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Abstract

To learn intrinsic low-dimensional structures from high-dimensional data that most
discriminate between classes, we propose the principle of Maximal Coding Rate
Reduction (MCR2), an information-theoretic measure that maximizes the coding
rate difference between the whole dataset and the sum of each individual class.
We clarify its relationships with most existing frameworks such as cross-entropy,
information bottleneck, information gain, contractive and contrastive learning, and
provide theoretical guarantees for learning diverse and discriminative features.
The coding rate can be accurately computed from finite samples of degenerate
subspace-like distributions and can learn intrinsic representations in supervised,
self-supervised, and unsupervised settings in a unified manner. Empirically, the
representations learned using this principle alone are significantly more robust to
label corruptions in classification than those using cross-entropy, and can lead to
state-of-the-art results in clustering mixed data from self-learned invariant features.

1 Context and Motivation

Given a random vector x ∈ RD which is drawn from a mixture of, say k, distributionsD = {Dj}kj=1,
one of the most fundamental problems in machine learning is how to effectively and efficiently learn
the distribution from a finite set of i.i.d samples, sayX = [x1,x2, . . . ,xm] ∈ RD×m. To this end,
we seek a good representation through a continuous mapping, f(x, θ) : RD → Rd, that captures
intrinsic structures of x and best facilitates subsequent tasks such as classification or clustering.

Supervised learning of discriminative representations. To ease the task of learning D, in the
popular supervised setting, a true class label, represented as a one-hot vector yi ∈ Rk, is given for
each sample xi. Extensive studies have shown that for many practical datasets (images, audios, and
natural languages, etc.), the mapping from the data x to its class label y can be effectively modeled
by training a deep network [GBC16], here denoted as f(x, θ) : x 7→ y with network parameters
θ ∈ Θ. This is typically done by minimizing the cross-entropy loss over a training set {(xi,yi)}mi=1,
through backpropagation over the network parameters θ:

min
θ∈Θ

CE(θ,x,y)
.
= −E[〈y, log[f(x, θ)]〉] ≈ − 1

m

m∑
i=1

〈yi, log[f(xi, θ)]〉. (1)

Despite its effectiveness and enormous popularity, there are two serious limitations with this approach:
1) It aims only to predict the labels y even if they might be mislabeled. Empirical studies show
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that deep networks, used as a “black box,” can even fit random labels [ZBH+17]. 2) With such
an end-to-end data fitting, despite plenty of empirical efforts in trying to interpret the so-learned
features [ZF14], it is not clear to what extent the intermediate features learned by the network capture
the intrinsic structures of the data that make meaningful classification possible in the first place. The
precise geometric and statistical properties of the learned features are also often obscured, which
leads to the lack of interpretability and subsequent performance guarantees (e.g., generalizability,
transferability, and robustness, etc.) in deep learning. Therefore, the goal of this paper is to address
such limitations of current learning frameworks by reformulating the objective towards learning
explicitly meaningful representations for the data x.

Minimal discriminative features via information bottleneck. One popular approach to interpret
the role of deep networks is to view outputs of intermediate layers of the network as selecting certain
latent features z = f(x, θ) ∈ Rd of the data that are discriminative among multiple classes. Learned
representations z then facilitate the subsequent classification task for predicting the class label y by
optimizing a classifier g(z):

x
f(x,θ)−−−−−−→ z(θ)

g(z)−−−−−→ y.

The information bottleneck (IB) formulation [TZ15] further hypothesizes that the role of the network
is to learn z as the minimal sufficient statistics for predicting y. Formally, it seeks to maximize the
mutual information I(z,y) [CT06] between z and y while minimizing I(x, z) between x and z:

max
θ∈Θ

IB(x,y, z(θ))
.
= I(z(θ),y)− βI(x, z(θ)), β > 0. (2)

Given one can overcome some caveats associated with this framework [KTVK18], such as how
to accurately evaluate mutual information with finitely samples of degenerate distributions, this
framework has been successful in describing certain behaviors of deep networks. But by being
task-dependent (depending on the label y) and seeking a minimal set of most informative features for
the task at hand (for predicting the label y only), the network sacrifices generalizability, robustness,
or transferability, in case the labels can be corrupted or the learned features be tackled. To address
this, our framework uses label y only as side information to assist learning diverse and discriminative
representations, hence making learned features more robust to mislabeled data.

Contractive learning of generative representations. Complementary to the above supervised
discriminative approach, auto-encoding [BH89, Kra91] is another popular unsupervised (label-free)
framework used to learn good latent representations, which can be viewed as a nonlinear extension to
the classical PCA [Jol02]. The idea is to learn a compact latent representation z ∈ Rd that adequately
regenerates the original data x to certain extent, through optimizing decoder or generator g(z, η):

x
f(x,θ)−−−−−−→ z(θ)

g(z,η)−−−−−−→ x̂(θ, η). (3)

Typically, such representations are learned in an end-to-end fashion by imposing certain heuristics
on geometric or statistical “compactness” of z, such as its dimension, energy, or volume. For
example, the contractive autoencoder [RVM+11] penalizes local volume expansion of learned
features approximated by the Jacobian ‖∂z∂θ ‖. Another key design factor of this approach is the choice
of a proper, but often elusive, metric that can measure the desired similarity betweenx and the decoded
x̂, either between sample pairs xi and x̂i or between the two distributions Dx and Dx̂. However, the
distance between two distributions, say the KL divergence KL(Dx||Dx̂), is very difficult to evaluate
when the data distributions are discrete and degenerate. In practice, it can only be approximated with
the help of an additional disriminative network, known as GAN [GPAM+14, ACB17].

Representations learned through this framework can be arguably rich enough to regenerate the data
to a certain extent. But depending on the choice of the regularizing heuristics on z and similarity
metrics on x (or Dx), the objective is typically task-dependent and often grossly approximated
[RVM+11, GPAM+14]. When the data contain complicated multi-modal structures, naive heuristics
or inaccurate metrics may fail to capture all internal subclass structures or to explicitly discriminate
among them for classification or clustering purposes. For example, one consequence of this is the
phenomenon of mode collapsing in learning generative models for data that have mixed multi-modal
structures [LPZM20]. To address this, we propose a principled measure (on z) to learn representations
that promotes multi-class discriminative property from data of mixed structures, which works in both
supervised and unsupervised settings.

This work: Learning diverse and discriminative representations. Whether the given data X of
a mixed distribution D can be effectively classified depends on how separable (or discriminative)
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Figure 1: Left and Middle: The distribution D of high-dim data x ∈ RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, θ) such that zi = f(xi, θ) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that
the distribution of each class has relatively low-dimensional intrinsic structures. There are several
reasons why this assumption is plausible: 1). High dimensional data are highly redundant; 2).
Data that belong to the same class should be similar and correlated to each other; 3). Typically
we only care about equivalent structures of x that are invariant to certain classes of deformation
and augmentations. Hence we may assume the distribution Dj of each class has a support on a
low-dimensional submanifold, say Mj with dimension dj � D, and the distribution D of x is
supported on the mixture of those submanifolds,M = ∪kj=1Mj , in the high-dimensional ambient
space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, θ) that maps each of
the submanifoldsMj ⊂ RD to a linear subspace Sj ⊂ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering or
classification tasks (such as object recognition), we consider two samples as equivalent if they differ
by certain class of domain deformations or augmentations T = {τ}. Hence, we are only interested
in low-dimensional structures that are invariant to such deformations (i.e., x ∈M iff τ(x) ∈M for
all τ ∈ T ), which are known to have sophisticated geometric and topological structures [WDCB05]
and can be difficult to learn in a principled manner even with CNNs [CW16, CGW19]. There are
previous attempts to directly enforce subspace structures on features learned by a deep network
for supervised [LQMS18] or unsupervised learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19,
ZLY+19, LQMS18]. However, the self-expressive property of subspaces exploited by [JZL+17] does
not enforce all the desired properties listed above [HYV20]; [LQMS18] uses a nuclear norm based
geometric loss to enforce orthogonality between classes, but does not promote diversity in the learned
representations, as we will soon see. Figure 1 right illustrates a representation learned by our method
on the CIFAR10 dataset. More details can be found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at
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once? If so, is there a simple but principled objective that can measure the goodness of the resulting
representations in terms of all these properties? The key to these questions is to find a principled
“measure of compactness” for the distribution of a random variable z or from its finite samples
Z. Such a measure should directly and accurately characterize intrinsic geometric or statistical
properties of the distribution, in terms of its intrinsic dimension or volume. Unlike cross-entropy (1)
or information bottleneck (2), such a measure should not depend explicitly on class labels so that it
can work in all supervised, self-supervised, semi-supervised, and unsupervised settings.

Low-dimensional degenerate distributions. In information theory [CT06], the notion of entropy
H(z) is designed to be such a measure. However, entropy is not well-defined for continuous
random variables with degenerate distributions. The same difficulty resides with evaluating mutual
information I(x, z) for degenerate distributions. This is unfortunately the case here. To alleviate this
difficulty, another related concept in information theory, more specifically in lossy data compression,
that measures the “compactness” of a random distribution is the so-called rate distortion [CT06]:
Given a random variable z and a prescribed precision ε > 0, the rate distortion R(z, ε) is the minimal
number of binary bits needed to encode z such that the expected decoding error is less than ε, i.e., the
decoded ẑ satisfies E[‖z − ẑ‖2] ≤ ε. Although this framework has been successful in explaining
feature selection in deep networks [MWHK19], the rate distortion of a random variable is difficult, if
not impossible to compute, except for simple distributions such as discrete and Gaussian.

Nonasymptotic rate distortion for finite samples. When evaluating the lossy coding rate R, one
practical difficulty is that we normally do not know the distribution of z. Instead, we have a finite
number of samples as learned representations where zi = f(xi, θ) ∈ Rd, i = 1, . . . ,m, for the given
data samplesX = [x1, . . . ,xm]. Fortunately, [MDHW07] provides a precise estimate on the number
of binary bits needed to encoded finite samples from a subspace-like distribution. In order to encode
the learned representation Z = [z1, . . . ,zm] up to a precision ε, the total number of bits needed is
given by the following expression: L(Z, ε)

.
=
(
m+d

2

)
log det

(
I + d

mε2ZZ
>). This formula can be

derived either by packing ε-balls into the space spanned by Z or by computing the number of bits
needed to quantize the SVD of Z subject to the precision, see [MDHW07] for proofs. Therefore, the
compactness of learned features as a whole can be measured in terms of the average coding length
per sample (as the sample size m is large), a.k.a. the coding rate subject to the distortion ε:

R(Z, ε)
.
=

1

2
log det

(
I +

d

mε2
ZZ>

)
. (4)

Rate distortion of data with a mixed distribution. In general, the features Z of multi-class data
may belong to multiple low-dimensional subspaces. To evaluate the rate distortion of such mixed
data more accurately, we may partition the data Z into multiple subsets: Z = Z1 ∪ · · · ∪ Zk,
with each in one low-dim subspace. So the above coding rate (4) is accurate for each subset. For
convenience, let Π = {Πj ∈ Rm×m}kj=1 be a set of diagonal matrices whose diagonal entries
encode the membership of the m samples in the k classes. More specifically, the diagonal entry
Πj(i, i) of Πj indicates the probability of sample i belonging to subset j. Therefore Π lies in a
simplex: Ω

.
= {Π | Πj ≥ 0, Π1 + · · ·+ Πk = I}. Then, according to [MDHW07], with respect

to this partition, the average number of bits per sample (the coding rate) is

Rc(Z, ε | Π)
.
=

k∑
j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ε2
ZΠjZ

>
)
. (5)

When Z is given, Rc(Z, ε | Π) is a concave function of Π. The function log det(·) in the above
expressions has been long known as an effective heuristic for rank minimization problems, with
guaranteed convergence to local minimum [FHB03]. As it nicely characterizes the rate distortion of
Gaussian or subspace-like distributions, log det(·) can be very effective in clustering or classification
of mixed data [MDHW07, WTL+08, KPCC15].

2.2 Principle of Maximal Coding Rate Reduction

On one hand, for learned features to be discriminative, features of different classes/clusters are
preferred to be maximally incoherent to each other. Hence they together should span a space of the
largest possible volume (or dimension) and the coding rate of the whole set Z should be as large as
possible. On the other hand, learned features of the same class/cluster should be highly correlated and
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coherent. Hence, each class/cluster should only span a space (or subspace) of a very small volume
and the coding rate should be as small as possible. Therefore, a good representation Z ofX is one
such that, given a partition Π of Z, achieves a large difference between the coding rate for the whole
and that for all the subsets:

∆R(Z,Π, ε)
.
= R(Z, ε)−Rc(Z, ε | Π). (6)

If we choose our feature mapping z = f(x, θ) to be a deep neural network, the overall process of the
feature representation and the resulting rate reduction w.r.t. certain partition Π can be illustrated by
the following diagram:

X
f(x,θ)−−−−−−→ Z(θ)

Π,ε−−−−→ ∆R(Z(θ),Π, ε). (7)

Note that ∆R is monotonic in the scale of the features Z. So to make the amount of reduction
comparable between different representations, we need to normalize the scale of the learned features,
either by imposing the Frobenius norm of each class Zj to scale with the number of features in
Zj ∈ Rd×mj : ‖Zj‖2F = mj or by normalizing each feature to be on the unit sphere: zi ∈ Sd−1.
This formulation offers a natural justification for the need of “batch normalization” in the practice of
training deep neural networks [IS15]. An alternative, arguably simpler, way to normalize the scale of
learned representations is to ensure that the mapping of each layer of the network is approximately
isometric [QYW+20].

Once the representations are comparable, our goal becomes to learn a set of features Z(θ) = f(X, θ)
and their partition Π (if not given in advance) such that they maximize the reduction between the
coding rate of all features and that of the sum of features w.r.t. their classes:

max
θ,Π

∆R
(
Z(θ),Π, ε

)
= R(Z(θ), ε)−Rc(Z(θ), ε | Π), s.t. ‖Zj(θ)‖2F = mj , Π ∈ Ω. (8)

We refer to this as the principle of maximal coding rate reduction (MCR2), an embodiment of
Aristotle’s famous quote: “the whole is greater than the sum of the parts.” Note that for the clustering
purpose alone, one may only care about the sign of ∆R for deciding whether to partition the data
or not, which leads to the greedy algorithm in [MDHW07]. More specifically, in the context of
clustering finite samples, one needs to use the more precise measure of the coding length mentioned
earlier, see [MDHW07] for more details. Here to seek or learn the best representation, we further
desire the whole is maximally greater than its parts.

Relationship to information gain. The maximal coding rate reduction can be viewed as a gener-
alization to Information Gain (IG), which aims to maximize the reduction of entropy of a random
variable, say z, with respect to an observed attribute, say π: maxπ IG(z,π)

.
= H(z)−H(z | π),

i.e., the mutual information between z and π [CT06]. Maximal information gain has been widely
used in areas such as decision trees [Qui86]. However, MCR2 is used differently in several ways:
1) One typical setting of MCR2 is when the data class labels are given, i.e. Π is known, MCR2

focuses on learning representations z(θ) rather than fitting labels. 2) In traditional settings of IG,
the number of attributes in z cannot be so large and their values are discrete (typically binary).
Here the “attributes” Π represent the probability of a multi-class partition for all samples and their
values can even be continuous. 3) As mentioned before, entropy H(z) or mutual information I(z,π)
[HFLM+18] is not well-defined for degenerate continuous distributions whereas the rate distortion
R(z, ε) is and can be accurately and efficiently computed for (mixed) subspaces, at least.

2.3 Properties of the Rate Reduction Function

In theory, the MCR2 principle (8) benefits from great generalizability and can be applied to represen-
tations Z of any distributions with any attributes Π as long as the rates R and Rc for the distributions
can be accurately and efficiently evaluated. The optimal representation Z∗ and partition Π∗ should
have some interesting geometric and statistical properties. We here reveal nice properties of the
optimal representation with the special case of subspaces, which have many important use cases in
machine learning. When the desired representation for Z is multiple subspaces, the rates R and Rc in
(8) are given by (4) and (5), respectively. At the maximal rate reduction, MCR2 achieves its optimal
representations, denoted as Z∗ = Z∗1 ∪ · · · ∪Z∗k ⊂ Rd with rank(Z∗j ) ≤ dj . One can show that Z∗
has the following desired properties (see Appendix A for a formal statement and detailed proofs).
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Theorem 2.1 (Informal Statement). Suppose Z∗ = Z∗1 ∪ · · · ∪ Z∗k is the optimal solution that
maximizes the rate reduction (8). We have:

• Between-class Discriminative: As long as the ambient space is adequately large (d ≥∑k
j=1 dj), the subspaces are all orthogonal to each other, i.e. (Z∗i )>Z∗j = 0 for i 6= j.

• Maximally Diverse Representation: As long as the coding precision is adequately high, i.e.,
ε4 < minj

{
mj

m
d2

d2j

}
, each subspace achieves its maximal dimension, i.e. rank(Z∗j ) = dj .

In addition, the largest dj − 1 singular values of Z∗j are equal.

Figure 2: Comparison of two learned representations
Z and Z′ via reduced rates: R is the number of ε-balls
packed in the joint distribution and Rc is the sum of the
numbers for all the subspaces (the green balls). ∆R is
their difference (the number of blue balls). The MCR2

principle prefers Z (the left one).

In other words, in the case of subspaces, the
MCR2 principle promotes embedding of data
into multiple independent subspaces, with fea-
tures distributed isotropically in each subspace
(except for possibly one dimension). In addition,
among all such discriminative representations,
it prefers the one with the highest dimensions in
the ambient space. This is substantially different
from the objective of information bottleneck (2).

Comparison to the geometric OLE loss. To
encourage the learned features to be uncorre-
lated between classes, the work of [LQMS18]
has proposed to maximize the difference be-
tween the nuclear norm of the whole Z and its
subsets Zj , called the orthogonal low-rank em-
bedding (OLE) loss: maxθ OLE(Z(θ),Π)

.
=

‖Z(θ)‖∗ −
∑k
j=1 ‖Zj(θ)‖∗, added as a regularizer to the cross-entropy loss (1). The nuclear norm

‖ · ‖∗ is a nonsmooth convex surrogate for low-rankness and the nonsmoothness potentially poses
additional difficulties in using this loss to learn features via gradient descent, whereas log det(·) is
smooth concave instead. Unlike the rate reduction ∆R, OLE is always negative and achieves the
maximal value 0 when the subspaces are orthogonal, regardless of their dimensions. So in contrast
to ∆R, this loss serves as a geometric heuristic and does not promote diverse representations. In
fact, OLE typically promotes learning one-dim representations per class, whereas MCR2 encourages
learning subspaces with maximal dimensions (Figure 7 of [LQMS18] versus our Figure 6).

Relation to contrastive learning. If samples are evenly drawn from k classes, a randomly chosen
pair (xi,xj) is of high probability belonging to difference classes if k is large. For example, when
k ≥ 100, a random pair is of probability 99% belonging to different classes. We may view the learned
features of two samples together with their augmentations Zi and Zj as two classes. Then the rate
reduction ∆Rij = R(Zi ∪Zj , ε)− 1

2 (R(Zi, ε) +R(Zj , ε)) gives a “distance” measure for how far
the two sample sets are. We may try to further “expand” pairs that likely belong to different classes.
From Theorem 2.1, the (averaged) rate reduction ∆Rij is maximized when features from different
samples are uncorrelated Z>i Zj = 0 (see Figure 2) and features Zi from the same sample are highly
correlated. Hence, when applied to sample pairs, MCR2 naturally conducts the so-called contrastive
learning [HCL06, OLV18, HFW+19]. But MCR2 is not limited to expand (or compress) pairs of
samples and can uniformly conduct “contrastive learning” for a subset with any number of samples
as long as we know they likely belong to different (or the same) classes, say by randomly sampling
subsets from a large number of classes or with a good clustering method.

3 Experiments with Instantiations of MCR2

Our theoretical analysis above shows how the maximal coding rate reduction (MCR2) is a principled
measure for learning discriminative and diverse representations for mixed data. In this section, we
demonstrate experimentally how this principle alone, without any other heuristics, is adequate to
learning good representations in the supervised, self-supervised, and unsupervised learning settings
in a unified fashion. Our goal here is to validate effectiveness of this principle through its most basic
usage and fair comparison with existing frameworks. More implementation details and experiments
are given in Appendix B. The code can be found in https://github.com/ryanchankh/mcr2.
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Figure 3: Evolution of the rates of MCR2 in the training process and principal components of learned features.
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Figure 4: Evolution of rates R,Rc,∆R of MCR2 during training with corrupted labels.

3.1 Supervised Learning of Robust Discriminative Features

Supervised learning via rate reduction. When class labels are provided during training, we assign
the membership (diagonal) matrix Π = {Πj}kj=1 as follows: for each sample xi with label j, set
Πj(i, i) = 1 and Πl(i, i) = 0,∀l 6= j. Then the mapping f(·, θ) can be learned by optimizing (8),
where Π remains constant. We apply stochastic gradient descent to optimize MCR2, and for each
iteration we use mini-batch data {(xi,yi)}mi=1 to approximate the MCR2 loss.

Evaluation via classification. As we will see, in the supervised setting, the learned representation has
very clear subspace structures. So to evaluate the learned representations, we consider a natural nearest
subspace classifier. For each class of learned features Zj , let µj ∈ Rp be its mean and Uj ∈ Rp×rj
be the first rj principal components for Zj , where rj is the estimated dimension of class j. The
predicted label of a test data x′ is given by j′ = arg minj∈{1,...,k} ‖(I −UjU>j )(f(x′, θ)−µj)‖22.

Experiments on real data. We consider CIFAR10 dataset [Kri09] and ResNet-18 [HZRS16] for
f(·, θ). We replace the last linear layer of ResNet-18 by a two-layer fully connected network with
ReLU activation function such that the output dimension is 128. We set the mini-batch size as
m = 1, 000 and the precision parameter ε2 = 0.5. More results can be found in Appendix B.3.2.

Figure 3(a) illustrates how the two rates and their difference (for both training and test data) evolves
over epochs of training: After an initial phase, R gradually increases while Rc decreases, indicating
that features Z are expanding as a whole while each class Zj is being compressed. Figure 3(c) shows
the distribution of singular values per Zj and Figure 1 (right) shows the angles of features sorted by
class. Compared to the geometric loss [LQMS18], our features are not only orthogonal but also of
much higher dimension. We compare the singular values of representations, both overall data and
individual classes, learned by using cross-entropy and MCR2 in Figure 6 and Figure 7 in Appendix
B.3.1. We find that the representations learned by using MCR2 loss are much more diverse than
the ones learned by using cross-entropy loss. In addition, we find that we are able to select diverse
images from the same class according to the “principal” components of the learned features (see
Figure 8 and Figure 9 in Appendix B.3.1).

Robustness to corrupted labels. Because MCR2 by design encourages richer representations that
preserves intrinsic structures from the dataX , training relies less on class labels than traditional loss
such as cross-entropy (CE). To verify this, we train the same network using both CE and MCR2 with
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certain ratios of randomly corrupted training labels. Figure 4 illustrates the learning process: for
different levels of corruption, while the rate for the whole set always converges to the same value,
the rates for the classes are inversely proportional to the ratio of corruption, indicating our method
only compresses samples with valid labels. The classification results are summarized in Table 1. By
applying exact the same training parameters, MCR2 is significantly more robust than CE, especially
with higher ratio of corrupted labels. This can be an advantage in the settings of self-supervised
learning or constrastive learning when the grouping information can be very noisy. More detailed
comparison between MCR2 and OLE [LQMS18], Large Margin Deep Networks [EKM+18], and
ITLM [SS19] on learning from noisy labels can be found in Appendix B.4 (Table 7).

Table 1: Classification results with features learned with labels corrupted at different levels.

RATIO=0.1 RATIO=0.2 RATIO=0.3 RATIO=0.4 RATIO=0.5

CE TRAINING 90.91% 86.12% 79.15% 72.45% 60.37%
MCR2 TRAINING 91.16% 89.70% 88.18% 86.66% 84.30%

3.2 Self-supervised Learning of Invariant Features

Learning invariant features via rate reduction. Motivated by self-supervised learning algo-
rithms [LHB04, KRFL09, OLV18, HFW+19, WXYL18], we use the MCR2 principle to learn
representations that are invariant to certain class of transformations/augmentations, say T with a
distribution PT . Given a mini-batch of data {xj}kj=1, we augment each sample xj with n transfor-
mations/augmentations {τi(·)}ni=1 randomly drawn from PT . We simply label all the augmented
samples Xj = [τ1(xj), . . . , τn(xj)] of xj as the j-th class, and Zj the corresponding learned
features. Using this self-labeled data, we train our feature mapping f(·, θ) the same way as the
supervised setting above. For every mini-batch, the total number of samples for training is m = kn.

Evaluation via clustering. To learn invariant features, our formulation itself does not require the
original samples xj come from a fixed number of classes. For evaluation, we may train on a
few classes and observe how the learned features facilitate classification or clustering of the data.
A common method to evaluate learned features is to train an additional linear classifier [OLV18,
HFW+19], with ground truth labels. But for our purpose, because we explicitly verify whether the
so-learned invariant features have good subspace structures when the samples come from k classes,
we use an off-the-shelf subspace clustering algorithm EnSC [YLRV16], which is computationally
efficient and is provably correct for data with well-structured subspaces. We also use K-Means
on the original data X as our baseline for comparison. We use normalized mutual information
(NMI), clustering accuracy (ACC), and adjusted rand index (ARI) for our evaluation metrics, see
Appendix B.4.2 for their detailed definitions.

Controlling dynamics of expansion and compression. By directly optimizing the rate reduction
∆R = R−Rc, we achieve 0.570 clustering accuracy on CIFAR10 dataset, which is the second best
result compared with previous methods. More details can be found in Appendix B.4.1. Empirically,
we observe that, without class labels, the overall coding rate R expands quickly and the MCR2

loss saturates (at a local maximum), see Fig 5(a). Our experience suggests that learning a good
representation from unlabeled data might be too ambitious when directly optimizing the original
∆R. Nonetheless, from the geometric meaning of R and Rc, one can design a different learning
strategy by controlling the dynamics of expansion and compression differently during training. For
instance, we may re-scale the rate by replacing R(Z, ε) with R̃(Z, ε)

.
= 1

2γ1
log det(I + γ2d

mε2ZZ
>).

With γ1 = γ2 = k, the learning dynamics change from Fig 5(a) to Fig 5(b): All features are first
compressed then gradually expand. We denote the controlled MCR2 training by MCR2-CTRL.

Experiments on real data. Similar to the supervised learning setting, we train exactly the same
ResNet-18 network on the CIFAR10, CIFAR100, and STL10 [CNL11] datasets. We set the mini-
batch size as k = 20, number of augmentations for each sample as n = 50 and the precision parameter
as ε2 = 0.5. Table 2 shows the results of the proposed MCR2-CTRL in comparison with methods
JULE [YPB16], RTM [NMM19], DEC [XGF16], DAC [CWM+17], and DCCM [WLW+19] that
have achieved the best results on these datasets. Surprisingly, without utilizing any inter-class or
inter-sample information and heuristics on the data, the invariant features learned by our method with
augmentations alone achieves a better performance over other highly engineered clustering methods.
More comparisons and ablation studies can be found in Appendix B.4.2.
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Figure 5: Evolution of the rates of (left) MCR2 and (right) MCR2-CTRL in the training process in the self-
supervised setting on CIFAR10 dataset.

Table 2: Clustering results on CIFAR10, CIFAR100, and STL10 datasets.

DATASET METRIC K-MEANS JULE RTM DEC DAC DCCM MCR2-CTRL

CIFAR10
NMI 0.087 0.192 0.197 0.257 0.395 0.496 0.630
ACC 0.229 0.272 0.309 0.301 0.521 0.623 0.684
ARI 0.049 0.138 0.115 0.161 0.305 0.408 0.508

CIFAR100
NMI 0.084 0.103 - 0.136 0.185 0.285 0.387
ACC 0.130 0.137 - 0.185 0.237 0.327 0.375
ARI 0.028 0.033 - 0.050 0.087 0.173 0.178

STL10
NMI 0.124 0.182 - 0.276 0.365 0.376 0.446
ACC 0.192 0.182 - 0.359 0.470 0.482 0.491
ARI 0.061 0.164 - 0.186 0.256 0.262 0.290

Nevertheless, compared to the representations learned in the supervised setting where the optimal
partition Π in (8) is initialized by correct class information, the representations here learned with self-
supervised classes are far from being optimal. It remains wide open how to design better optimization
strategies and dynamics to learn from unlabelled or partially-labelled data better representations (and
the associated partitions) close to the global maxima of the MCR2 objective (8).

4 Conclusion and Future Work

This work provides rigorous theoretical justifications and clear empirical evidences for why the
maximal coding rate reduction (MCR2) is a fundamental principle for learning discriminative low-dim
representations in almost all learning settings. It unifies and explains existing effective frameworks
and heuristics widely practiced in the (deep) learning literature. It remains open why MCR2 is robust
to label noises in the supervised setting, why self-learned features with MCR2 alone are effective for
clustering, and how in future practice instantiations of this principle can be systematically harnessed
to further improve clustering or classification tasks.

We believe that MCR2 gives a principled and practical objective for (deep) learning and can potentially
lead to better design operators and architectures of a deep network. A potential direction is to monitor
quantitatively the amount of rate reduction ∆R gained through every layer of the deep network. By
optimizing the rate reduction through the network layers, it is no longer engineered as a “black box.”

On the learning theoretical aspect, although this work has demonstrated only with mixed subspaces,
this principle applies to any mixed distributions or structures, for which configurations that achieve
maximal rate reduction are of independent theoretical interest. Another interesting note is that the
MCR2 formulation goes beyond the supervised multi-class learning setting often studied through
empirical risk minimization (ERM) [DSBDSS15]. It is more related to the expectation maximization
(EMX) framework [BDHM+17], in which the notion of “compression” plays a crucial role for purely
theoretical analysis. We hope this work provides a good connection between machine learning theory
and its practice.
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Broader Impact

The principle proposed in this work aims to maximally capture the intrinsic structures of the data that
justify meaningful classification of clustering of real-world data. Our framework discourages models
from learning by only fitting or overfitting the labeled data with a black box, enables us to identify
the intrinsic structures of the data hence the true causes for meaningful classification or clustering.

This methodology also allows us to maximally reduce the effects of bias or even mistakes that might
be introduced in the labeled data. We believe this is the basis for truly interpretable (deep) learning,
and hence the basis for developing truly robust and fair machine learning algorithms and systems,
with clear performance guarantees.
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