

 .

Finally we constructed an FGNN to parameterize the operation in (7a), and this construction
also proves Proposition 5 as follows.
Proposition 5. The operation in (7a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc | hidden units followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

FGNN Layer to recover (7b) Here we construct an FGNN layer to parameterize (7b)
in order to prove Proposition 6. Using the notation in this section the operation in (7b) can
be reformulated as

bi(xi) =θi(xi) +
∑
f :i∈f

max
z

[ϕif (xi, zf) + bc→i(zf)].

In previous paragraph, the new factor feature
[bf→i1(zf)]zf =|Z|

zf =1

[bf→i2(zf)]zf =|Z|
zf =1

. . .

[bf→i|f|(zf)]zf =|Z|
zf =1

 .
Considering the old factor feature

[ϕfi(xi1 , zf)]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[ϕfi(xi2 , zf)]xi2 =|X|,zf =|Z|
xi2 =1,zf =1
. . .

[ϕfi(xi|f| , zf)]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 ,
we can use broadcasted addition between these two features to get

[bf→i1(zf) + ϕfi(xi1 , zf)]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[bf→i2(zf) + ϕfi(xi2 , zf)]xi2 =|X|,zf =|Z|
xi2 =1,zf =1

. . .

[bf→i|f|(zf) + ϕfi(xi|f| , zf)]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
After that we have an |f |×|X|×|Z| feature tensor for each factor f ∈ F . By 3, a O(log2 | Z |)-
layer neural network with at most O(| Z |2 log2 | Z |) parameters can be used to convert the

16

above feature to 
[maxzf

[bf→i1(zf) + ϕfi(xi1 , zf)]]xi1 =|X|
xi1 =1

[maxzf
[bf→i2(zf) + ϕfi(xi2 , zf)]]xi2 =|X|

xi2 =1
. . .

[maxzf
[bf→i|f|(zf) + ϕfi(xi|f| , zf)]]

xi|f| =|X|
xi|f| =1

 .
We will use this as the first part of our M network. For the second part, as we need
to parameterize the

∑
f :i∈f maxz[ϕif (xi, zf) + bc→i(zf)] from feature maxz[ϕif (xi, zf) +

bc→i(zf), by Proposition 4, it will require another linear layer with O(maxi∈V deg(i)2|X|2),
where deg(i) = |{f |f ∈ F , i ∈ f}|. After that, the Q network can be a simple identity
mapping, and the FGNN would produce feature

∑
f :i∈f maxz[ϕif (xi, zf) + bc→i(zf)] for each

node. Adding these feature with the initial node feature would results new node feature
bi(xi). Thus by constructing a FGNN layer to parameterize (7b) we complete the proof of
Proposition 6.

B Experiments

B.1 Additional Ablation Study

Aggregation Function In the Message Passing Neural Network module, various aggre-
gation function such as “max”, “sum” or “average” can be used. In our implementation,
we choose the “max” aggregation function because theoretically “max” is invariant to the
duplication of a element in the set, while “sum” or “average” is not. In real applications
such as human motion prediction, different factor may have different size, but for better
parallelization we may need to pad all factor to the same size. In this case, we may simply
duplicate a node in factor to do this. We replaced the “max” aggregation with “sum”
aggregation in the LDPC experiment and typical result is shown in Figure 6, where both
algorithm achieve almost the same performance.

0 1 2 3 4

10 1

Bits Baseline
Max
Sum

Figure 6: Comparison of “sum” and “max” aggregation.

B.2 Additional Information on MAP Inference over PGM

Data We construct four datasets. All variables are binary. The instances start with a chain
structure with unary potential on every node and pairwise potentials between consecutive
nodes. A higher order potential is then imposed to every node for the first three datasets.
The node potentials are all randomly generated from the uniform distribution over [0, 1].
We use two kinds of pairwise potentials, one randomly generated (as in Table 4), the other
encouraging two adjacent nodes to both take state 1 (as in Table 3 and Table 5), i.e.
the potential function gives high value to configuration (1, 1) and low value to all other
configurations. For example, in Dataset1, the potential value for x1 to take the state 0 and
x2 to take the state 1 is 0.2; in Dataset3, the potential value for x1 and x2 to take the state
1 at the same time is sampled from a uniform distribution over [0, 2].

17

pairwise potential x2 = 0 x2 = 1

x1 = 0 0 0.1

x1 = 1 0.2 1

Table 3: Pairwise Potential for
Dataset1

pairwise potential x2 = 0 x2 = 1

x1 = 0 U[0,1] U[0,1]

x1 = 1 U[0,1] U[0,1]

Table 4: Pairwise Potential for
Dataset2,4

pairwise potential x2 = 0 x2 = 1

x1 = 0 0 0

x1 = 1 0 U[0,2]

Table 5: Pairwise Potential for
Dataset3

For Dataset1,2,3, we additionally add the budget higher order potential [23] at every node;
these potentials allow at most k of the 8 variables that are within their scope to take the
state 1. For the first two datasets, the value k is set to 5; for the third dataset, it is set to a
random integer in {1,2,3,4,5,6,7,8}. For Dataset4, there is no higher order potential.
As a result of the constructions, different datasets have different inputs for the FGNN; for
each dataset, the inputs for each instance are the parameters of the PGM that are not
fixed. For Dataset1, only the node potentials are not fixed, hence each input instance is a
factor graph with the randomly generated node potential added as the input node feature
for each variable node. Dataset2 and Dataset4 are similar in terms of the input format,
both including randomly generate node potentials as variable node features and randomly
generated pairwise potential parameters as the corresponding pairwise factor node features.
Finally, for Dataset3, the variable nodes, the pairwise factor nodes and the high order factor
nodes all have corresponding input features.

Architecture We use a multi-layer factor graph neural network with architecture
FGNN(64) - Res[FC(64) - FGNN(64) - FC(64)] - MLP(128) - Res[FC(64) -
FGNN(64) - FC(128)] - FC(256) - Res[FC(256) - FGNN(64) - FC(256)] - FC(128) -
Res[FC(128) - FGNN(64) - FC(128)] - FC(64) - Res[FC(64) - FGNN(64) - FC(64)]
- FGNN(2). Here one FGNN(Cout) is a FGNN layer with Cout as output feature dimension
with ReLU [26] as activation. One FC(Cout) is a fully connected layer with Cout as output
feature dimension and ReLU as activation. Res[·] is a neural network with residual link from
its input to output; these additional architecture components can assist learning.

Running Time We report the inference time of one instance and the training time of one
epoch for the synthetic datasets in Table 6. The results show that our method runs in a
reasonable amount of time.

(µs) PointNet DGCNN AD3 (exact/approx) Max-Product MPLP MPNN Ours

D1 45 (43) 285 (107) 5 / 5 6 57 131 (72) 144 (75)
D2 – – 532 / 325 1228 55 131 (72) 341 (162)
D3 – – 91092 / 1059 4041 55 121 (74) 382 (170)
D4 – – 6 / 5 6 0.04 137 (71) 216 (101)

Table 6: Inference time in microseconds of one instance on synthetic datasets and GPU training
time of one epoch in milliseconds (in bracket) for applicable methods.

B.3 Experiment on tree structured PGM

Apart from the chain structured PGM in Section 4.1, we also have an additional experiment
on tree structured PGM. The training set includes 90000 different PGM as randomly
generated binary trees whose depth are between 3 and 6. Each node is associated with
a random variable xi ∈ {0, 1} along with a log potential θi(xi) randomly sampled from

18

Gaussian distribution N (0, 1). Each edge (i, j) in the tree is associated with a pairwise log
potential θij(xi, xj) which is randomly sampled from Gaussian distribution N (0, 1). There
is also 10000 testing instances which is generated in the same way as the training set. The
experiment result is shown in Table 7.

AD3 Max-Product MPLP MPNN Ours

Agreement
on MAP 1.0 1.0 0.9997 – 0.9835

Table 7: Experimental result on tree structured PGM.

For a tree structured PGM, it is not as easy to shrink the pairwise features to the nodes
as an adaptation for MPNN as in the case of chain PGM in Section 4.1, so we omit the
experiment on MPNN. Still, our Factor Graph Neural Network achieves a good performance
even when compared with Max-Product which is optimal on tree PGMs and also with the
linear programming relaxations.

B.4 Testing on novel graph structures for synthetic data

We conducted a new experiment to train the FGNN on fixed length-30 MRFs using the
same protocol as Dataset3, and test the algorithm on 60000 random generated chain MRF
whose length ranges from 15 to 45 (the potentials are generated using the same protocol as
Dataset3). The result is in Table 8, which shows that the model trained on fixed size MRF
can be generalized to MRF with different graph structures.

Chain length AD3 FGNN

(15, 25) 88.95% 94.31%
(25, 35) 88.18% 93.64%
(35, 45) 87.98% 91.50%

Table 8: Accuracy on dataset with different chain size.

B.5 Implementation details on MAP Solvers

In the experiment, the AD3 code is from the official code repo 3, which comes with a python
interface. For Max-Product algorithm, we use the implementation from libdai and convert
the budget higher potential as a table function. For the MPLP algorithm, we implemented it
in C++ to directly support the budget higher order potential. The re-implemented version
is compared with the original version 4, and its performance is better than the original one
in our experiment. So we provide the result of the re-implemented version.

B.6 Dataset Generation and Training Details of LDPC decoding

Data Each instance of training/evaluation data is generated as follows:
During the training of MPNN and FGNN, the node feature include the noisy signal ỹ and
the signal-to-noise ratio SNRdB . For MPNN, no other feature are provided, while for FGNN,
for each factor f , the vector [ỹi]i∈f is provided as feature vector. Meanwhile, for each edge
from factor node f to one of its variable node i, the factor feature and the variable node
feature are put together to get the edge feature.

Architecture In our FGNN, every layer share the same Q network, which is 2-layer
network as follows MLP(64)-MLP(4). Here the first layer comes with a ReLU activation
function and the second layer is with no activation function.

3https://github.com/andre-martins/AD3
4https://people.csail.mit.edu/dsontag/code/mplp_ver2.tgz

19

https://github.com/andre-martins/AD3
https://people.csail.mit.edu/dsontag/code/mplp_ver2.tgz

Algorithm 2 Data Generation for LDPC decoding
Output: y: a 96-bit noisy signal; SNRdB : signal-to-noise ratio, a scalar

Uniformly sample a 48-bit binary signal x, where for each 0 < i 6 48, P (xi = 1) = P (xi =
0) = 0.5
Encode x using the “96.3.963” scheme [19] to get a 96-bit signal y
sample SNRdB ∈ {0, 1, , 2, 3, 4} and σb ∈ {0, 1, , 23, 4, 5} uniformly
For each 0 < i 6 96,uniformly, sample

• ηi ∈ U(0, 1),
• ni ∈ N (0, σ2) s.t. SNRdB = 20 log10 1/σ
• zi ∈ N (0, σ2

b)
Set noisy signal ỹ to

• ỹi = yi + ni + I(ηi 6 0.05)zi

The overall structure of our FGNN is as follows Input - Res[FC(64) - FGNN(64) -
FC(64)] - Res[FC(64) - FGNN(64) - FC(64)] - FC(64) - FGNN(64) - FC(128) -
FC(256) - FGNN(128) - FC(256) - - Res[FC(256) - FGNN(128) - FC(256)] - FC(128)
- FGNN(128) - FC(128) - FC(64) - FGNN(64) - FC(64) - Res[FC(64) - FGNN(64) -
FC(64)] - FC(128) - FC(128) - FC(1). In the network, a batch-normalization layer and
a ReLU activation function is after each FC layer and FGNN layer except for the last FC
layer.

B.7 Details of Human Motion Prediction

For human motion prediction, we are using the Human 3.6M (H3.6M) dataset. In this
experiment, we replace the last two GNN layer in Mao et al. [20]’s model with FGNN
layer with the same number of output channels. The H3.6M dataset includes seven actors
performing 15 varied activities such as walking, smoking etc.. The poses of the actors are
represented as an exponential map of joints, and a special pre-processing of global translation
and rotation. In our experiments, as in previous work[17, 20], we only predict the exponential
map of joints. That is, for each joints, we need to predict a 3-dimensional feature vector.
Thus we add a factor for the 3 variable for each joint 5. Also for two adjacent joint, a factor
of 6 variables are created. The factor node feature are created by put all its variable node
feature together. For the edge feature, we simply use one hot vector to represent different
factor-to-variable edge. For evaluation, we compared 4 commonly used action — walk, eating,
smoking and discussion. The result of GNN and convSeq2Seq are taken from [20], and our
FGNN model also strictly followed the training protocol of [20].

5In practice, those angles with very small variance are ignored, and these variables are not added
to the factor graph

20

