
We thank all reviewers for their comments and thank R2 and R3 for suggesting the literature. We will revise our paper1

accordingly. The presentation will be polished and more discussions will be included in the broader impact section.2

R1: Novelty compared to Once-for-All. This paper targets at solving an entirely new challenge: on-device transfer3

learning on memory-constrained edge devices, which is fundamentally different from existing NAS for efficient4

inference problem in Once-for-All. Whether and how can Once-for-All help towards addressing this new problem is5

an open research question and never explored before. Only updating biases along with the memory-saving insights6

behind it (Sec. 3.1) are also entirely new. To our best knowledge, we are the first to introduce this finding. Moreover,7

based on the insights from only updating biases, we further designed a new technique ‘Lite Residual Learning’, which8

efficiently recovers the lost expressivity from not updating the weights. The effectiveness of our method has been9

thoroughly verified (9.5-12.5× memory saving on multiple datasets in Fig.4, up to 13.3× memory saving in Tab.1).10

We believe our findings will open up new opportunities for on-device learning.11

Mem. Food101
Full [27] 802MB 87.7%
TinyTL 109MB 87.2%

Table A: Results on Food101.

R1: Scalability of the computation efficiency and results on more datasets. Our approach12

might be misunderstood by the reviewer. First, we never train sub-nets when collecting13

the training data for the accuracy predictor; instead, we directly inherit the weights from14

the super-net to initialize the sub-nets, thus scalable to large datasets. Second, this work15

targets at on-device transfer learning (much less data/memory), not conventional transfer learning. Therefore, we focus16

on datasets with fewer images (e.g., Flowers) that are much closer to real-world on-device scenarios than large datasets.17

Certainly, our method generalizes to large datasets. In Table A, we justify the effectiveness of TinyTL on Food101 (the18

largest dataset in [7, 27]). TinyTL consistently achieves significant memory saving (7.3×) with little accuracy loss.19

R2: Details of feature extractor adaptation. We will add more details to the main paper in the final version. (L53-54)20

The discrete optimization space includes depth (‘Repeat’: 1,2,3), width (‘Expand Ratio’: 3,4,6) and kernel size (‘Kernel21

Size’: 3,5,7) [Appendix E]. Each architecture configuration corresponds to a sub-net. The objective is to find the best22

sub-net that maximizes transfer accuracy. (L171-175) The super-net is a normal neural network with the maximum23

depth, width, and kernel size. Sub-nets are derived from the super-net by sparsely activating parts of the model according24

to the architecture configuration. Specifically, consider a 7x7 conv layer denoted as W0:c1,0:c2,0:7,0:7, an example of the25

candidate weight operation set (in Eq.5) is {W0:c1,0:c2,0:7,0:7, W0:c1,0:c2,1:6,1:6, W0:c1,0:c2,2:5,2:5}, which corresponds26

to kernel size = 7/5/3. (L186-189) In the process of fine-tuning the super-net, we only update the memory-efficient27

modules (bias, lite residual, classifier head), while freezing the memory-heavy modules. Since sub-nets inherit28

weights from the super-net, all sub-nets are adapted to the target dataset while keeping the memory footprint small.29

Random sampling can ensure each sub-net is evenly trained, while accuracy-based sampling biases towards early30

good performers and keeps sampling them more frequently without exploring others. A sub-net that performs well early31

does not guarantee to be the best in the end. Therefore we chose random sampling. (L190) The accuracy predictor32

can predict the transfer accuracy given a sub-net architecture. Conventionally, we need to evaluate many sub-nets on33

the target dataset to find the best one, which is expensive. Instead, we exploit a highly efficient accuracy predictor34

[Appendix C] to reduce the cost. ‘450 [sub-net, accuracy]’ is the collected dataset for training the accuracy predictor.35

R2, R5: Cost of feature extractor adaptation. We have strong reasons to believe that the whole feature extractor36

adaptation process (including fine-tuning the super-net) is feasible on edge devices [Appendix B]. First, as we freeze37

the weights of the feature extractor, the peak memory cost of fine-tuning the super-net is only 64MB under batch size38

8, which is 4x smaller than the DRAM size of RPi-1. Moreover, combined with group normalization (refer to ‘R3:39

Streaming Training’), TinyTL can support training with batch size 1, where the peak memory cost is only 26MB. It40

allows fitting the whole process into the on-chip SRAM of TPU, which is 128x energy-efficient than DRAM (Fig.1).41

Second, our total computational cost is 18x smaller than fine-tuning the full network [27] while preserving accuracy.42

Cars Flowers Aircraft
w/ bias 91.6% 97.5% 84.0%
w/o bias 89.9% 97.0% 79.9%
Table B: Effects of freezing biases.

R2, R5: Effects of freezing biases. Adapting biases is necessary. Without it, the43

accuracy drops by 1.7% on Cars, 0.5% on Flowers, and 4.1% on Aircraft (Table B).44

R5: Results without feature extractor adaptation. If disabling the feature extractor45

adaptation, the accuracy drops by 2.2% on Cars, 0.6% on Flowers, and 2.5% on46

Aircraft (shown in Tab.1, page7). Feature extractor adaptation is critical.47

R5: Apply to conventional transfer learning. ‘Fine-tuning the full network’ can also benefit from feature extractor48

adaptation (FA). Compared to InceptionV3+Full, FA+Full improves the accuracy from 91.3% to 93.2% on Cars, from49

96.3% to 98.3% on Flowers, from 85.5% to 88.9% on Aircraft. We will include this feature in code release.50

R3: Streaming Training. TinyTL supports streaming training by replacing batch normalization (BN) with group51

normalization (GN), which supports batch 1 training. We observe little loss of accuracy from BN to GN: 89.4%->89.0%52

on Cars, 96.9%->96.7% on Flowers, 81.5%->81.1% on Aircraft. We will include the new results in the revision.53

R3: Hardware deployment. Fig.4 used theoretical values as Pytorch does not support fine-grained memory management.54

We target co-designing the on-device training framework to fully exploit the theoretical benefits, which is beyond the55

scope of this paper. We will make this clear in the revision.56

R3: Fig 3, Fig 6. In Fig.3, ‘ours’ refers to TinyTL FA from Tab.1. In Fig.6, the parameter size consists of two parts: i)57

frozen parameters (2.3MB,8bits); ii) trained parameters (11.3MB,32bits). We will make it more clear in the revision.58


