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This supplement includes additional details, figures, and analysis not presented in the main text due to
space limitations. Section A presents algorithm descriptions for macro-action generation, including
modified value iteration and macro-action chaining. Section B includes detailed derivations of Lemma
5.3, 5.4 and 5.5 presented in the main text. Section C presents the details of macro-action generation
in the case of discrete POMDPs with α-vector value function representations and discusses the
algorithmic complexity of macro-action generation in the discrete case. Finally, Section D provides
additional visualizations and discussion of experimental results.

A Macro-action Generation

VoI macro-action generation first proceeds backward, performing point-based value iteration to
decompose the belief set B into beliefs for which an open-loop action is near-optimal and for which a
sensor observation is needed. Algorithm 1 details the modified value iteration procedure introduced
in the main text.

The belief set B is initialized at the start of the algorithm by the construct_belief_set (e.g., using
random beliefs or beliefs reachable under a QMDP policy [4]). As is standard in point-based POMDP
literature [5], we perform iterations of alternating value-iteration and belief set updates, in which the
value function estimate is used to update the set of reachable beliefs B, via the expand_belief_set
method, which in turn is used to improve the value function estimate. The algorithm input is a
POMDP model, a VoI threshold τ , and a number of belief-set update iterations iters.

After value iteration, macro-action chaining proceeds forward, propagating each belief in the open-
loop set forward under the optimal action computed during value iteration, and returning when the
propagated belief lies in the closed-loop set. Algorithm 2 details the procedure for macro-action chain-
ing. Macro-action chaining takes as input the belief set B, and the VoI macro-action value function
{V̂ ∗h }

H−1
h=0 , open-loop sets {BOLPh }H−1

h=0 , and optimal open-loop actions{AOLPh }H−1
h=0 . The algorithm

checks if a belief b is in the open-loop set at horizon h; for beliefs b 6∈ B, check_open_loop
computes VoI as described in Algorithm 1 to determine if an open-loop action is near-optimal at b.
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Algorithm 1 Value Iteration for Macro-Action Planning
Input: POMDP = (S,A, T,R,Z, O, b0, H, γ), iters, τ
B = construct_belief_set(b0)
for i = 0, . . . , iters− 1 do
V̂ ∗0 (b) = maxa∈A Es∼b[R(s, a)],∀b ∈ B
BOLP0 = B // Open loop actions are optimal at horizon-0
for h = 1, . . . ,H − 1 do

for b ∈ B do
V OLPh (b) = maxa∈A Es∼b[R(s, a)] + γV̂ ∗h−1(ba,∗)

V CLPh (b) = maxa∈A Es∼b[R(s, a)] + γ
∫
Z P (z | b, a)V̂ ∗h−1(ba,z)dz

VoIh(b) = V CLPh (b)− V OLPh (b)
if VoIh(b) ≤ τ then

Add b to BOLPh and optimal action to AOLPh .
V̂ ∗h (b) = V OLPh (b)

else
V̂ ∗h (b) = V CLPh (b)

end if
end for

end for
B = expand_belief_set(b0, B, {V̂ ∗h }

H−1
h=0 , {BOLPh }H−1

h=0 )
end for
return B, {V̂ ∗h }

H−1
h=0 , {BOLPh }H−1

h=0 , {AOLPh }H−1
h=0

Algorithm 2 Macro-Action Chaining

Input: B, {V̂ ∗h }
H−1
h=0 , {BOLPh }H−1

h=0 , {AOLPh }H−1
h=0

macroaction[b, 0] = AOLP0 (b),∀b ∈ B // Initialize horizon zero macro-actions
for h = 1, . . . ,H − 1 do

for b ∈ B do
b′ = b
for t = h, . . . , 0 do

//Check if b′ is in the open-loop set and, if so, get open-loop action a∗.
olp, a∗ = check_open_loop(b′, t, B, {V̂ ∗h }

H−1
h=0 , {BOLPh }H−1

h=0 )
if not olp then

break // Sensor observation necessary, terminate macro-action chaining
end if
macroaction[b, h].append(a∗)
b′ = b′a

∗,∗ // Transition belief according to open-loop dynamics
end for

end for
end for
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B Analysis

The following section contains the detailed derivation of Lemmas 5.3-5.5 presented in the main text.

B.1 Value Backup Error

Lemma 5.3 The horizon-H value function error caused by including open-loop actions in backups
whenever VoI < τ is bounded for beliefs in G by εH =

∥∥∥V̂ ∗H − V ∗H∥∥∥∞ ≤ 1−γH

1−γ (2LδB + τ).

Proof. Consider any compact subset β of G; importantly, β can be different from the belief set B
used in planning. We define εh to be the maximum error in the value function on the set β during the
value iteration recursion at horizon h:

εh =
∥∥∥V ∗h (β)− V̂ ∗h (β)

∥∥∥
∞
, (S1)

where we use the notation f(β) to denote the restriction of the function f to the domain β. Then:

εh =
∥∥∥HV ∗h−1(β)− ĤV̂ ∗h−1(β)

∥∥∥
∞
, (S2)

Let bε ∈ β be the belief for which the value function error is maximized:

bε = arg max
b∈β

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ . (S3)

Let δ be the minimum distance between a belief in B and bε: δ = minb∈B ‖b− bε‖1 and let belief
b ∈ B be a minimizer. Because B forms a δB covering of β, we have that δ ≤ δB.

We bound εh as follows:

εh =
∥∥∥V ∗h (β)− V̂ ∗h (β)

∥∥∥
∞

(S4)

=
∥∥∥HV ∗h−1(bε)− ĤV̂ ∗h−1(bε)

∥∥∥ (S5)

=
∥∥∥HV ∗h−1(bε)−HV ∗h−1(b) +HV ∗h−1(b)− ĤV̂ ∗h−1(bε) + ĤV̂ ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥ (S6)

≤
∥∥HV ∗h−1(bε)−HV ∗h−1(b)

∥∥+∥∥∥ĤV̂ ∗h−1(bε)− ĤV̂ ∗h−1(b)
∥∥∥+

∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥

(S7)

≤ 2L ‖bε − b‖1 +
∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥ . (S8)

≤ 2LδB +
∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)

∥∥∥ . (S9)

The term 2LδB represents the value-function error induced by the point-based approximation. We
will further examine the termHV ∗h−1(b)− ĤV̂ ∗h−1(b), which represents the value function error due
to the inclusion of potentially suboptimal macro-actions in the approximate backup operator.

Without loss of generality, let a1 be the optimal action at belief b and a2 be the near-optimal, open-
loop action selected for backing up V̂ ∗h . Let Ha1 denote the standard value function backup using
action a1 and Ĥa2,OLP denote the macro-action backup using action a2 in open loop.
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∥∥∥HV ∗h−1(b)− ĤV̂ ∗h−1(b)
∥∥∥ =

∥∥∥Ha1V ∗h−1(b)− Ĥa2,OLP V̂ ∗h−1(b)
∥∥∥ (S10)

≤
∥∥∥Ha2V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥ (S11)

≤
∥∥∥Ha2,OLP V ∗h−1(b) + τ − Ĥa2,OLP V̂ ∗h−1(b)

∥∥∥ (S12)

≤ ‖Es∼b[R(s, a2)] + γV ∗h−1(ba2,∗) + τ−
Es∼b[R(s, a2)]− γV̂ ∗h−1(ba2,∗)‖

(S13)

≤
∥∥∥γV ∗h−1(ba2,∗) + τ − γV̂ ∗h−1(ba2,∗)

∥∥∥ (S14)

≤ γεh−1 + τ, (S15)

where if ba2,∗ 6∈ G, we replace V ∗h−1(ba2,∗), V̂ ∗h−1(ba2,∗) with a valid lower-bound.

Because V ∗0 ≡ V̂ ∗0 , we have that ε0 = 0. Expanding the recursion εh ≤ γεh−1 + 2LδB + τ , we
conclude that εH ≤ 1−γH

1−γ (2LδB + τ).

B.2 Interpolating Macro-Actions

Lemma 5.4 (Lasota and Mackey [3]) The open-loop dynamics are a non-expansive mapping in
belief space. Consider two beliefs b1, b2 ∈ Π(S) such that ‖b1 − b2‖1 = δ. Then, for any action a
taken in open-loop, it follows that

∥∥ba,∗1 − ba,∗2

∥∥
1
≤ kδ for 0 ≤ k ≤ 1.

Proof. Following [3], let Ta be the Markov operator corresponding to the POMDP open-loop
transition dynamics under action a:∥∥ba,∗1 − ba,∗2

∥∥
1

= ‖Tab1 − Tab2‖1 (S16)

= ‖Ta(b1 − b2)‖1 (S17)
≤ k ‖b1 − b2‖1 = kδ, (S18)

where 0 ≤ k ≤ 1 is the maximum contraction coefficient over actions a ∈ A and Eq. S18 is a
property of Markov operators [3].

Lemma 5.5 The additional value function error of approximating the VoI macro-action at belief b
using its nearest neighbor b∗ under k-contractive open-loop dynamics is bounded by:

ηH =
∥∥∥V̂ ∗H − VMA

H

∥∥∥
∞
≤ 1− γH

1− γ

(
LδB +

RmaxδB
1− γk

+ LγkδB

)
. (S19)

Proof. Consider any compact subset β of G. Define ηh to be the maximum difference between the
value when utilizing optimal open-loop actions when VoI is low V̂ ∗h and the value when performing
macro-action chaining and interpolation VMA

h :

ηh =
∥∥∥V̂ ∗h (β)− VMA

h (β)
∥∥∥
∞

(S20)

Without loss of generality, let b be the belief for which Eq. S20 is maximized, let b∗ be it’s nearest
neighbor in B, and let Al = {a1, . . . , al} be the length-l macro-action that is optimal at b∗.
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ηh =
∥∥∥V̂ ∗h (b)− VMA

h (b)
∥∥∥ , (S21)

≤
∥∥∥V̂ ∗h (b)− V̂ ∗h (b∗)

∥∥∥+
∥∥∥V̂ ∗h (b∗)− VMA

h (b)
∥∥∥ , (S22)

≤ LδB +
∥∥∥ l−1∑
i=0

γiE
s∼bA1:i
∗

[R(s, ai)] + γlV̂ ∗h−l(b
A1:l
∗ )

−
l−1∑
i=0

γiEs∼bA1:i [R(s, ai)]− γlVMA
h−l (bA1:l)

∥∥∥,
(S23)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥

+ γl
∥∥∥V̂ ∗h−l(bA1:l

∗ )− VMA
h−l (bA1:l)

∥∥∥ .
(S24)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥

+ γl
(∥∥∥V̂ ∗h−l(bA1:l

∗ )− V̂ ∗h−l(bA1:l)
∥∥∥+

∥∥∥V̂ ∗h−l(bA1:l)− VMA
h−l (bA1:l)

∥∥∥)
(S25)

≤ LδB +

∥∥∥∥∥
l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥+ γl(LklδB + ηh−l) (S26)

where Eqs. S22 and S25 follow by the triangle inequality, Eq. S23 using the fact that Al is the optimal
macro-action for b∗ and will be applied to b under the macro-action policy, and Eq. S26 by the
contractive property of the open loop dynamics.

The form of Eq. S23 reflects the expected reward when following the macro-action Al from both
belief b and b∗ and then reverting to the macro-action policy for the remainder of the horizon from the
resulting belief. We can bound the final term in Eq. S26 by further application of the non-expansive
property to rewards collected during macro-action execution:∥∥∥∥∥

l−1∑
i=0

γi
(
E
s∼bA1:i
∗

[R(s, ai)]− Es∼bA1:i [R(s, ai)]
)∥∥∥∥∥ (S27)

≤
l−1∑
i=0

γi
∥∥∥Es∼bA1:i

∗
[R(s, ai)]− Es∼bA1:i [R(s, ai)]

∥∥∥ (S28)

≤
l−1∑
i=0

γi
∫
S

∥∥R(s, ai)(b
A1:i
∗ (s)− bA1:i(s))

∥∥ ds (S29)

≤
l−1∑
i=0

γiRmax

∫
S

∥∥(bA1:i
∗ (s)− bA1:i(s))

∥∥ ds (S30)

≤
l−1∑
i=0

γiRmax
∥∥bA1:i
∗ − bA1:i

∥∥
1

(S31)

≤
l−1∑
i=0

γiRmaxk
iδ =

1− γlkl

1− γk
Rmaxδ (S32)

Plugging this expression in to Eq. S23, we have the recursion: ηh ≤ LδB + 1−γlkl

1−γk RmaxδB +

γlLklδB + γlηh−l. This expression depends on l, the length of the optimal macro-action at horizon
h, in a a complex way. Because l is variable and unknown a priori, we replace l with its case value
in each expression: ηh ≤ LδB + RmaxδB

1−γk + γLkδB + γηh−1. The result follows by expanding this
recursion with η0 = 0.
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C Macro-actions in Discrete Problems

The main text belief-dependent macro-actions for general POMDP problems by leveraging a repre-
sentation of the optimal POMDP value function. However, for discrete POMDP problems (problems
in which the state, action, and observation spaces are discrete), the value function is known to have
special piecewise-linear and convex structure [1], and macro-actions can be generated using this
PWLC representation of the value function. The analysis section can be adapted directly; in discrete
problems the PWLC value function is Lipschitz continuous with respect to the 1-norm on discrete
belief states for Lipschitz constant L ≤ 1−γH

1−γ Rmax.

In the following section, we construct an approximation to the optimal PWLC value function by
iteratively backing up a set of α-vectors over a finite horizon H . At each backup horizon h, the set of
vectors Γ̂∗h contains a mixed set of open-loop and closed-loop vectors.

C.1 Value Iteration in Belief Space

Despite it’s continuous nature, the value function for any discrete, finite horizon POMDP can be
represented by a piecewise-linear and convex function (PWLC) with a finite number of supporting
hyperplanes, often called α-vectors. This property can be observed directly from Eq. 2 when
integration is replaced by summation. For each control action a, construct an α-vector: αa =
[R(s1, a), . . . , R(sN , a)]> for each state s1, . . . , sN ∈ S. Then:

V ∗0 (b) = max
a∈A

α>a b. (S33)

As the maximum of |A| linear segments, V ∗0 is PWLC and is represented by the supporting hyper-
planes Γ0 = {αa}|A|a=0. Value-iteration over belief-space proceeds by building the horizon-h value
function from the set of α-vectors at horizon-(h− 1). At each step of value iteration, the resulting
value function remains PWLC [1] As is standard in point-based POMDP methods [5], we maintain
only the subset of the possible α-vectors that dominate at the exemplar beliefs in B, keeping Γh at a
constant size.

For discrete problems, we represent the transition function T by a set of transition matrices {Ta}|A|a=0,
such that Ta[i, j] = P (St+1 = i | St = j, at = a). The observation function O will be represented
by a set of observation matrices {Oa}|A|a=0, such that Oa[i, j] = P (Zt = i | St = j, at−1 = a).

C.2 Open- and Closed-loop α-vectors

As in the main text, we constructed a value function V̂ ∗h , which represents the value of beliefs when
acting under a policy that selectively leverages open-loop actions. In this discrete setting, V̂ ∗h will be
represented by a finite set of α-vectors, Γ̂∗h.

We initialize V̂ ∗0 with the set of α-vectors, Γ̂∗0, as described in Eq. S33. The backup operator constructs
the set Γ̂∗h from the set Γ̂∗h−1 via the following operations.

Closed-loop First, we construct the standard, closed-loop α-vectors, which represent the value
function under closed loop dynamics [1, 5]. First, the one-step reward vectors are constructed for
a ∈ A, which represents the immediate reward of an action a:

Γa,∗h = αa. (S34)

Then, a set of projected α-vectors is constructed, which capture the effect of the observation and
transition dynamics on an input belief.

Γa,zh = {γα>h−1 diag(Oa[z, :])Ta | αh−1 ∈ Γ̂∗h−1} (S35)

Next, for each belief b in the belief set B the optimal α-vector under an action a for that belief is
computed by summing over possible realized observations:

Γah = {Γa,∗h +
∑
z∈Z

arg max
α∈Γa,z

h

α>b | b ∈ B}. (S36)
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Finally, only the optimal action and its associated α-vector for each belief is maintained:

Γh =
{

arg max
α∈{Γa

h|a∈A}
α>b | b ∈ B

}
. (S37)

Open-loop To determine the VoI from a specific belief state, we introduce open-loop α-vectors,
which represent the deterministic transition of belief due to system dynamics in the absence of
observations. These open-loop (OLP) α-vectors are constructed similarly to their closed-loop
counterparts, where the open-loop transition dynamics are governed by only the transition matrix:

Γa,∗,OLPh = {γα>h−1Ta | αh−1 ∈ Γ̂∗h−1} (S38)

Γa,OLPh = {Γa,∗h + arg max
α∈Γa,∗,OLP

h

α>b | b ∈ B} (S39)

ΓOLPh =
{

arg max
α∈{Γa,OLP

h |a∈A}
α>b | b ∈ B

}
. (S40)

C.3 Value Iteration Backups

At each backup during value iteration, we add a mixture of open- and closed-loop α vectors to our
current vector set Γ̂∗h. For each belief b ∈ B, we compute the open- and closed-loop value and the
value of information:

V OLPh (b) = max
α∈ΓOLP

h

α> · b (S41)

V CLPh (b) = max
α∈Γh

α> · b (S42)

VoIh(b) = V CLPh (b)− V OLPh (b) (S43)

If VoI ≤ τ , we add the corresponding open-loop vector to the set Γ̂∗h and add belief b to the open-loop
set; otherwise, we add the closed-loop vector. Thus, at horizon h, we represent the value function V̂ ∗h
using a mixture of open- and closed-loop α-vectors, representing regions of belief space in which
open-loop actions are near-optimal.

C.4 A Note Algorithmic Complexity

Point-based POMDP algorithms maintain a set of α-vectors of constant size; the main algorithmic cost
is construction of the updated set of vectors using the methodology described in the previous section.
Traditional point-based methods have complexity O(|S|2|A||Z||Γh−1|) to generate intermediate
α-vectors and complexity O(|S||A||Z||Γh−1||B|) to selected the maximizing α-vector for each
belief in B [5]. During value iteration for VoI macro-action generation, evaluating open-loop actions
and computing VoI has cost equivalent to adding one additional observation to the observation space
that provides no information about the current state. This leads to an algorithmic complexity of
O(|S|2|A|(|Z| + 1)|Γh−1|) to generate intermediate α-vectors and O(|S||A|(|Z| + 1)|Γh−1||B|)
to evaluate VoI and select the open- and closed-loop sets. For large state spaces, the algorithmic
complexity of macro-action generation is dominated by constructing the closed-loop α-vectors during
value iteration.
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D Experiments

D.1 Experimental Setup and Parameters

The agent can move in each of the cardinal directions or stay in place (|A| = 5). The agent observes
the target location with discretized Gaussian noise (diagonal covariance, σ2 = 6.25, |Z| = 100) in
Experiment 1 and discretized Gaussian noise with diagonal covariance varying linearly depending on
the agent’s location, from σ = 0 (perfect observation) in the bottom row of the world to σ2 = 25.0 in
the top row of the world in Experiment 2. We plan over a horizon of 75 iterations for Experiment 1
and 25 iterations for Experiment 2. We have discount factor γ = 0.99. In Experiment 1, the reward
function penalizes the squared L2 distance between the target and the agent, and in Experiment 2, the
agent receives a reward of 50.0 if it is in the cell as the target when the target is in the zone of interest
({0, 1} × {0, 1}); otherwise, the agent receives zero reward. The VoI threshhold τ is set to τ = 5 in
Experiment 1 and τ = 0.05 in Experiment 2.

Policies are constructed using point-based value iteration [5] with a fixed-size belief set |B| = 285
and executed in a set of M = 500 tracking experiments for evaluation. The belief set B is initialized
to beliefs reachable under a QMDP policy [4] and three iterations of alternating value-iteration and
belief set updates are performed, in which the value function estimate is used to update the set of
reachable beliefs B, which in turn is used to improve the value function estimate [5]. These values
were determined by computational constraints; value function convergence during experimentation
was not assessed.

Although PBVI formed the base approximation algorithm for these experiments, any approximation
of the POMDP value function can form the base of macro-action construction. Further improvement
may be seen if algorithms such as SARSOP [2] that explicitly attempt to approximate the optimally
reachable belief space are used as the base approximation.

D.2 Additional Visualizations

The following figures present additional visualizations of the random walk and boundary dynamic
experiments presented in Table 1. Fig. S1 provides scatter plots comparing the performance of the
VoI macro-action policy and the best closed-loop policy. Each point in the scatter plot represents
a paired experiment with identical target dynamics. These plots highlight the variability of the
best closed-loop planner and the reduction in the empirical value of δB under the VoI macro-action
policy. Fig. S1 additionally presents histograms showing the proportion of the planning horizon spent
in open loop and the length of macro-actions taken by the agent for each dynamic under the VoI
macro-action policy. These plots highlight the utility of using VoI to selectively act in open loop; the
VoI macro-action policy acts in open-loop for a large fraction of the planning horizon, using extended
sequences of open-loop actions, and yet performs at least as well as the best closed-loop planner.

(A) Boundary Dynamic (B) Random-walk Dynamic

Figure S1: Macro-actions in (A) boundary versus (B) random walk dynamics: (Left) Performance for the VoI
MA policy versus the Best CL policy in paired experiments. Points in the green region represent experiments
for which VoI MA outperforms Best CL, achieving higher realized reward or lower values of δB; red regions
represent experiments in which Best CL outperforms VoI MA. Color indicates point density (yellow high density
to blue low density). (Right) Histograms of the proportion of the planning horizon the VoI MA planner spends in
open loop and the length of all executed VoI macro-actions across M = 500 experiments.
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