
Supplementary Material:
Lipschitz Bounds and Provably Robust Training by

Laplacian Smoothing

A Mathematical preliminaries

We introduce some mathematical preliminaries related to function spaces useful in developing our
results. In what follows, we let X ⊂ Rdim(X) and Y ⊂ Rdim(Y) be compact and convex.

Lp and W 1,p spaces. The space Lp(X, µ) of p-integrable functions on X with respect to an underly-
ing (absolutely continuous) probability measure µ ∈ P(X), is defined as:

Lp(X, µ) =

{
f : X→ R

∣∣∣∣ f measurable ,
∫
X
|f |pdµ <∞

}
.

The Sobolev space W 1,p(X, µ) is defined as:

W 1,p(X, µ) =

{
f ∈ Lp(X, µ)

∣∣∣∣ ∫
X
|∇f |pdµ <∞

}
.

For p =∞ in the above definitions, we get the space L∞(X, µ) of essentially bounded measurable
functions on (X, µ) and the space W 1,∞(X, µ) of essentially bounded measurable functions with
essentially bounded measurable gradients on (X, µ).

Now, for 1 ≤ p ≤ ∞, Lp((X, µ);Y) is the space of measurable maps from X to Y such that |f | ∈
Lp(X, µ) for any f ∈ Lp((X, µ);Y), where | · | is the H-S norm in Y. Moreover, W 1,p((X, µ);Y)
is the space of measurable maps such that |f | ∈ Lp(X, µ) and |∇f | ∈ Lp(X, µ) for any f ∈
W 1,p((X, µ);Y).

Lipschitz-continuous maps. The space Lip(X;Y) of Lipschitz-continuous maps from X to Y is
such that for any f ∈ Lip(X;Y), we have |f(x1)− f(x2)| ≤ lip(f) |x1 − x2|, where lip(f) is the
Lipschitz constant of f . From Rademacher’s theorem [1], every f ∈ Lip(X;Y) is almost everywhere
differentiable in X (with (a.e.) gradient∇f , which is also its weak gradient). Further, ‖|∇f |‖L∞(X) =

lip(f) and we get Lip(X;Y) = W 1,∞(X;Y).

B Robustness to adversarial perturbations and the Lipschitz constant

In this section, we establish the dependence of sensitivity to adversarial perturbations of the loss on
the Lipschitz constant of the input-output map. Recall from (1) that the loss Lσ is given by:

Lσ(f) = E(x,y)∼σ [`(f(x), y)] .

Adversarial perturbations [2] are a subset of perturbations on the data-generating distribution σ
generated by bounded maps T that perturb the inputs x ∈ X while preserving the outputs y ∈ Y.
We illustrate this for a classification problem: Let (x, y) be a true input-label pair in the (nominal)
dataset and f be a classifier that locally assigns to an input x ∈ X the label f(x) ∈ Y. Let r be a
minimal perturbation on the input x, given a target label y′ ∈ Y, such that f(x+ r) = y′ (where y′
is typically chosen to be an incorrect label for x, that is, y′ 6= y). Now, an adversarial perturbation for
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the classifier f is generated by the replacement of (x, y) by (x+ r, y) in the dataset. To formalize
this, we define the class of maps:

T = {T | T (x, y) = (T1(x, y) , y), and T1(x, y) ∈ Bδ(x) ∩ X} ,

where Bδ(x) is the open ball in Rdim(X) of radius δ > 0 and centered at x. Now, adversarial
perturbations on the data-generating distribution σ are a subset of perturbations generated by the
class T .

We first characterize the bound on the perturbation of the loss due to perturbations on σ generated by
the class T . The perturbation by T ∈ T of the probability measure σ yields the perturbed probability
measure T#σ, where T#σ is the pushforward of σ by the map T 1. We note that the perturbation of
the loss

∣∣LT#σ(f)− Lσ(f)
∣∣ satisfies:∣∣LT#σ(f)− Lσ(f)
∣∣ =

∣∣E(x,y)∼T#σ [`(f(x), y)]− E(x,y)∼σ [`(f(x), y)]
∣∣

=

∣∣∣∣∫
X×Y

`(f(x), y)d (T#σ) (x, y)−
∫
X×Y

`(f(x), y)dσ(x, y)

∣∣∣∣
=

∣∣∣∣∫
X×Y

(`(f(T1(x, y)), y)− `(f(x), y)) dσ(x, y)

∣∣∣∣
≤ lip(`)lip(f)

∣∣∣∣∫
X

(T1(x, y)− x) dµ(x)

∣∣∣∣
≤ lip(`)lip(f)δ.

We next characterize the sensitivity of the loss for a given f to perturbations on the data-generating
distribution generated by the class T . Let a family of transport maps Th = (1 − h) Id +hT for
some T ∈ T and h ∈ [0, 1] (with Id being the identity map), perturb the data-generating distribution σ
as σh = Th#σ. The (Gateaux) derivative of the loss along the family of adversarial perturbations Th,
is now given by:

D(T )Lσ(f) =
d

dh
Lσh(f)

∣∣∣∣
h=0

= lim
h→0

Lσh(f)− Lσ(f)

h

= lim
h→0

1

h

∫
X×Y

[
`(f(Th(x, y)), y)− `(f(x), y)

]
dσ(x, y).

We note that
∣∣∣ `(f(Th(x,y)),y)−`(f(x),y)

h

∣∣∣ ≤ lip(`)
∣∣∣ f(Th(x,y))−f(x)

h

∣∣∣ ≤ lip(`)lip(f)
|Th(x,y)−x|

h =

lip(`)lip(f) |T1(x, y)− x|. It then follows from the Dominated Convergence Theorem [3] that:

D(T )Lσ(f) =

∫
X×Y
〈∇1`(f(x), y) · ∇f(x) , T1(x, y)− x〉 dσ(x, y)

= E(x,y)∼σ [〈∇1`(f(x), y) · ∇f(x) , T1(x, y)− x〉] .
We now define the sensitivity as the worst-case increase of the loss functional following an adversarial
perturbation. That is, the sensitivity of the loss is the L∞-norm (with respect to the measure σ) of the
gradient∇1` · ∇f (precisely, ‖|∇1` · ∇f |‖L∞(X×Y,σ)), which satisfies the bound:

‖|∇1` · ∇f |‖L∞(X×Y,σ)︸ ︷︷ ︸
sensitivity of L to adv. perturbation

≤ ‖|∇1`|‖L∞(X×Y,σ)︸ ︷︷ ︸
Lipschitz constant of `

· ‖|∇f |‖L∞(X,µ)︸ ︷︷ ︸
Lipschitz constant of f

where µ is the marginal of σ over X, and ‖|∇f |‖L∞(X,µ) is the Lipschitz constant of f over the
support of µ.

We therefore get that the sensitivity of the loss functional to adversarial perturbations is indeed
modulated by the Lipschitz constant of the input-output mapping. Thus, restricting the search space
to the class of Lipschitz maps with a bound α ≥ 0 on the Lipschitz constant, as in the minimization
problem (1), is convenient for analysis, and does not restrict the generality of the adversarially robust
learning problem, and it allows us to obtain adversarially robust minimizers of the loss Lσ .

1Given a measurable map T : Z → Z′ and a probability measure σ ∈ P(Z), we let T#σ denote the
pushforward of σ by the map T , where for any Borel measurable set B ⊂ Z′ we have T#σ(B) = σ(T−1(B)).
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C The Lipschitz-constrained loss minimization problem (1) is convex

We recall that Problem (1) is given by:

inf
f∈Lip(X,µ)

E(x,y)∼σ [` (f(x), y)]︸ ︷︷ ︸
,Lσ(f)

s.t. lip(f) ≤ α

 ,

where σ is an absolutely continuous probability measure on X×Y and the loss function ` : Y×Y→
R≥0 is strictly convex and Lipschitz continuous and α ≥ 0.

Firstly, we get that the loss Lσ in (1) is strictly convex. To see this, let f1, f2 ∈ Lip(X, µ) be
such that Lσ(f1) < ∞ and Lσ(f2) < ∞. For t ∈ [0, 1], we get from the convexity of Lip(X, µ)
that tf1 + (1− t)f2 ∈ Lip(X, µ). Also, from the strict convexity of the loss function `, we get:

Lσ(tf1 + (1− t)f2) = E(x,y)∼σ [`((tf1 + (1− t)f2)(x), y)]

= E(x,y)∼σ [`(tf1(x) + (1− t)f2(x), y)]

≤ E(x,y)∼σ [t`(f1(x), y) + (1− t)`(f2(x), y)]

= tE(x,y)∼σ [`(f1(x), y)] + (1− t)E(x,y)∼σ [`(f2(x), y)]

= tLσ(f1) + (1− t)Lσ(f2).

Moreover, the inequality is strict for t ∈ (0, 1), from which it follows that the loss Lσ is strictly
convex.

Now, let f1, f2 ∈ Lip(X, µ) such that lip(f1) ≤ α and lip(f2) ≤ α. For the map λf1 + (1− λ)f2,
λ ∈ [0, 1], and x1, x2 ∈ X, it follows that:

|(λf1 + (1− λ)f2)(x1)− (λf1 + (1− λ)f2)(x2)|
= |λ (f1(x1)− f1(x2)) + (1− λ)(f2(x1)− f2(x2))|
≤ λ |f1(x1)− f1(x2)|+ (1− λ) |f2(x1)− f2(x2)|
≤ λlip(f1) |x1 − x2|+ (1− λ)lip(f2) |x1 − x2|
≤ α |x1 − x2| ,

and we get lip(λf1 +(1−λ)f2) ≤ α. Therefore, the constraint in (1) is convex. From strict convexity
of the loss Lσ and convexity of the constraint set {f ∈ Lip((X, µ),Y) | lip(f) ≤ α}, we get that
Problem (1) is convex.

D Proof of Theorem 2.1 (Saddle point of Lagrangian L)

(i) Derivative of loss function L w.r.t f . We have:

Lσ(f) = Ex∼µ
[
Ey∼π(y | x) [`(f(x), y)]

]
,

where µ is the marginal over X and π the conditional of the joint distribution σ ∈ P(X × Y).
Let {f ε}ε∈[0,1] be a family of maps from X to Y that is pointwise smooth (i.e., for any x ∈ X,
F (ε, x) = f ε(x) is smooth in ε). We now evaluate the derivative of the loss function Lσ w.r.t. the
family {f ε}ε∈[0,1], at ε = 0, as follows:

dLσ
dε

(f0) = lim
ε→0

Lσ(f ε)− Lσ(f0)

ε

= lim
ε→0

1

ε

∫
X

[∫
Y

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x).

We note that
∣∣∣ `(fε(x),y)−`(f0(x),y)

ε

∣∣∣ ≤ lip(`)
∣∣∣ fε(x)−f0(x)

ε

∣∣∣ ≤ lip(`)lip(F (·, x)), where lip(F (·, x))

is the Lipschitz constant of F as a function of ε at every x ∈ X (since F (·, x) is smooth in [0, 1]
for every x ∈ X, it is also Lipschitz continuous). It then follows from the Dominated Convergence
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Theorem [3] that:

dLσ
dε

(f0) = lim
ε→0

1

ε

∫
X

[∫
Y

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y

lim
ε→0

1

ε

(
`(f ε(x), y)− `(f0(x), y)

)
dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y
∇1`(f

0(x), y) · ∂f
ε

∂ε
(x)

∣∣∣∣
ε=0

dπ(y | x)

]
dµ(x)

=

∫
X

[∫
Y
∇1`(f

0(x), y) dπ(y | x)

]
· ∂f

ε

∂ε
(x)

∣∣∣∣
ε=0

dµ(x)

=

∫
X

∂L̄

∂f
· ∂f

ε

∂ε

∣∣∣∣
ε=0

dµ(x),

where we denote by ∂f L̄σ = ∂L̄σ
∂f =

∫
Y∇1`(f

0(x), y) dπ(y | x) the functional derivative of L̄σ
w.r.t. f .

(ii) Minimizer of (2). The search space for Problem (2) is given by,

F =
{
f ∈W 1,∞((X, µ),Y) | ‖|∇f |‖L∞(X,µ) ≤ α

}
.

We see that F is closed, convex and bounded. Boundedness of F follows from compactness
of Y which implies that there exists an M ∈ R≥0 such that Y ⊂ BM (0Y). It follows that for
any f ∈ F , we have ‖|f |‖L∞(X,µ) ≤ M . Moreover, we have ‖|∇f |‖L∞(X,µ) ≤ α. Therefore,
‖f‖W 1,∞((X,µ),Y) = ‖|f |‖L∞(X,µ) + ‖|∇f |‖L∞(X,µ) ≤M + α <∞ for any f ∈ F .

The loss Lσ is strictly convex and lower semicontinuous (in fact, it is (Gateaux) differentiable as seen
earlier for absolutely continuous σ, since ` is strictly convex and Lipschitz-continuous).

Let {fn}n∈N be a minimizing sequence in F for the loss Lσ, such that fn ∈ F
and limn→∞ Lσ(fn) = inff∈F Lσ(f). Clearly, the sequence {fn}n∈N is uniformly bounded
since ‖fn‖W 1,∞((X,µ),Y) ≤M + α. It is also uniformly equicontinuous, since |fn(x1)− fn(x2)| ≤
α|x1 − x2| for all n ∈ N. Therefore, by the Arzelà-Ascoli Theorem [3], there exists a uniformly
converging subsequence {fnj}j∈N, with the limit f∗ ∈ F . Furthermore, by the continuity of Lσ , we
get limj→∞ Lσ(fnj ) = Lσ(f∗) = minf∈F Lσ(f). By the strict convexity of the loss Lσ, we get
that f∗ is the unique global minimizer of Lσ .

Thus, Problem (2) has a unique global minimizer f∗ ∈
{
f ∈W 1,∞((X, µ),Y) | lip(f) ≤ α

}
.

(iii) Saddle points of Lagrangian functional Lσ. The constraint set is given by {f ∈
W 1,∞((X, µ),Y) | G(f) ∈ (−∞, 0]}, where G(f) = ‖Gf‖L∞(X,µ), and we have the constraint
qualification:

0 ∈ int
{
G
(
W 1,∞((X, µ),Y)

)
+ [0,∞)

}
,

where the operation + denotes the Minkowski sum. This allows us to apply Theorem 3.6 in [4] to
infer that the set of Lagrange multipliers corresponding to the (unique) minimizer f∗ is a non-empty,
convex, bounded and weakly−∗ compact subset of L∞(X, µ)∗≥0. Moreover, we note that (−∞, 0] is
a closed convex cone, and it follows from Theorem 3.4-(iii) in [4] that for any Lagrange multiplier λ∗,
the pair (f∗, λ∗) is a saddle point of the Lagrangian functional Lσ. Uniqueness of λ∗ again follows
from the strict convexity of Lσ . We also have the feasibility condition Gf∗ ≤ 0 (that is, |∇f∗| ≤ α)
and λ∗ ≥ 0 µ-a.e. in X.

Now, the (Gateaux) derivative of the Lagrangian Lσ(f, λ) = Lσ(f) + λ(Gf ) in W 1,∞((X, µ),Y)
along V ∈W 1,∞((X, µ),Y) is given by:

D
(V )
1 Lσ(f, λ) =

∫
X
∂f L̄σ · V dµ+

∫
X
∇f · ∇V d(λµ),

where D(V )
1 denotes the directional derivative of the first argument along V and λµ is an absolutely

continuous measure (λ-weighting on the underlying measure µ. Recall that λ ∈ L∞(X, µ)∗≥0 is itself
a bounded, finitely additive absolutely continuous measure). The above expression can be derived
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using a similar construction of a limit and the application of the Dominated Convergence Theorem as
earlier in this section.

By the Minimax Theorem, we have Lσ(f∗, λ∗) = inff supλ Lσ(f, λ) = supλ inff Lσ(f, λ), where
the infimum is taken over W 1,∞((X, µ),Y) and the supremum over λ ∈ L∞(X, µ)∗≥0. We therefore
have Lσ(f∗, λ∗) ≥ Lσ(f∗, 0), which yields the condition λ∗(Gf∗) ≥ 0. Moreover, from feasibility,
we have Gf∗ ≤ 0 and λ∗ ≥ 0, which implies that λ∗(Gf∗) ≤ 0. This results in the complementary
slackness condition λ∗(Gf∗) = 0. From the Minimax equality, we get that (f∗, λ∗) is also a critical
point of Lσ, that is, D(V )

1 Lσ(f∗, λ∗) = 0, which implies that
∫
X ∂f L̄σ(f∗) · V dµ +

∫
X∇f

∗ ·
∇V d(λ∗µ) = 0, which is the stationarity condition.

(iv) Improved regularity of Lagrange multiplier λ∗. We can indeed establish stronger regularity
for the Lagrange multiplier λ∗. We have that the Lagrange multipliers λ∗ ∈ L∞(X, µ)∗≥0, which
is a bounded, finitely additive measure absolutely continuous measure, is also a linear continuous
functional on L∞(X, µ) and must therefore vanish on sets of µ-measure zero (i.e., λ∗(A) = 0 for
A ⊂ X with µ(A) = 0). Moreover, from Theorem 1.24 in [5], we can decompose λ∗ = λ∗c + λ∗p,
where λ∗c is a non-negative countably additive measure and λ∗p is non-negative and purely finitely
additive. By the Radon-Nikodym theorem, we get that there exists a function hc ∈ L1(X, µ) such that
the countably additive and absolutely continuous measure λ∗c satisfies dλ∗c = hc dµ. By substitution
in the stationarity condition, we get

∫
X ∂f L̄σ ·V dµ = −

∫
X∇f

∗ ·∇V d(λ∗cµ)−
∫
X∇f

∗ ·∇V d(λ∗pµ).
We now consider a set Dδ = {x ∈ X | − δ ≤ Gf∗(x) ≤ 0}, with 0 < δ < α2. By complementary
slackness, we note that λ∗(X \Dδ) = 0. Since λ∗p is purely finitely additive, it implies that there
must exist a collection of nonempty sets {En}n∈N with En+1 ⊂ En and limn→∞En = ∅, such
that limn→∞ λ∗p(En) > 02. Since λ∗(X \Dδ) = 0, we can suppose without loss of generality that
E0 ⊂ Dδ . We also consider another collection of nonempty sets {E′n}n∈N, with the same properties
(with E′0 ⊂ Dδ , E′n+1 ⊂ E′n and limn→∞E′n = ∅), such that En ⊂ E′n for all n ∈ N. We note that
for x ∈ Dδ , we have 0 < α2− δ ≤ |∇f∗(x)|2 ≤ α2, which implies that∇f∗ does not vanish on E′n
for any n ∈ N. We now consider a family of variations Vn ∈ W 1,∞(X, µ) for n ∈ N such that Vn
and ∇Vn are supported in E′n, ∇f∗ · ∇Vn ≥ 0 in E′n and ∇f∗ · ∇Vn ≥ ε in En (uniformly). The
stationarity condition now yields, for n ∈ N:

−
∫
E′n

∂f L̄σ(f∗) · Vndµ =

∫
E′n

(∇f∗ · ∇Vn) hcdµ+

∫
E′n

∇f∗ · ∇Vn d(λ∗pµ)

≥
∫
E′n

(∇f∗ · ∇Vn) hcdµ+ ε

∫
En

d(λ∗pµ).

In the limit n → 0, we have limn→∞
∫
E′n
∂f L̄σ(f∗) · Vndµ = 0 and limn→∞

∫
E′n

(∇f∗ ·
∇Vn) hcdµ = 0, which implies that 0 ≤ limn→∞ ε

∫
En
d(λ∗pµ) ≤ 0, and we get limn→∞ λ∗p(En) =

0, i.e., the measure λ∗ does not have a purely finitely additive component. Therefore, the measure λ∗
is countably additive (and absolutely continuous) and possesses a Radon-Nikodym derivative w.r.t. µ,
in L1(X, µ). For ease of notation, we henceforth let λ∗ ∈ L1(X, µ) also denote its density function.

Since λ∗ ∈ L1(X, µ)≥0 and Gf∗ ≤ 0 µ-a.e. in X, we can now indeed state the complementary
slackness condition as λ∗ (|∇f∗| − α) = 0 µ-a.e. in X.

Moreover, the stationarity condition, under λ∗ ∈ L1(X, µ)≥0 can now be expressed as:

0 =

∫
X
∂f L̄σ(f∗) · V dµ+

∫
X
∇f∗ · ∇V λ∗ dµ

=

∫
X
∂f L̄σ(f∗) · V dµ−

∫
X

1

µ
∇ · (λ∗µ∇f∗) · V dµ+

∫
∂X
λ∗∇f∗ · nV µ dS,

where we have used the Divergence Theorem to obtain the final equality, with S as the surface
measure on ∂X. As the above holds for any variation V ∈ W 1,∞((X, µ),Y), it must follow
that − 1

µ∇ · (µλ
∗∇f∗) + ∂f L̄σ(f∗) = 0 µ-a.e. in X and λ∗µ∇f∗ · n = 0 on ∂X, and if we do not

suppose stronger regularity of the saddle point (f∗, λ∗), the equations must be hold weakly.

2 For a countably additive measure ν that is absolutely continuous w.r.t. the Lebesgue measure, and any
collection of nonempty sets {En}N∈N with En+1 ⊂ En and limn→∞En = ∅, we have limn→∞ ν(En) =
0 [5].

5



The above correspond to the necessary KKT conditions. Conversely, any solution pair (f∗, λ∗) which
satisfies the above KKT conditions is a saddle point for the Lagrangian Lσ and is a solution to the
original optimization problem.

E Proof of Theorem 3.1 (Saddle points of LagrangianH)

(i) Minimizers of (11). The search space for Problem (11) is given by:

Fp =
{
f ∈W 1,p((X, µ),Y) | Lσ(f) ≤ J∗σ(α) + ε

}
.

Let {un}n∈N be a minimizing sequence in Fp for the W 1,p-seminorm, such that un ∈ Fp for
all n ∈ N and limn→∞ ‖|∇un|‖Lp(X,µ) = infu∈Fp ‖|∇u|‖Lp(X,µ). Since f∗ ∈ W 1,∞((X, µ),Y),
the minimizer of Problem (2) also belongs to Fp, that is, f∗ ∈ Fp and infu∈Fp‖|∇u|‖Lp(X,µ) ≤
‖|∇f∗|‖Lp(X,µ) ≤ α, we can choose the minimizing sequence to satisfy the bound ‖|∇un|‖Lp(X,µ) ≤
α. Similar to Section D, we now have the uniform bound ‖un‖W 1,p((X,µ),Y) ≤M + α for all n ∈ N.
For p > dim(X), we have from Morrey’s Inequality [1], for every n ∈ N, that:

|un(x1)− un(x2)| ≤ 2p dim(X)

p− dim(X)
|x1 − x2|1−

dim(X)
p ‖|∇un|‖Lp(X,µ)

≤ 2C dim(X)(1 + dim(X))|x1 − x2|
1

1+dim(X)α,

where C = max
{

1,diam(X)
dim(X)

1+dim(X)

}
. Thus, the sequence {un}n∈N is also uniformly equicon-

tinuous. Therefore, by the Arzelà-Ascoli Theorem, there exists a uniformly converging subse-
quence {unj}j∈N with limit f ε,p ∈ Fp. Furthermore, by the continuity of the W 1,p-seminorm, we
get that limj→∞ ‖|∇unj |‖Lp(X,µ) = ‖|∇f ε,p|‖Lp(X,µ) = minf∈Fp ‖|∇f |‖Lp(X,µ). By convexity of
the W 1,p-seminorm, we get that f ε,p is a global minimizer for Problem (11).

We therefore conclude that Problem (11) is guaranteed to have (atleast one) global minimizer f ε,p ∈{
f ∈W 1,p((X, µ),Y) | Lσ(f) ≤ J∗σ(α) + ε

}
.

(ii) Saddle points of Lagrangian functional Hσ. The constraint set is given by {f ∈
W 1,p((X, µ),Y) | G(f) ≤ 0}, where G(f) = Lσ(f) − (J∗σ(α) + ε), and we have the constraint
qualification:

0 ∈ int
{
G
(
W 1,p((X, µ),Y)

)
+ [0,∞)

}
,

where the operation + denotes the Minkowski sum. This allows us to apply Theorem 3.6 in [4]
to infer that the set of Lagrange multipliers corresponding to the minimizer f ε,p is a non-empty,
convex, bounded and weakly−∗ compact subset of R≥0. Moreover, we note that (−∞, 0] is a closed
convex cone, and it follows from Theorem 3.4-(iii) in [4] that for any Lagrange multiplier κε,p,
the pair (f ε,p, κε,p) is a saddle point of the Lagrangian functionalHσ. We also have the feasibility
condition Lσ(f) ≤ J∗σ(α) + ε.

Following a similar procedure as in Section D, we obtain the (Gateaux) derivative of the La-
grangian Hσ(f, κ) = 1

p ‖|∇f |‖
p
Lp(X,µ) + κ (Lσ(f)− (J∗σ(α) + ε)) in W 1,p((X, µ),Y) along

V ∈W 1,p((X, µ),Y) as:

D
(V )
1 Hσ(f, κ) =

∫
X
|∇f |p−2∇f · ∇V dµ+ κ

∫
X
∂f L̄σ(f) · V dµ.

By the Minimax Theorem, we have Hσ(f ε,p, κε,p) = inff supκHσ(f, κ) = supκ inff Hσ(f, κ),
where the infimum is taken over W 1,p((X, µ),Y) and the supremum over R≥0. We therefore
haveHσ(f ε,p, κε,p) ≥ Hσ(f ε,p, 0), which yields the condition κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) ≥ 0.
Moreover, from feasibility, we have Lσ(f ε,p) ≤ J∗σ(α) + ε and κε,p ≥ 0, which implies
that κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) ≤ 0. This results in the complementary slackness condi-
tion κε,p (Lσ(f ε,p)− (J∗σ(α) + ε)) = 0. From the Minimax equality, we get that (f ε,p, κε,p) is
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also a critical point ofHσ , that is D(V )
1 Hσ(f ε,p, κε,p) = 0 for any V ∈W 1,p((X, µ),Y):

0 =

∫
X
|∇f ε,p|p−2∇f ε,p · ∇V dµ+ κε,p

∫
X
∂f L̄σ(f ε,p) · V dµ

= −
∫
X

1

µ
∇ ·
(
µ|∇f ε,p|p−2∇f ε,p

)
· V dµ+

∫
∂X
|∇f ε,p|p−2∇f ε,p · nV µ dS

+ κε,p
∫
X
∂f L̄σ(f ε,p) · V dµ,

where we have used the Divergence Theorem to obtain the final equality, with S as the surface measure
on ∂X. This is the stationarity condition. As the above holds for any variation V ∈W 1,p((X, µ);Y),
it must follow that− 1

µ∇·
(
µ|∇f ε,p|p−2∇f ε,p

)
+κε,p∂f L̄σ(f ε,p) = 0 µ-a.e. in X and µ∇f ε,p ·n = 0

on ∂X, and if we do not suppose stronger regularity of f ε,p, the equations must be hold weakly.

The above correspond to the necessary KKT conditions. Conversely, any solution pair (f ε,p, κε,p)
which satisfies the above KKT conditions is a saddle point for the LagrangianHσ and is a solution to
the original optimization problem.

F Proof of Theorem 3.2 (Convergence as p→∞)

(i) Monotonicity properties of W 1,p((X, µ);Y). We first note that for p, q ∈ N,
1 < p < q and an f ∈ W 1,p((X, µ);Y), ‖|f |‖Lp(X,µ) ≤ ‖|f |‖Lq(X,µ) and
‖|∇f |‖Lp(X,µ) ≤ ‖|∇f |‖Lq(X,µ). It follows that W 1,q((X, µ);Y) ⊆ W 1,p((X, µ);Y).
In particular, for any p ∈ N, p > 1, we have ‖|f |‖Lp(X,µ) ≤ ‖|f |‖L∞(X,µ),
‖|∇f |‖Lp(X,µ) ≤ ‖|∇f |‖L∞(X,µ) and W 1,∞((X, µ);Y) ⊆ W 1,p((X, µ);Y). It then follows that{
f ∈W 1,q((X, µ);Y) | Lσ(f) ≤ ε

}
⊆
{
f ∈W 1,p((X, µ);Y) | Lσ(f) ≤ ε

}
for 1 < p < q ≤ ∞.

(ii) Minimizers. From the strict convexity of Lσ , it follows that
{
f ∈W 1,p((X, µ);Y) | Lσ(f) ≤ ε

}
is closed and convex for any 1 < p ≤ ∞. Moreover, the semi-norm of f ∈ W 1,p((X, µ);Y), i.e.,
‖|∇f |‖Lp(X,µ), is convex. The existence of global minimizers for the problem:

inf
f∈W 1,p((X,µ);Y)

{
‖|∇f |‖Lp(X,µ) , s.t. Lσ(f) ≤ J∗σ(α) + ε

}
was established in Section E for every dim(X) < p ≤ ∞ and ε > 0.

(iii) Monotonicity of minimum value. From the existence of a global minimum value for any dim(X) <
p <∞, and the monotonicity properties of W 1,p(X, µ), we get for dim(X) < p ≤ q:

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈W 1,q((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lq(X,µ) .

In particular, we get for any p > dim(X):

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈Lip((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

lip (f) .

Therefore, by the convergence of bounded monotone sequences, we get:

lim
p→∞

min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) ≤ min
f∈Lip((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

lip (f) = ᾱ(ε).

(iv) Upper bound is indeed the supremum. We now consider the sequence of minimizers {f ε,pσ }p∈N:

f ε,pσ ∈ arg min
f∈W 1,p((X,µ);Y)
Lσ(f)≤J∗σ(α)+ε

‖|∇f |‖Lp(X,µ) .

Fixing a p > dim(X), from the monotonicity of minimum values and the compactness of Y, we
get that the sequence {f ε,qσ }q≥p is uniformly bounded in W 1,p((X, µ),Y) as ‖f ε,qσ ‖W 1,p((X,µ),Y) ≤
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M + ᾱ(ε). Moreover, for dim(X) < p ≤ ∞, we have from Morrey’s inequality that:

|f ε,pσ (x1)− f ε,pσ (x2)| ≤ 2pdim(X)

p− dim(X)
|x1 − x2|1−

dim(X)
p ‖|∇f ε,pσ |‖Lp(X,µ)

≤ 2C dim(X) (1 + dim(X)) |x1 − x2|
1

1+dim(X) ᾱ(ε),

where C = max
{

1,diam(X)
dim(X)

1+dim(X)

}
. It follows from the above that the se-

quence {f ε,pσ }p∈N,p>dim(X) is also uniformly equicontinuous. Therefore, by the Arzelà-Ascoli
Theorem [3], there exists a subsequence

{
f
ε,pj
σ

}
j∈N that converges uniformly to a Lipschitz

continuous f ε,∞σ . Moreover, from the monotonicity of minimum values, it follows that the
Lipschitz constant lip(f ε,∞σ ) = ‖|∇f ε,∞σ |‖L∞(X,µ) ≤ ᾱ(ε). We also have lip(f ε,∞σ ) ≥
min f∈Lip((X,µ);Y)

Lσ(f)≤J∗σ(α)+ε

lip (f) = ᾱ(ε). Therefore, we have lip(f ε,∞σ ) = ᾱ(ε), and {f ε,pσ }p∈N converges

uniformly (upto a subsequence) to a (global) minimizer f ε,∞ of (10).

G Numerical analysis of classifier robustness

In this section, we provide numerical analysis to quantify a classifier’s robustness against data
perturbation for the classification problem discussed in Section 2 and Fig. 1 of the manuscript. Using
the same setup explained in Section 2, we design our classifiers by constructing a graph G = (V, E)
with n = 500 randomly selected nodes by connecting each node to its 10 nearest neighbors. We
compute the solution v∗ to (9) for different values of the Lipschitz constant α ∈ (0, 100]. We generate
a nominal testing set of 1000 i.i.d. samples from σ, associate them with the closest node, and evaluate
the nominal classification confidence of v∗. Then, we perturb each testing data sample with δ ∈ R2

with ‖δ‖2 = 0.05 in the direction perpendicular to the closest edge, associate each perturbed data
point with the closest node and evaluate the perturbed classification confidence. To measure the
sensitivity of the designed classifier, we compute the norm of the difference between the nominal
and the perturbed confidence, then appoint the sensitivity measure to the maximum value across
all the testing data points. Fig. G.1(a) shows the plot of the sensitivity for each classifier designed
using different Lipschitz bound α, it can be seen that the sensitivity increases as we increase the
Lipschitz bound up to α = 18. Fig. G.1(b) shows the plot of the sensitivity for each classifier as a
function of the classification confidence, we observe a tradeoff between classification performance
and robustness to data perturbation seen by the monotonic increase of the sensitivity as a function
of classification confidence, where improving classification performance comes at the expenses of
robustness to data perturbation.
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Figure G.1: For the classification problem discussed in Section 2 and Fig. 1 in the main manuscript,
(a) shows the classifier’s sensitivity to data perturbation as a function of the Lipschitz bound, the plot
shows that sensitivity increases with the Lipschitz bound up to a certain value (α = 18). (b) shows
the tradeoff between performance and robustness, seen by the monotonic increase of the sensitivity
as a function of classification confidence.
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