
Appendix

A Hyperparameter Analysis

A.1 Continuous Sparsification

In this section, we study how the hyperparameters of Continuous Sparsification affect its behavior
in terms of sparsity and performance of the produced tickets. More specifically, we consider the
following hyperparameters:

• Final temperature β(T ): the final value for β, which controls how close to the original
`0-regularized problem the proxy objective Lβ(w, s) is.

• `1 penalty λ: the strength of the `1 regularization applied to the soft mask σ(βs), which
promotes sparsity.

• Mask initial value s(0): the value used to initialize all components of the soft mask m =
σ(βs), where smaller values promote sparsity.

Our setup is as follows. To analyze how each of the 3 hyperparameters impact the performance of
Continuous Sparsification, we train ResNet-20 on CIFAR-10 (following the same protocol from
Section 5.1), varying one hyperparameter while keeping the other two fixed. To capture how
hyperparameters interact with each other, we repeat the described experiment with different settings
for the fixed hyperparameters.

Since different hyperparameter settings naturally yield vastly distinct sparsity and performance for
the found tickets, we report relative changes in accuracy and in sparsity.

In Figure 3, we vary λ between 0 and 10−8 for three different (s(0), β(T )) settings: (s(0) =
−0.2, β(T ) = 100), (s(0) = 0.05, β(T ) = 200), and (s(0) = −0.3, β(T ) = 100). As we can
see, there is little impact on either the performance or the sparsity of the found ticket, except for the
case where s(0) = 0.05 and β(T ) = 200, for which λ = 10−8 yields slightly increased sparsity.
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Figure 3: Impact on relative test accuracy and sparsity of tickets found in a ResNet-20 trained on
CIFAR-10, for different values of λ and fixed settings for β(T ) and s(0).

Next, we consider the fixed settings (s(0) = −0.2, λ = 10−10), (s(0) = 0.05, λ = 10−12), (s(0) =
−0.3, λ = 10−8), and proceed to vary the final inverse temperature β(T ) between 50 and 200.
Figure 4 shows the results: in all cases, a larger β of 200 yields better accuracy. However, it decreases
sparsity compared to smaller temperature values for the settings (s(0) = −0.2, λ = 10−10) and
(s(0) = −0.3, λ = 10−8), while at the same time increasing sparsity for (s(0) = 0.05, λ = 10−12).
While larger β appear beneficial and might suggest that even higher values should be used, note that,
the larger β(T ) is, the earlier in training the gradients of s will vanish, at which point training of
the mask will stop. Since the performance for temperatures between 100 and 200 does not change
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Figure 4: Impact on relative test accuracy and sparsity of tickets found in a ResNet-20 trained on
CIFAR-10, for different values of β(T ) and fixed settings for λ and s(0).
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Figure 5: Impact on relative test accuracy and sparsity of tickets found in a ResNet-20 trained on
CIFAR-10, for different values of s(0) and fixed settings for β(T ) and λ.

significantly, we recommend values around 150 or 200 when either pruning or performing ticket
search.

Lastly, we vary the initial mask value s(0) between −0.3 and +0.3, with hyperpameter settings
(β(T ) = 100, λ = 10−10), (β(T ) = 200, λ = 10−12), and (β(T ) = 100, λ = 10−8). Results are
given in Figure 5: unlike the exploration on λ and β(T ), we can see that s(0) has a strong and
consistent effect on the sparsity of the found tickets. For this reason, we suggest proper tuning of s(0)
when the goal is to achieve a specific sparsity value. Since the percentage of remaining weights is
monotonically increasing with s(0), we can employ search strategies over values for s(0) to achieve
pre-defined desired sparsity levels (e.g., binary search). In terms of performance, lower values for
s(0) naturally lead to performance degradation, since sparsity quickly increases as s(0) becomes more
negative.
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Ticket Search using IMP: ResNet-20 on CIFAR-10

100.0 51.4 26.5 13.7 7.1 3.7 1.9
Percentage of weights remaining (%)

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y 
(%

)

IMP, prune rate = 0.1
IMP, prune rate = 0.2
IMP, prune rate = 0.4
IMP, prune rate = 0.6

Figure 6: Performance of tickets found by Iterative Magnitude Pruning in a ResNet-20 trained on
CIFAR-10, for different pruning rates.

A.2 Iterative Magnitude Pruning

Here, we assess whether the running time of Iterative Magnitude Pruning can be improved by
increasing the amount of parameters pruned at each iteration. The goal of this experiment is to
evaluate if better tickets (both in terms of performance and sparsity) can be produced by more
aggressive pruning strategies.

Following the same setup as the previous section, we train ResNet-20 on CIFAR-10. We run IMP
for 30 iterations, performing global pruning with different pruning rates at the end of each iteration.
Figure 6 shows that the performance of tickets found by IMP decays when the pruning rate is
increased to 40%. In particular, the final performance of found tickets is mostly monotonically
decreasing with the number of remaining parameters, suggesting that, in order to find tickets which
outperform the original network, IMP is not compatible with more aggressive pruning rates.

B Iterative Stochastic Sparsification

Algorithm 3 Iterative Stochastic Sparsification (inspired by [18])

Input: Mask init s(0), penalty λ, number of rounds R, iterations per round T , rewind point k
1: Initialize w ∼ D, s← s(0), r ← 1
2: Minimize Em∼Ber(σ(s)) [L(f( · ;m� w))] + λ ‖σ(s)‖1 for T iterations, producing w(T ) and
s(T )

3: If r = R, sample m ∼ Ber(σ(s(T ))) and output f( · ;m� w(k))
4: Otherwise, set w ← w(k), s← −∞ for components of s where s(T ) < s(0), r ← r + 1 and go

back to step 2, starting a new round

Besides comparing our proposed method to Iterative Magnitude Pruning (Algorithm 1), we also
design a baseline method, Iterative Stochastic Sparsification (ISS, Algorithm 3), motivated by the
procedure in Zhou et al. [18] to find a binary mask m with gradient descent in an end-to-end fashion.
More specifically, ISS uses a stochastic re-parameterization m ∼ Bernoulli(σ(s)) with s ∈ Rd, and
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Figure 7: Learning a binary mask with weights frozen at initialization with Stochastic Sparsification
(SS, Algorithm 3 with one iteration) and Continuous Sparsification (CS), on a 6-layer CNN on
CIFAR-10. Left: Training curves with hyperparameters for which masks learned by SS and CS were
both approximately 50% sparse. CS learns the mask significantly faster while attaining similar
early-stop performance. Right: Sparsity and test accuracy of masks learned with different settings
for SS and CS: our method learns sparser masks while maintaining test performance, while SS is
unable to successfully learn masks with over 50% sparsity.

trains w and s jointly with gradient descent and the straight-through estimator [27]. Note that the
method is also similar to the one proposed by Srinivas et al. [11] to prune networks. The goal of this
baseline and comparisons is to evaluate whether the deterministic nature of CS’s re-parameterization
is advantageous when performing sparsification through optimization methods.

When run for multiple iterations, all components of the mask parameters s which have decreased in
value from initialization are set to −∞, such that the corresponding weight is permanently removed
from the network. While this might look arbitrary, we observe empirically that ISS was unable to
remove weights quickly without this step unless λ was chosen to be large – in which case the model’s
performance decreases in exchange for sparsity.

We also observe that the mask parameters s require different settings in terms of optimization to be
successfully trained. In particular, Zhou et al. [18] use SGD with a learning rate of 100 when training
s, which is orders of magnitude larger than the one used when training CNNs. Our observations
are similar, in that typical learning rates on the order of 0.1 cause s to be barely updated during
training, which is likely a side-effect of using gradient estimators to obtain update directions for s.
The following sections present experiments that compare IMP, CS and ISS on ticket search tasks.

C Supermask Search on a 6-layer CNN

We train a neural network with 6 convolutional layers on the CIFAR-10 dataset [23], following Frankle
and Carbin [13]. The network consists of three blocks of two resolution-preserving convolutional
layers followed by 2 × 2 max-pooling, where convolutions in each block have 64, 128, and 256
channels, a 3× 3 kernel, and are immediately followed by ReLU activations. The blocks are followed
by fully-connected layers with 256, 256, and 10 neurons, with ReLUs in between. The network is
trained with Adam [31] with a learning rate of 0.0003 and a batch size of 60.

As a first baseline, we consider the task of learning a “supermask” [18]: a binary mask m that aims to
maximize the performance of a network with randomly initialized weights once the mask is applied.
This task is equivalent to pruning a randomly-initialized network since weights are neither updated
during the search for the supermask, nor for the comparison between different methods.

We only compare ISS and CS for this specific experiment: the reason not to consider IMP is that,
since the network weights are kept at their initialization values, IMP amounts to removing the weights
whose initialization were the smallest. Hence, we compare ISS and CS, where each method is run
for a single round composed of 100 epochs. In this case, where it is run for a single round, ISS is
equivalent to the algorithm proposed in Zhou et al. [18] to learn a supermask, referred here as simply
Stochastic Sparsification (SS). We control the sparsity of the learned masks by varying s(0) and λ. All
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Ticket Search: Conv-6 on CIFAR-10
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Figure 8: Accuracy and sparsity of tickets produced by IMP, ISS and CS after re-training, starting
from initialization. Tickets are extracted from a Conv-6 network trained on CIFAR-10. Purple curves
show individual runs of CS, while green curve connects tickets produced after 4 rounds of CS with
varying s(0). Blue and red curves show performance and sparsity of tickets produced by IMP and
ISS, respectively. Error bars depict variance across 3 runs.

parameters are trained using Adam and a learning rate of 3× 10−4, excluding the mask parameters s
for SS, for which we adopted SGD with a learning rate of 100 – following Zhou et al. [18] and the
discussion in the previous section.

Figure 7 presents results: CS is capable of finding high performing sparse supermasks (i.e., 25%
or less remaining weights while yielding 75% test accuracy), while SS fails at finding competitive
supermasks for sparsity levels above 50%. Moreover, CS makes faster progress in training, suggesting
that not relying on gradient estimators indeed results in better optimization and faster progress when
measured in epochs or parameter updates.

D Ticket Search on a 6-layer CNN

In what follows we compare IMP, ISS and CS in the task of finding winning tickets on the Conv-6
architecture used in the supermask experiments in Appendix C. The goal of these experiments is to
assess how our deterministic re-parameterization compares to the common stochastic approximations
to `0-regularization [11, 12, 18]. Therefore, we run CS with weight rewinding between rounds,
so that we remove any advantages that might be caused by not performing weight rewinding – in
this case, we better isolate the effects caused by our re-parameterization. Following Frankle and
Carbin [13], we re-train the produced tickets from their values at initialization (i.e., k = 0 on each
algorithm).

We run IMP and ISS for a total of 30 rounds, each consisting of 40 epochs. Parameters are trained
with Adam [31] with a learning rate of 3×10−4, following Frankle and Carbin [13]. For IMP, we use
pruning rates of 15%/20% for convolutional/dense layers. We initialize the Bernoulli parameters of
ISS with s(0) = ~1, and train them with SGD and a learning rate of 20, along with a `1 regularization
of λ = 10−8. For CS, we train both the weights and the mask with Adam and a learning rate of
3 × 10−4. Each run of CS is limited to 4 rounds, and we perform a total of 16 runs, each with a
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different value for the mask initialization s(0), from−0.2 up to 0.1. Runs are repeated with 3 different
random seeds so that error bars can be computed.

Figure 8 presents tickets produced by each method, measured by their sparsity and test accuracy
when trained from scratch. Even when performing weight rewinding, CS produces tickets that are
significantly superior than the ones found by ISS, both in terms of sparsity and test accuracy, showing
that our deterministic re-parameterization is fundamental to finding winning tickets.

E Additional Plots for Ticket Search Experiments

In Section 5.1, we compare IMP and CS in the task of performing ticket search for ResNet-20 trained
on CIFAR-10, where CS was run with 11 different values for s(0) in order to produce tickets with
diverse sparsity levels, each run consisting of 5 rounds.

Figures 9 and 10 contain the training curves for each of the 11 settings of s(0) that produce tickets
presented in Figure 1 (left). Purple curves show the performance and sparsity of tickets produced
after each of the 5 rounds. The accuracy for each ticket is computed by re-training from early-training
weights (epoch 2). For each setting, we also execute IMP with a pruning rate per round matching CS,
which is presented a blue curve – note that these runs of IMP are different than the ones in Section 5.1,
where IMP had a fixed and pre-defined pruning ratio of 20% per round.

The plots show that CS not only adjusts the per-round pruning ratio automatically, but it is also
superior in terms of what parameters are removed from the network. The bottom right plot of
Figure 10 shows curves connecting tickets that are presented in all other plots of Figure 9 and 10
(left), where we can see that CS produces superior tickets even when IMP adopts a dynamic pruning
ratio that matches the one of CS at each round.
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Figure 9: Accuracy and sparsity of tickets produced by IMP and CS after re-training, starting from
weights of epoch 2. Tickets were extracted from a ResNet-20 trained on CIFAR-10. Each plot
corresponds to different value for the mask initialization s(0) of CS, ranging from 0.3 to 0.0, with
IMP adopting the same pruning rate per round. Ticket performance is given by purple curves when
produced by CS, while blue shows performance of IMP and continued IMP (IMP without weight
rewinding between rounds).
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Figure 10: Accuracy and sparsity of tickets produced by IMP and CS after re-training, starting from
weights of epoch 2. Tickets were extracted from a ResNet-20 trained on CIFAR-10. Each plot
corresponds to different value for the mask initialization s(0) of CS, ranging from −0.03 to −0.3,
with IMP adopting the same pruning rate per round. Ticket performance is given by purple curves
when produced by CS, while blue shows performance of IMP and continued IMP (IMP without
weight rewinding between rounds). The bottom right plot shows performance of tickets produced
during runs corresponding to all other plots in Figures 9 and 10.

F Sequential Search with Continuous Sparsification

There might be cases where the goal is either to find a ticket with a specific sparsity value or to
produce a set of tickets with varying sparsity levels in a single run – tasks that can be naturally
performed with a single run of Iterative Magnitude Pruning. However, Continuous Sparsification has
no explicit mechanism to control the sparsity of the produced tickets, and, as shown in Section 5.1
and Appendix E, CS quickly sparsifies the network in the first few rounds and then roughly maintains
the number of parameters during the following rounds until the end of the run. In this scenario, IMP
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Ticket Search with Sequential Continuous Sparsification: ResNet-20 on CIFAR-10
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Figure 11: Accuracy and sparsity of tickets produced by IMP and Sequential CS after re-training,
starting from weights of epoch 2. Tickets are extracted from a ResNet-20 trained on CIFAR-10.

has a clear advantage, as a single run suffices to produce tickets with varying, pre-defined sparsity
levels.

Here, we present a sequential variant of CS, named Sequential Continuous Sparsification, that
removes a fixed fraction of the weights at each round, hence being better suited for the task described
above. Unlike IMP, this sequential form of CS removes the weights with lowest mask values s –
note the difference from CS, which, given a large enough temperature β, removes all weights whose
corresponding mask parameters are negative.

Following the same experimental protocol from Section 5.1, we again perform ticket search on ResNet-
20 trained on CIFAR-10. We run Sequential Continuous Sparsification and Iterative Magnitude
Pruning for a total of 30 rounds each, and with a pruning rate of 20% per round. Note that unlike the
experiments with Continuous Sparsification (the non-sequential form), we perform a single run with
s(0) = 0, i.e., no hyperparameters are used to control the sparsity of the produced tickets.

Figure 11 shows the performance of tickets produced by Sequential CS and IMP, indicating that
CS might be a competitive method in the sequential search setting. Note that the performance of the
tickets produced by Sequential CS is considerably inferior to those found by CS (refer to Section
5.1, Figure 1). Although these results are promising, additional experiments would be required to
more thoroughly evaluate the potential of Sequential Continuous Sparsification and its comparison to
Iterative Magnitude Pruning.

G Learned Sparsity Structure

To see how CS differs from magnitude pruning in terms of which layers are more heavily pruned
by each method, we force the two to prune VGG to the same sparsity level in a single round. We
first run CS with s(0) = 0, yielding 94.19% sparsity, and then run IMP with global pruning rate of
94.19%, producing a sub-network with the same number of parameters.

Figure 12 shows the final sparsity of blocks consisting of two consecutive convolutional layers (8
blocks total since VGG has 16 convolutional layers). CS applies a pruning rate that is roughly twice
as aggressive as IMP to the first blocks. Both methods heavily sparsify the widest layers of VGG
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Learned Sparsity Patterns in VGG on CIFAR-10

1 2 3 4 5 6 7 8
Block

0

10

20

30

40

50

60

70
Pe

rc
en

ta
ge

 o
f w

ei
gh

ts
 re

m
ai

ni
ng

 (%
)

Continuous Sparsification
Iterative Magnitude Pruning

Figure 12: Sparsity patterns learned by CS and IMP for VGG-16 trained on CIFAR-10 – each block
consists of 2 non-overlapping consecutive layers of VGG.

(blocks 5 to 8), while still achieving over 91% test accuracy. More heavily pruning earlier layers in
CNNs can offer inference speed benefits: due to the increased spatial size of earlier layers’ inputs,
each weight is used more times and has a larger contribution in terms of FLOPs.
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