
We thank all reviewers for their valuable comments. We thank R1 for positive comments on the writing style, R2 for1

recognizing the novelty of our work, R3 for raising insightful questions and concerns, and R4 for encouraging us to2

clarify differences from previous literature.3

1. (R1, R2, R3, R4) Uniform improvement. We point out that, up to the logarithmic factor, our bound uniformly im-4

proves upon previous results of the form (10). To see this, let M ′ be the realization of Φ2k,+(M) with most columns5

(M ′ will have at least k columns since adding a column to M ′ will not decrease its maximum singular value). Note6

that kΦ2k,−(M)/Φ2k,+(M) ≤ kσ2
min(M ′)/σ2

max(M ′) by definition of Φ. We may assume that M ′ has full column7

rank, otherwise the proof is trivial. Then, for any submatrix Q ∈ Rn×k of M ′, we have kσ2
min(M ′)/σ2

max(M ′) ≤8

kσ2
min(Q)/σ2

max(Q) (see, e.g., 2.2.33. of [Hanson–Lawson, “Extensions and Applications of the Householder Al-9

gorithm for Solving Linear Least Squares Problems”, 1969]). Next, kσ2
min(Q)/σ2

max(Q) ≤ ‖ΛQ‖21/‖ΛQ‖22 holds10

because σ2
max(Q)‖ΛQ‖21 ≥ kσ2

min(Q)(σ2
max(Q)‖ΛQ‖1) ≥ kσ2

min‖ΛQ‖22. Combining these with Corollary 4 gives the11

claim. Our result, although without a logarithmic term, elegantly captures the spectral dependence and can provide12

much sharper bounds when the minimum and maximum constrained eigenvalues differ in order. Our results also give13

interesting bounds when the minimum constrained eigenvalue is degenerate (i.e., equal to 0).14

2. (R3) Tightness of result. Previous result (10) is tight only when all the eigenvalues of the spectrum are of the same15

order, while our bound is tight when the top Θ(d) eigenvalues are of the same order or when the lower Θ(d) eigenvalues16

are of the same order. An example is when the minimum constrained eigenvalue of M is close to zero (say, 1/t for17

some large t), while the maximum constrained eigenvalue is equal to t. Then, (10) would scale as d/nt2, ignoring log18

terms. With our result, if the largest d/2 eigenvalues are of the same order (say, proportional to t), our result scales as19

d/n, regardless of how small the remaining eigenvalues are. On the other hand, if the smallest d/2 eigenvalues are20

of the same order (say, proportional to 1/t), our result also scales as d/n, regardless of the remaining eigenvalues. In21

general, our result tolerates extremal eigenvalues in the spectrum, as shown in Table 1. Log factor. We would argue22

that the improved spectral dependence takes precedence over the log factor, which is insignificant in many cases. For23

example, when k is not very sparse, say k = Θ(dc) for some c ∈ (0, 1], the log factor is not significant and our results24

can be orders better than (10) when matrix M is mildly ill-conditioned. In the very sparse case, say k = O(log d), our25

results still provide meaningful bounds for M with minimum constrained eigenvalue close to 0.26

3. (R3) Dimensionality reduction. For the sparse model with M having repeated columns, Reviewer 3’s point on27

reducing the dimensionality via ignoring certain components of θ is valid. However, the result of (10) still depends on28

the ratio between minimum and maximum constrained eigenvalues of the new “effective” matrix, and leads to a poor29

lower bound when the minimum and maximum constrained eigenvalues are of a different order. Another point is that30

for a general matrix M with zero singular values, it is not immediately clear if the same dimensionality reduction trick31

can be used. This is because of the sparsity constraint on θ (namely, ‖θ‖0 ≤ k); for example, an approach one may try32

is to use an orthogonal matrix U and map θ 7→ Uθ and M 7→MU> so that the matrix MU> has repeated columns or33

zero columns, and proceed to ignore certain components of Uθ. Yet, in general restricting Uθ to satisfy ‖Uθ‖0 ≤ k34

does not necessarily imply ‖θ‖0 ≤ k, and hence, we cannot map the problem to one where we can easily use the same35

dimensionality reduction method on (M, θ) 7→ (MU>, Uθ). Moreover, in general when the spectrum of M is all36

positive (with divergent large/small eigenvalues), one cannot use dimensionality reduction to improve the result of (10).37

4. (R3) Case n < k. It should be noted that the result of (10) depends on the ratio of restricted eigenvalues and hence38

cannot be used to give a meaningful lower bound when n < k due to a degenerate minimum restricted eigenvalue of 0.39

From this perspective, it is still interesting to have reasonable lower bounds for this situation. Our results accomplish40

this—despite the trivialness of the error, our method successfully provides a tight lower bound for the Gaussian design.41

5. (R3) Novelty with respect to [23]. We consider the prediction scheme as opposed to the estimation scheme42

considered in [23]. In terms of technical novelty, the key step in [23] requires a single-letterization bound of the Fisher43

information (i.e., Lemma 9 of [23]). The prediction problem is fundamentally different (and often most important in44

practice) and the same single-letterization cannot be applied. In our setting, we developed new bounds for the expected45

Fisher information (i.e., Lemmas 10 & 11), with proofs essentially orthogonal to [23]; see supplementary for details.46

6. (R4) Improvement with respect to [19]. We would like to note that the results of [19], like (10), depend on the47

ratio between smallest and largest constrained eigenvalues (defined as “τ [·]” in Theorem 2 of [19]). Hence, the results48

of [19] suffer from the same (undesirable) structural dependencies as (10). Our bounds overcome this dependence, and49

we have showed evidence that our bound provides nontrivial improvements in the above points 1. to 4. and Section 2.1.50

7. (R2) Other extensions and intuition. In general, one may derive minimax bounds for other settings such as51

subexponential designs and heavy-tailed designs with spectral concentration results. The gap of Lemma 1 comes from52

L2 bounds arising from bounding entropy with the entropy of a Gaussian having same variance; in fact, our entropic53

minimax bounds can be extended to other norms (not only L2) via tools from rate distortion theory (see, e.g., [17]). We54

will add remarks on this point in any revision.55


