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Abstract

We consider online bandit learning in which at every time step, an algorithm has to
make a decision and then observe only its reward. The goal is to design efficient
(polynomial-time) algorithms that achieve a total reward approximately close to
that of the best fixed decision in hindsight. In this paper, we introduce a new notion
of (A, p)-concave functions and present a bandit learning algorithm that achieves
a performance guarantee which is characterized as a function of the concavity
parameters A and p. The algorithm is based on the mirror descent algorithm in
which the update directions follow the gradient of the multilinear extensions of the

reward functions. The regret bound induced by our algorithm is 5(\/T ) which is
nearly optimal.

We apply our algorithm to auction design, specifically to welfare maximization,
revenue maximization, and no-envy learning in auctions. In welfare maximization,
we show that a version of fictitious play in smooth auctions guarantees a com-
petitive regret bound which is determined by the smooth parameters. In revenue
maximization, we consider the simultaneous second-price auctions with reserve
prices in multi-parameter environments. We give a bandit algorithm which achieves
the total revenue at least 1/2 times that of the best fixed reserve prices in hind-
sight. In no-envy learning, we study the bandit item selection problem where the
player valuation is submodular and provide an efficient 1/2-approximation no-envy
algorithm.

1 Introduction

In Online Learning, the goal is to design algorithms which are robust in dynamically evolving environ-
ments by applying optimization methods that learn from experience and observations. Characterizing
conditions, or in general discovering the hidden regularity, under which efficient online learning
algorithms with performance guarantee exist is a major research agenda in online learning. In this
paper, we consider this line of research and present a new regularity condition for the design of
efficient online learning algorithms. Subsequently, we establish the applicability of our approach in
auction design.

1.1 Definitions

General online problem. At each time step ¢t = 1,2, .. ., an algorithm chooses x' € [0, 1]™. After
the algorithm has committed to its choice, an adversary selects a function f* : [0, 1]™ — [0, 1] that
subsequently induces the reward of f!(x?!) for the algorithm. In the problem, we are interested in
the bandit setting that at every time ¢, the algorithm observes only its reward f*(x!). The goal is to
efficiently achieve the total gain approximately close to that obtained by the best decision in hindsight.

We consider the following notion of regret which measures the performance of algorithms.
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Definition 1 An algorithm is (v, R(T))-regret if for arbitrary total number of time steps T and for

any sequence of reward functions f*,.... fT € F,
T T
d i) >r max > fi(x) - R(T).
pa— ze(0,1]" —

We also say that the algorithm achieves a r-regret bound of R(T).

In general, one seeks algorithms with (r, R(T"))-regret such that » > 0 is as large as possible (ideally,
close to 1) and R(T) is sublinear as a function of T, i.e., R(T) = o(T). We also call r as the
approximation ratio of the algorithm.

We introduce a regularity notion that generalizes the notion of concavity. The new notion, while
simple, is crucial in our framework in order to design efficient online learning algorithms with
performance guarantee.

Definition 2 A function F' is (A, p)-concave if for every vectors x and x*,

(VF(@)," — ) > \F(2") - puF () (1)

Note that a concave function is (1, 1)-concave. A non-trivial example is the (1, 2)-concavity of the
multilinear relaxation of a monotone submodular function (Lemmal9).

1.2 Contribution

We aim to design a bandit algorithm for the general online problem with emphasis on auctions.
Bandit algorithms have been widely studied in online convex optimization [23]] but in the context of
auction design, standard approaches have various limits. The main issues are: (1) the non-concavity
of the (reward) functions, and (2) the intrinsic nature of the bandit setting (only the value f!(x!) is
observed). We overcome these issues by the approach which consists of lifting the search space and
the reward functions to a higher dimension space and considering the multilinear extensions of the
reward functions in that space. Concretely, we consider a sufficiently dense lattice £ in [0, 1] such
that every point in [0, 1]™ can be approximated by a point in £. Then, we lift all lattice points in
L to vertices of a hypercube in a high dimension space. Subsequently, we consider the multilinear
extensions of reward functions f* in that space. This procedure enables several useful properties,
in particular the (-, -)-concavity, that hold for the multilinear extensions but not necessarily for the
original reward functions. (For example, the multilinear extension of a monotone submodular function
is always (1, 2)-concave but the submodular function is not.) The introduction of (-, -)-concavity and
the use of multilinear extensions constitute the novel points in our approach compared to the previous
ones. This allows us to bound the regret of our algorithm which is based on the classic mirror descent
with respect to the gradients of the multilinear extensions.

Informal Theorem 1 Let f* : [0,1]" — [0, 1] be the reward function at time 1 < t < T and let F*
be the multilinear extension of the discretization of f* on a lattice L. Assume that f'’s are L-Lipschitz
and F%’s are (X, pi)-concave. Then, there exists a bandit algorithm achieving

ZE[ft(act)] > % - max th(m) — O(max{\/p, 1}Ln3/2(logT)?’/Q(loglogT)\/T).
t=1 t=1

x€l0,1]”

The formal statement corresponding to the above informal theorem is Theorem [2| By this theorem,
determining the performance guarantee is reduced to computing the concave parameters. Moreover,
the regret bound of O(\/T) is nearly optimal that has been proved in the context of online convex
optimization (for concave functions, i.e., (1, 1)-concave functions). The approach is convenient to
derive bandit learning algorithms in the context of auction design as shown in the applications.

Applications to Auction Design

In a general auction design setting, each player 4 has a valuation (or type) v; and a set of actions A;
for 1 < ¢ < n. Given an action profile @ = (a1, ...,a,) consisting of actions chosen by players,



the auctioneer decides an allocation o(a) and a payment p;(o(a)) for each player 7. Note that for
a fixed auction o, the outcome o(a) of the game is completely determined by the action profile a.
Then, the utility of player ¢ with valuation v;, following the quasi-linear utility model, is defined
as u;(o(a);v;) = vi(o(a)) — pi(o(a)). The social welfare of an auction is defined as the total
utility of all participants (the players and the auctioneer): SW(o(a);v) = > i, u;(o(a);v;) +
> pi(a). The total revenue of the auction is REV(o(a),v) = > pi(o(a)). When o
is clear in the context, we simply write v;(a), u;(a;v;), p;(a),SW(a;v),REV(a,v) instead of
vi(o(a)), u;(o(a);v;), p;(o(a)),SW(o(a); v),REV(o(a),v), respectively. In the paper, we con-
sider two standard objectives: welfare maximization and revenue maximization. Note that in revenue
maximization, we call players as bidders.

1.2.1 Fictitious Play in Smooth Auctions

We consider adaptive dynamics in auctions. In the setting, there is an underlying auction o and
there are n players, each player ¢ has a set of actions .4; and a valuation function v; taking values in
[0, 1] (by normalization). In every time step 1 < ¢ < T, each player ¢ selects a strategy which is a
distribution in A(A;) according to some given adaptive dynamic. After all players have committed
their strategies, which result in a strategy profile ot € A(A), the auction induces a social welfare
SW(0,0") = Eq.ot [SW(0(a);v)]. In this setting, we study the total welfare achieved by the
given adaptive dynamic comparing to the optimal welfare. This problem can be cast in the online
optimization framework in which at time step ¢, the player strategy profile corresponds to the decision
of the algorithm and subsequently, the gain of the algorithm is the social welfare induced by the
auction w.r.t the strategy profile.

Smooth auctions is an important class of auctions in welfare maximization. The smoothness notion
has been introduced [40, 36] in order to characterize the efficiency of (Bayes-Nash) equilibria of
auctions. It has been shown that several auctions in widely studied settings are smooth; and many
proof techniques analyzing equilibrium efficiency can be reduced to the smooth argument.

Definition 3 ([40,136]) For parameters A\, i > 0, an auction is (\, ) -smooth if for every valuation
profile v = (vq, ..., vy), there exist action distributions D1(v), ..., D,(v) over Ay, ..., A, such
that, for every action profile a,

n
ZEENE(”) [ui(@i,a—s;vi)] = X-SW(@;v) — p- SW(a;v)
i=1
where a_; is the action profile similar to a without player 1.

It has been proved that if an auction is (), 1)-smooth then every Bayes-Nash equilibrium of the
auction has expected welfare at least A/ fraction of the optimal auction [36),40]. The performance
guarantee holds even for vanishing regret sequences. A sequence of actions profiles a', a?, ..., is an
individually-vanishing-regret sequence if for every player i and action a/,

T
. root ¢
h%nf ;[ui(ai,aﬂ-,vi) —ui(a’;v;)] <0. (2)

However, several interesting dynamics are not guaranteed to have the individually-vanishing-regret
property. In a recent survey, Roughgarden et al. [38]] have raised a question whether adaptive dynamics
without the individually-vanishing-regret condition can achieve approximate optimal welfare. Among
others, fictitious play [8] is an interesting, widely-studied dynamic which attracts a significant
attention in the community.

In the paper, we consider a version of fictitious play in smooth auctions, namely Perturbed Discrete
Time Fictitious Play (PDTFP). (The formal definition is given in Section ) In general, it is not
known whether this dynamic has individually-vanishing-regret. (In particular, in the PDTFP dynamic
players are valuation-oriented whereas the condition (2 concerns player utilities.) Despite that fact,
using our framework, we prove that given an offline (A, xt)-smooth auction, PDTFP dynamic achieves
a A/(1 4+ w) fraction of the optimal welfare. The corresponding formal statement is Theorem

Informal Theorem 2 If the underlying auction o is a (A, p)-smooth then the PDTFP dynamic

achieves (ﬁ, R(T))-regret where R(T') = O(%)



1.2.2 Revenue maximization in Multi-Dimensional Environments

We consider online simultaneous second-price auctions with reserve prices in multi-dimensional
environments. In the setting, there are n bidders and m items to be sold to these bidders. At every
time step ¢t = 1,2, ..., 7, the auctioneer selects reserve prices ! = (r},,...,r} ) for each bidder
7 where rfj is the reserve price of item j for bidder i. Each bidder i for 1 < ¢ < n has a (private)

valuation v} : 2[ml s R* over subsets of items. After the reserve prices have been chosen, every
bidder 4 picks a bid vector b} where b is the bid of bidder i on item j for 1 < j < m. Then the
auction for each item 1 < 5 < m works as follows: (1) remove all bidders ¢ with bgj < rﬁj; 2)
run the second price auction on the remaining bidders to determine the winner of item j — the
bidder with highest non-removed bid on item 7; and (3) charge the winner of item j the price which
is the maximum of rfj and the second highest bid among non-removed bids bﬁj. The objective of
the auctioneer is to achieve the total revenue approximately close to that achieved by the best fixed
reserve-price auction. Note that in the bandit setting, the auction is given as a blackbox and at every
time step, the auctioneer observes only the total revenue (total price) without knowing neither the
bids of bidders nor the winner/price of each item. The setting enhances, among others, the privacy of
bidders.

The second-price auctions with reserve prices in single-parameter environments have been considered
by Roughgarden and Wang [37] in full-information online learning. Using the Follow-the-Perturbed-
Leader strategy, they gave a polynomial-time online algorithm that achieves half the revenue of the best
fixed reserve-price auction minus a term O(v/T log T') (so their algorithm is (1/2, O(v/T log T'))-
regret in our terminology). The problem we consider cannot be reduced to applying their algorithm
on m separate items since (1) bids on different items might be highly correlated (due to bidders’
valuations); and (2) in the bandit setting for multiple items, the auctioneer know only the total revenue
(not the revenue from each item). Using our framework, we prove the following result.

Informal Theorem 3 There exist a bandit algorithm that achieves the regret bound of
(1/2,0(mn3/%(log T)*/*(log log T)V/T)) for online simultaneous second-price auctions with re-
serve prices in multi-parameter environments.

1.2.3 Bandit No-Envy Learning in Auctions

The concept of no-envy learning in auctions has been introduced by Daskalakis and Syrgkanis [[14]]
in order to maintain approximate welfare optimality while guaranteeing computational tractability.
The concept is inspired by the notion of Walrasian equilibrium. Intuitively, an allocation of items
to buyers together with a price on each item forms a Walrasian equilibrium if no buyer envies other
allocation given the current prices. In the paper, we consider no-envy bandit learning algorithms for
the following online item selection problem.

In the problem, there are m items and a player with monotone valuation v : 2™ — R*. At every
time step 1 < ¢ < T, the player chooses a subset of items S C [m] and the adversary picks adaptively
(probably depending on the history up to time ¢ — 1 but not on the current set S*) a threshold vector p*.
The player observed the total price ) ;g pj and gets the reward of v(S*) — 37, . A learning
algorithm for the online item selection problem is a r-approximate no-envy if for any adaptively
chosen sequence of threshold vectors pt for 1 < ¢t < T, the sets St for 1 < ¢ < T chosen by the
algorithm satisfy

IE{XT: <v(st) -3 p;)} > puax :1 (r o(S) — Zp;) — R(T)

t=1 jes? Jjes
where the regret R(T') = o(T).

Daskalakis and Syrgkanis [[14] considered the problem in the full-information setting (i.e., at ever
time step ¢, the player observes the whole vector p’) where the valuation v is a coverage functio
and gave an (1 — 1/e)-approximate no-envy algorithm with regret bound O(v/T'). The algorithm is
designed via the convex rounding scheme [16]], a technique which has been used in approximation
algorithms and in truthful mechanism design.

'A coverage function v : 2(™ — R has the form v(S) = | Ujes A;| where A1, ..., A, are subsets of
[m].



In this paper, we consider submodular valuations, a more general and widely-studied class of
valuations. A valuation v : 2[™ — R* is submodular if for any sets S C T C [m], and for every
item j, it holds that v(S U j) — v(S) > v(T' U j) — v(T). Using our framework, we prove the
following result.

Informal Theorem 4 There exist an (1/2,0(m>/?(logT)%/?(loglog T)V'T))-regret no-envy
learning algorithm for the bandit item selection problem where the player valuation is submodular.

1.3 Related Work

There is large literature on online learning and auction design. In this section, we summarize and
discuss only works directly related to ours. The interested reader can refer to [39} [23] for online
learning and to [38]] (and references therein) for auction design.

Online/Bandit Learning. Online Learning, or Online Convex Optimization, is an active research
domain. The first no-regret algorithm was given by Hannan [21]. Subsequently, Littlestone and
Warmuth [30] and Freund and Schapire [[18] gave improved algorithms with regret +/log(|.A|)o(T")
where |.A| is the size of the action space. Kalai and Vempala [27] presented the first efficient online
algorithm, called Follow-the-Perturbed-Leader (FTPL), for linear objective functions. The strategy
consists of adding perturbation to the cumulative gain (payoff) of each action and then selecting the
action with the highest perturbed gain. This strategy has been generalized and successfully applied to
several settings [24, 141} 114} [15]]. Specifically, FTPL and its generalized versions have been used to
design efficient online no-regret algorithms with oracles beyond the linear setting: to submodular
[24] and non-convex [2]] settings.

In bandit learning, many interesting results and powerful optimization/algorithmic methods have
been proved and introduced, including interior point methods [1l], random walk [33]], continuous
multiplicative updates [13], random perturbation [3], iterative methods [17]. In bandit linear opti-

mization, the near-optimal regret bound of 6(71\/? ) has been established due to a long line of works
[} 13,110]. Beyond the linear functions, several results have been known. Kleinberg [29], Flaxman

et al. [17] provided O(poly(n)T3/4)-regret algorithm for general convex functions. Subsequently,
Hazan and Li [23]] presented an (exponential-time) algorithm which achieves O(exp(n)v/T)-regret.
Recently, Bubeck et al. [11] gave the first polynomial-time algorithm with regret O(n9'5\/T).

Smooth Auctions and Fictitious Play. The smoothness framework was introduced in order to prove
approximation guarantees for equilibria in complete-information [35]] and incomplete-information
[40, 136] games. Smooth auctions (Definition is a large class of auctions where the price of anarchy
can be systematically characterized by the smooth arguments. Many interesting auctions have been
shown to be smooth; and the smooth argument is a central proof technique to analyze the price of
anarchy. We refer the reader to a recent survey [38]] for more details. The smoothness framework
extends to adaptive dynamics with vanishing regret. However, several important dynamics are not
guaranteed to have the vanishing regret property, for example the class of fictitious play [8] and other
classes of dynamics in [20]. A research agenda, as raised in [38], is to characterize the performance
of such dynamics. Some recent works (e.g., [31]) have been considered in this direction.

Revenue Maximization. Optimal truthful auctions in single-parameter environments are com-
pletely characterized by Myerson [32]]. Recently, a major line of research in data-driven mechanism
design focus on competitive auctions without the full knowledge on the valuation distribution and even
in non-stochastic settings. The study of second-price auctions with reserve prices in single-parameter
environments and its variants have been considered in [28| (7} [12]. Recently, Roughgarden and Wang
[37]] gave a polynomial-time online algorithm that achieves (1/2, O(v/T)))-regret. Subsequently,
Dudik et al. [15] showed that the same regret bound can be obtained using their framework. Both are
in the online full-information setting.

No-envy Learning in Auctions. The notion of no-envy learning in auctions has been introduced by
Daskalakis and Syrgkanis [[14]. They proposed the concept of no-envy learning in order to maintain
both the welfare optimality and computational tractability. Among others, Daskalakis and Syrgkanis



[14] considered the online item selection problem with coverage valuation and gave an efficient
(1 — 1/e)-approximate no-envy algorithm with regret bound of O(v/T).

1.4 Organization

We begin by giving some preliminary definitions in Section[2] In Section[3] we present our framework
and the main algorithm. Subsequently, we show the applications about: (1) Perturbed Fictitious Play
in Smooth Auctions in Section [} (2) Online Simultaneous Second-Price Auctions with Reserve
Prices in Section[3} and (3) Bandit No-Envy Learning in Auctions in Section [6}

2 Preliminaries

Given a norm || - ||, the dual norm is defined as ||y||. := maxy.|z|=1(x, y). A function ® : R™ — R
is ag-strongly convex w.r.t || - || if
(@) > B(2) + (Vo(), @' — ) + S [o' — 2|

Given a strongly convex function ®, a map defined as & — V®(x) is bijective. Denote V®* the
inverse map of V®. In fact, this inverse map is given by the gradient of the Fenchel dual for ®. We
refer reader to [3]] and [6, Chapter 7] for more details. Given a strictly convex function ¢ : R” — R,
the Bregman divergence is defined as

Do(z||lz’) := ®(x) — ®(z') — (VO(a'), & — z')
The following lemma generalizes the Pythagoras theorem (proof can be found in [4] for example).

Lemma 1 (Generalized Pythagorean Property) Given a convex body K C R"™. Let x € K and
y' € R™ Let y be the projection of y' on K, defined as y = argmingex Do (Y||y’). Then
Do (x||y) < Do (zly").

Let  C R™ be a convex set with non-empty interior int(XC). A function ® : L — R is v-self-
concordant if

1. @ is three times continuously differentiable, convex and ® approaches infinity along any
sequence approaching the boundary of IC

2. Forevery a € R™ and « € int(K), it holds that

V3®(z)[a, a,a]| < 2(|V?®(x)[a, a]|)*

IVo(a)a]| < v'/?(|V?d(a)[a,a]])

where V3®(z)[a, a,a] := m@(m +tia + taa + tza)
t1=to=t3=0

One can define a local norm based on the Hessian of a self-concordant function. Formally, given a
v-self-concordant function ® and a point « € int(kC), the local norm || - ||, and its dual norm || - ||+ »
are defined as

1/2

lalls = (a” V20(z)a)'/, la].o = (a”(V2®(z))'a)"?

The following lemma states a useful property of self-concordant functions.

Lemma 2 ([23], Lemma 6.10) Ler ® be a v-self-concordant function over a convex set KC. Then, for
all z,y € int(K),
1
1 —72(y)
where T is the Minkowski function over K defined as 75 (y) :=inf{t >0:xz +t '(y —x) € K} .

P(x) — ¢(y) < vlog



3 Framework of Online Learning

We present a general efficient online algorithm and characterize its regret bound based on its concavity
parameters. In Section[3.1] we prove the guarantee of the online mirror descent algorithm assuming
access to unbiased estimates of the gradients of the functions. In Section[3.2] we derive an algorithm
in the bandit setting.

3.1 Regret of (), ;1)-Concave Functions

Mirror descent. Given a convex set K. Let ® be a ag-strongly convex function w.r.t || - ||. Initially,
let ! is an arbitrary point in K. At time step ¢, play =! and receive the reward of F**(z?). Let g* be
an unbiased estimate of —V F*(z!) and denote 8 = V®(x'). The algorithm selects the decision
x'*1 as follows.

Ct+1 :Ot—ﬁ'gt
yt+1 _ V¢*(Ct+1)

t+1

T t+1)

= argmin Dy (zly

where 7 is a step size. An equivalent description is

t+1 t R AN t
2!t = argmax{(ng', @ — 2') — Do (=|2")}. 3)

Theorem 1 Assume that F* is (), p)-concave for every 1 < t < T and x* is the best solution in

hindsight, i.e., * € argmax Zthl F(x). Then the mirror descent algorithm achieves (%, R(T))-

regret in expectation where

T
L . n
R(T) = ﬂDq)(w lt) + 1 20a Z lg* [l
t=1

Ifllgtll« < Ly for1 <t <T (ie., F'is Ly-Lipschitz w.r.t || - ||) and Dg(x*||x) is bounded by G*
then by choosing n = L% QO‘T‘D we have R(T) < %\/20&@71.

Proof In the analysis, we follow the potential argument of Bansal and Gupta [4]] and derive a bound
based on the concavity parameters. Define the potential as W' = %Dq;. (z*||x*). First, we observe

that
n (U =) = Dy (z*|2'") — Da(z*||2")
< Dg(z*||y"") — Do (x*||2")
= ®(z*) — (Y — (Ve(y'™), 2" —y'™) — &(x") + (2') + (VO(z!), z" — z")
N——

——
¢ttt ot

— (I)(ilft) _ (I)(yt+1) _ <Ct+1,$t _ yt+1> _ <Ct+1 _ 0t7$* _ Zﬂt>

= ®(x') — o(y"") — (0" 2" —y") + (ng',a" —y"™) + (ng', x" — )
(673 *

< -yt =2t +ulg' 2ty + gt 2T — af)
ap 1 %

= _7||yt+1 . wt||2 + % <T]gt,04<1> (wt . yt+1)> +77<gt,w . wt)

2
n t)2 tox t

< — + —

> 20@“9 [ n(g y L x")

where the first inequality is due to the generalized Pythagorean property (Lemma [I)); the fourth
equality follows the update rule {**! = 8° — n - g*; the second inequality holds since ® is cvg-
strongly convex; and in the last inequality, we use Cauchy-Schwarz inequality (a, b) < ||b|||a]l« <
[B]1/2 + llal%/2.

By the observation and the fact that g* is an unbiased estimate of —V F*(x?),

E[(WH — )] < LE[|lg"|?] - (VF!(a!), 2" — o). @)

204<I>



Using the bound of the potential change due to Inequality (4) and linearity of expectation, we get

E[XT:()\Ft(as*) - uFt(:ct))] <ol 4 XT:]E [AFf(ac*) — pF(xh) + ottt - \I/t}

t=1 t=1

T
<v'+YE [AFt(w*) — pF'(z') — (VF'(2'), z" — ') +n||9t||i}
2 2ap

< Osince F'* is (X, p)-concave

T
1 “||lzt) n t
< Du(a'|2") 2—; [lg*II2)- (5)
If the norms ||g*||.. are bounded by L, and Do (z*||') is bounded by G? then

d A — 1
E[Z Ft(a:t)] > 2N Fie) - —G? - — L TI2
t=1 Hi3 ' '

pen B 200

Choosing = L% 222 the algorithm is (;\L R(T))-regret where R(T) = O(% V2asT). O

3.2 Bandit Algorithm

In this section, we consider the bandit setting in which at every time ¢ one can observe only the reward
ft(x") where f* is a bounded function defined on the convex set K = [0, 1]™. W.L.o.g., assume that
ft:10,1]™ — [0,1]. In our algorithm, we will consider a discretization of [0, 1]™ and the multilinear
relaxations of functions f* on these discrete points constructed as follows.

Discretization and Multilinear Extension. Let f : [0,1]" — [0, 1] be a function. Consider a
lattice £ = {0,27M 2.2=M ¢.2=M 11" where 0 < ¢ < 2™ for some large parameter
M as a discretization of [0,1]™. M is a constant parameter to be chosen later. Note that each
x; € {0,27M 2.2=M . 2-M 1} can be uniquely decomposed as x; = ZinO 270y,;
where y;; € {0,1}. By this observation, we lift the set [0, 1]” N £ to the (n x (M + 1))-dim space.
Specifically, define a bijective lifting map 1ift : [0,1]* N £ — {0,1}"*(M+1) guch that each
point (x1,...,2,) € K N L is mapped to the unique point (Y10, .-, Y10y -« - Yn0s -« - Ynh) €
{0, 1} (M+1) where z; = ZjM:O 2~9y,;. Define function f : {0,1}*(M+1) _ [0, 1] such that
f(1s) := f(1ift—'(1g)); in other words, f(1g) = f(x) where z € [0,1]*NLand 15 = 1ift(x).
Note that 15 with S C [n x (M + 1)]is a (n x (M + 1))-dim vector with (i;)*"-coordinate equal to
Lif (4, j) € S and equal to 0 otherwise. Consider a multilinear extension F" : [0, 1M+ [0, 1]
of f defined as follows.

F(z):= Z 15 H Zij H — Zij).

SClnx(M+1)] (,7)€S8 (,5)¢S

By the definition, F'(z) can be seen as E[f(1g)] where the (ij)""-coordinate of 15 equals 1 (i.e.,
(15)i; = 1) with probability z;;.

Algorithm description. Our algorithm, formally given in Algorithm [T} is inspired by algorithm
SCRIBLE [[1] which has been derived in the context of bandit linear optimization. It has been observed
that the gradient estimates of the functions in SCRIBLE are unbiased only if those functions are linear;
and that represents a main obstacle in order to derive an algorithm with optimal regret guarantee
R(T) = O(\/T). While aiming for the regret of O(+/T), in our algorithm, we overcome this obstacle
by considering at every step the gradient estimate of the multilinear extension of the reward function
(construction above). That gradient estimate will be indeed proved to be unbiased. Incorporating that
gradient estimate to the scheme in [[1] and following our approach, we prove the regret guarantee of
the algorithm.



Algorithm 1 Algorithm in the bandit setting.

1: Let ® be a v-self-concordant function over [0, 1]7*(M+1),

2: Let 2% € int([0, 1]**(M+1) such that V®(2') = 0.

3: fort=1toT do

4 Let At = [V2a(zt)] V2

5. Pick u € S,, uniformly random and set y* = 2! + Atul.

6:  Round y' to a random point 1g: € {0, 1}™*(M+1) such that element (i, j) appears in S* with

probability y;;.

Play ' = 1ift~!(1g¢) and receive the reward of f(x?).

8: Letg' = —n(M 4 1)ft(x)(A")~'u! and compute the solution 2+ € [0,1]"*(M+1) py
applying the mirror descent framework on F'* (Section . Specifically,

~

t+1 _ t o _ S\ _ D t
z argze[ojr]l;fggmn{<ng,z z') — Da(2]2")}.

Analysis. The remaining of the section is devoted to the analysis of Algorithm[I] For simplicity,
until the end of this section, denote m = n(M + 1). Let B,, and S,,, be the unit ball and the unit

sphere in m dimensions, respectively. For a constant 8, define Fs(2) := Ewpes,, [F(z + 0w)]| where
w is drawn from a uniform distribution over B,,,. We first prove some technical lemmas by exploiting
properties of multilinear extensions. These lemmas are similar to those needed to prove the regret
guarantee of SCRIBLE [1] but have some subtle differences because the functions we are considering
are not linear (which is the case in [[1]).

Lemma 3 It holds that F5(z) = F(z). Similarly, it also holds that Eycs,, [F(z + du)] = F(z).

Proof Intuitively, the lemma holds since F'(z) is linear w.r.t z; for every . In the following, we prove

the first identity £}5(z) = F(z). The second identity can be proved by exactly the same argument
(using sphere instead of ball).

Consider a monomial gi(z) = 2122 ... 2 for 1 < k < m. We first prove by induction the claim
that Eycp,, () [gx (z + dw)] = gi(2) for every ball B,,, (r) with radius r in dimension m. (By this
notation, B,,, = B,,(1).) The base case k = 0 is trivial. Assume that the induction hypothesis holds
for gi—1(z). For any vector w € B,,(r), vector w’ = (—vg, w_) is also in B, () and

g(z + dw) + g(z + dw') = (zx + 0vg) - gr—1(2—k + dw_g) + (2k — Svk) - gr—1(z—k + SwW_y)
=221 - gr—1(z—k + 0w _)
Note that, for a given |wy,|, uniformly random vectors (+wy,, w_g) in the ball B,,, () induce uniformly

random vectors w_y, in the ball ]B%m_l( r? — |wg \2) Therefore,

Euwes,, () [9%(2z + dw)] = 2z - Ey, E ?) [9e—1(z—k + dw_p)]

w_E€Bm 1 ( r2—|ug
= 2k Bo, [g6-1(2—k)] = 21 - go—1(2-k) = gr(2)

where the second equality is due to the induction hypothesis. The claim follows.

As the multilinear extension is the sum of monomials multiplying with constant factors, the lemma

holds because of the linearity of expectation. (|

We restate here an useful lemma in [23].

Lemma 4 ([23], Lemma 6;4) Let 6 > 0 be a fixed constant and A € R™*™ be an invertible matrix.
Let G(z) := F(Az) and Gs(2) := Buwe,, [G(z + dw)]. Then, it holds that

Eyes,, [G(z + 5u)u} = %V@Az)

where the expectation is taken over uniform vector u in the m-dim unit sphere S,,.



Lemma 5 Let A € R™*™ be an invertible matrix. Define F(z) := Eqpep,, [F(z + Aw)). Then it
holds that

(i) F(z) = F(z) = Eyes,, [F(z + Au)].
(ii) VF(2) = mEqyes,, [F(z + Au)A™u].

Proof We prove the first part of the lemma. Again, we prove only the identity F'(z) = Eyyep,, [F (z+
Aw)]; the identity F(z) = Eyes,, [F(z + Au)] can be proved using exactly the same arguments.
Define G(z) := F(Az). Note that by this definition, F'(z + Aw) = G(A™!2z + w). The multilinear
extension F' is the weighted sum of monomials, so is G. Therefore, by the same argument as in
the proof of Lemma for any z and 4, it holds that G(2) = Eues,, [G(z + dw)]. Applying this
identity with § = 1, we have

G(A™'2) = Eyes,, [G(A™ 2 + w)] &  F(2) =Eyes, [F(z + Aw)] = F(z).

In the sequel, we prove the second part of the lemma. In fact, it can be proved using the same analysis

in [23] Corollary 6.5]; we present it here for completeness. Define G/(2) := Eqep,, [G(z +w)].
We have

mEyes,, [F(z + Au)A’lu] = mAflEuegm [F(z + Au)u] = mAillEuegm [G(Ailz + u)u}
= ATWWG(A™ 2) = ATYAVE(2) = VF(2)
where the third inequality is due to Lemmald] with § = 1. |

Lemma 6 If f(x) < 1 for every & € [0,1]" then the corresponding multilinear extension F is
2v/m-Lipschitz.

Proof The proof comes directly from inspecting the derivatives. For each 1 < ¢ < m, we have

e IS0 1 | CESED SR () | £ €
¢ S:tes JES  j¢s 5:0¢ S JES  j¢S
<> IM=1la-=n+ > IT=110-2)<>2
S:HeSjes  jgs S:¢SiesS  j¢s

where the first inequality is due to f(1g) < 1forall S C [m].

F(z)| <2ym. O

Theorem 2 Ler f' : [0,1]" — [0,1] be the reward function at time 1 < t < T and let F* be the
multilinear extension of the discretization of f* based on a lattice L (defined earlier). Assume that
F'’s are (\, p)-concave and for every x € [0, 1]", there exists T € L such that | f'(z) — f'(Z)| <
L-27M for every 1 <t < T (for example, f*’s are L-Lipschitz). Then, by choosing M = log T and
n=0 (m) and ® as a O(nM)-self-concordant function, Algorithmachieves:

ZIE[ft(mt)] % max Zf O (max{\/u, 1} Ln*/?(log T)*/?(loglog T)VT).

Proof A crucial point in the analysis is the observation that the gradient estimator of the multilinear
relaxation is unbiased. Specifically,

E[g'] = EwEy [g'] = Eut [mF' (y")(A) " 'u!] = VF!(2') = VF!(2")
where the second equality holds since E[f*(x')] = F'(y') (by independent rounding and F* is
multilinear relaxation of f*); and the third and last equalities follow Lemma 3}

The remaining of the proof is similar to that in [23, Chapter 6] with some subtle differences because
we consider the multilinear extensions of reward functions. Let 0 < § < 1/2 be some small constant
and consider the hypercube [4,1 — §]™. Note that, [, 1 — §]™ is convex and all balls of radius &
around points in [§, 1 — §]™ are included in [0, 1]™

10



Let z; be the projection of z* onto [§,1—5]™ <
dy/m. Moreover, as |f!(x)| < 1 for every x,t, and by definitions of the local norm, of A* and
ul € S,,, it holds that

g2z < m2f* (") (u') T (A1) ) TV 2(x")(AT) T ut < m? (6)
Besides, by Lemmal6] the multilinear relaxations £'*’s are (2/m)-Lipschitz for every 1 < ¢ < T..

For any z* € [0, 1]™, we have

T T
A
=— Z F'(z*) - Z Egt [F'(2")] by Lemma [5{(¢)
= t=1
VT T
< i D FU(z5) = Y Eg [F'(2N)] + T(2vm)||lz" — 25| 2/m-Lipschitz of F*
t=1 t=1
1 T
< ——Dg(2f|2) + Z Z lg" || + 26mT by Theorem [I]
=
1 n 2
=—1|P(z5)— @ Vo zy—z )|+ mT + 26mT
- [0(a5) — 0(=") - (VO(=). 25— 21)] + —I—
1 n .
< —[®(2}) = d(2Y)] + ——m2T + 26mT since V& (z!) =0
—[0(z5) ~ 9] + —g— (=)
v 1 n 2
< lo + m-T + 26mT by Lemma |2
W BT ma(z) | k200 Y
log &
< ro8s +— 2T 4 26mT since z3 € [0,1 — ™
pen o e 200
= O(mVvT log(mT))

The second inequality holds since the unbiased stochastic gradients g*’s have corresponding dual local
norm bounded by m?. The last equality follows the choice n = O(1/m\vT),5 = O(1/mV/T).

Besides, by the property of multilinear extension and ! is obtained from ¥y’ by independently
rounding, F*(y') = Eg[f!(x')]. Moreover, F' and f' have the same value on {0,1}" N L.
Therefore,

T T
. Egpt ot gt [ fH(2")] = = - F'(z Ey | F
L Z @) = 3 B [1@0] = 5 o, Z )= D Bu|
< O(mVvT log(mT)) = (mS/Q\Flog(mT))
where the last equality is due to the fact that O(m)-self-concordant barrier exists [34} 9]

Let z* € arg mingc(o,1jn Zthl ft(z). By the theorem assumption, there exists Z* € [0,1]" N L

such that | f*(x) — fY(&)| < L-2"M. Hence, Y, fi(x*) < S1_, f{(@*) + TL2~™. Choose
M =logT (and recall that m = n(M + 1)), we obtain the guarantee

— - max th Z]Emf utgt [fH(@)] < O( 32 M3/ T log(nMT) + 2TL;\4>

17 mEOl]"

= O(max{\/u, 1} Ln*?(log T')*/*(log log T)V'T).
g

4 Perturbed Discrete Time Fictitious Play in Smooth Auctions

We consider adaptive dynamics in auctions. In the setting, there is an underlying auction o and
there are n players, each player ¢ has a set of actions .4; (that can be arbitrarily large but finite) and
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a valuation function v; taking values in [0, 1]. In each time step 1 < ¢ < T, each player ¢ selects
a strategy which is a distribution in the space of distributions A(.A4;) according to some adaptive
dynamic. The strategy profile at time ¢ is denoted as o € A(A). Given the strategy profile o,
the auction induces a social welfare SW(0,0") := Eq ot [SW(0(a); v)]. In this setting, we study
the performance of adaptive dynamics, especially the ones which are not guaranteed to fullfill the
vanishing regret condition, and eventually design dynamics/auctions with performance guarantee.
Among others, fictitious play is an interesting, widely-studied dynamic which attracts a lot of attention
in the community. In this section, we will study the performance of a version of fictitious play in
smooth auctions.

Valuation-Oriented Fictitious Play. Consider the Perturbed Discrete Time Fictitious Play
(PDTFP) — a smooth version of Discrete Time Fictitious Play (for example, see [26]]). Let
D, : A(A;) = Rfor 1 < i < n be strongly convex functions (®;’s are not necessarily the same).
Initially, each player chooses some arbitrary action. At time ¢ + 1, given a strategy profile o* where
ol € A(A;) and perturbations N} : A(A;) — R for 1 < i < n defined as N} (0;) = Dg, (0;]|c}),
player 4 selects a mixed strategy o1 such that

J§+1 € argménAa&i)anmEagNagi [Ui(aimai)] - ENz’t(Ui)
Equivalently,
1
Uerl € arg max EaiNUiEatNGt [Ui(a’tfivai) - 'Ui(at)] - 7Nzt(0-i)a (7)

o, €A(A;)

since £ [vi(at)] is already determined. One common example of perturbations is the relative entropy
(or Kullback-Leibler divergence), defined as

No) = 3 oi(a)log LY.

t
acA; i (a)

which is the Bregman divergence with the negative entropy function ®;(0;) =
Y aca, oila)logoi(a).
Let V; be the multilinear extension of the valuation v; of player i (construction in Section [3.2)) where

now the corresponding lattice is the set of pure strategies .A. Note that the social welfare is the sum
of all player valuations. Given an action profile a?, define Vi(a!) : R® — R such as

(V'(at)z) =Y ‘9‘;‘;7) oz

As V; is the multilinear extension of v;, for every action a* we have

(Vi(a'),a* —a') = Z[Vi(a;*,aii) - V;(at,a",)].

=1

The PDTFP dynamic can be cast as the mirror descent algorithm. By Equation (/) — the update
rules of PDTFP dynamic — at every time step ¢, strategy profile o't = (a§+17 o, oY) s exactly
the solution of the mirror descent update Equation (3):

1
o't € arg %, EaroBaing: [(Vi(a"),a —a")] - EDcp(crHat)

where @ is a strongly convex function such that ®(o) = >, ®;(0;). Remark that, by the definition
of ®, Dg(o|ot) = Y0, Do, (0illot) = Y1, Nf(o;). Again, if ®;’s are negative entropy
functions (so the perturbations N} are relative entropy functions) then ®(o) = Y " | ®;(0;) =

Y i1 Yaea, 0i(a)logoi(a). Note that the PDTFP dynamic associated to that choice of entropy
function is usually called smooth fictitious play [19] (or logit dynamic).
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PDTFP dynamic in smooth auctions. Given arbitrary perturbations @, it is not clear whether the
sequences of player actions in PDTFP dynamic are individually-vanishing-regret, i.e., satisfying
condition (2)). In particular, in the dynamic players are valuation-oriented whereas the condition
concerns player utilities. Hence, the welfare guarantee by 36, 40] for individually-vanishing-regret
sequences cannot be applied. In the following, we show that although it is not known whether PDTFP
dynamic are individually-vanishing-regret, they achieve a guarantee bound on the welfare in smooth
auctions.

Theorem 3 If the underlying auction o is a (A, p)-smooth and Dg(-||-) is bounded by G*
then the PDTFP dynamic with parameter 1 = O(G/\/T) achieves (ﬁ, R(T))—regret where

R(T) = O(%f) In particular, if the perturbation is the relative entropy function then
T log(n|.A
R(T) = O(V 1524y

Proof The analysis follows closely the one of Theorem I with some modifications. For simplicity,
without loss of generality, assume that the distributions D, ..., D,, in the definition of smooth
auctions (Definition [3)) give rise to a pure strategy profile @ and at any time step t, the PDTFP
dynamic outputs a pure profile a’ . The analysis remains the same for general distributions/mixed
profiles by putting additional expectations into some formula.

As the underlying auction is (), pt)-smooth, given a fixed valuation profile v, there exists a strategy
profile @ such that for any profile a, it holds that

Zui(aiaa—i;vi) > \-OPT(v) — - REV(a)
i=1

where OPT(v) stands for the optimal welfare given the valuation profile v. We first derive an useful
inequality based on the smoothness of the auction. We have

(V'(a'). @~ a') = Y [Vi(@,al :v) - Vi(ai,al 5 0)]
= Z[W(ﬁi, a' ;vi) + pi(ai, a’ ;vi)] — Sw(a;v)

> \-OPT(v) — it - REV(al;v) — SW(a';v)
> X-OPT(v) — (1 + ) - SW(a'). €]

The first inequality follows by the (), ut)-smoothness and the non-negativity of payments p;’s. The
second inequality is obvious since the revenue is always smaller than the welfare. We remark that
Inequality (8] is similar to (but not the same as) the notation of (-, -)-concavity since it can written as

(VSw(a'),a—a') > \-Sw(a*) — (14 p) - Sw(a')
where a* is the optimal strategy. Hence, there would be a connection between concavity and

smoothness.

Define the potential as ¥ = %D@ (alla’). Note that here we use the Bregman divergence from the

strategy @ (induced by the smooth auction) to a® instead of the Bregman divergence from the optimal
strategy a* to a’ (as in Theorem . By the same arguments proving Inequality , we have

2
D@ =) = Da(@la’*") = Da(ala’) < —n(V'(a").a — a’) + 5|V (a")
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Given the valuation profile v, let a* be the action that gives the optimal welfare, i.e., SW(a*;v) =
OPT(v). Using the same arguments as in the proof of Theorem we have

T T
So(swla') ~ (1-+ p)sw(a') < B+ 3 aswla) - (14 wswia!) + 00+ - ]
t=1 t=1
T
Z[AOPT — (Lt psw(a') - <vt<at>,a—af>+2;7||vt<at>||z}
— P
n <0 by Inequality
1 n - t 2
< Po@lal) + 503 IV @)l
n 209 —
Thus,
T 1 0 T
Sw(at Sw(a = Dio(alal) - — 1 Vi(al)|2
2 swah) 2 Z ~ w29~ ey 2 IV @I

Note that if player valuations are in the range [0, 1], then

IVi(a")]l. < IVi(@")]le < 1.

By the theorem assumptions, Dg(@|la’) < G?. Hence, choosing n = O(G/+/T), the PDTFP

R(T))-regret where R(T') = O(Cfﬁ)

dynamic achieves (1 T

Consider the particular PDTFP dynamic with relative entropy perturbation. Function ® (o) is ag
57 -strongly convex (due to Pinsker’s inequality). Moreover, Do (@lla') < max; log(n|.A;|)

log(n|.Al). Therefore, choosing = O(1/+/T log(n|A[)), the PDTFP dynamic with relative entropy

R(T))-regret where R(T) = 0(%}7\“‘”)) .

IA

perturbation achieves (2 ot

5 Online Simultaneous Second-Price Auctions with Reserve Prices

In this section, we are interested in the objective of maximizing the revenue. In the setting, there are
n bidders and m items to be sold to these bidders. At each time stept = 1,2,..., T, the auctioneer
selects reserve prices rf = (1}, ..., m) for each bidder 7 where r;; is the reserve prlce of item j for

bidder i. Subsequently, every bidder i picks a bid vector b} = (b, ..., b},,) where bl is the bid of

ram
bidder 7 on item 1 < j < m. Note that bt and bt ., can be correlated Then the auction for each item
1 < 7 < m works as follows: (1) remove all bldders 1 with b Ty J, (2) run the second-price auction
on the remaining bidders to determine the winner of item j (3) charge the winner of item j the

larger of rf-j and the second highest bid among the bids bfj of remaining bidders. Denote the revenue

of selling item j as REV(r!, b*) where b* = (b%,...,b%) and r* = (r},...,r!). The revenue of

the auctioneer at time step ¢ is REV(r?,b") = 7" REV;(rf, b"). The goal of the auctioneer is

to achieve the total revenue approximately close to that achieved by the best fixed reserve-price in
hindsight >~ | REV;(r*, b").

In the setting, by scaling, assume that all bids and reserve prices are in IC = [0, 1]™*™. Consider the
lattice £ = {£-27M : 0 < ¢ < 2M}nxm [0, 1]"*™ for some large parameter M as a discretization
of [0,1]"*™. Observe that for any reserve price vector r, |REV(r,b) — REV(7,b)| < m - 2~M
where 7 is a reserve price vector such that 7;; is the largest multiple of 2= smaller than r;; for
every 1, 7 (for some large enough M). Therefore, one can approximate the revenue up to any arbitrary
precision by restricting the reserve price on £. We shghtly abuse notation by denoting REV;(1g,b)
as REV,(r,b) where 1g = m(r) (recall that m is the map defined in Section [3.2] n Following
Section [3.2) n given a bid vector b, the multilinear extension REV of the revenue REV is defined as
REV(-,b) : [0,1]»*m>*(M+1) _ R such that:

REV(z.b)= 3 (ZREvjﬂaw) II zoe IT =z

SClnxmx(M+1)] “j=1 (i,4,k)€S (i,3,k)¢S
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Online bandit Reserve-Price Algorithm. Initially, let 7! be an arbitrary feasible reserve-price. At
each time step ¢ > 1,

(i) select 7t or O each with probability 1/2 as the reserve-price;

(i1) receive the revenue corresponding to the selected reserve-price;

(iii) compute r**! using Algorithm with the following specification: in line 8| of Algorithm
replace f!(x!) by 2REV (7!, b') if the selected reserve-price is 7!, or replace f!(x) by 0 if
the selected reserve-price is 0. (By doing that, the expected value of g* in Algorithm [1]is
—VREV(rt, b').)

Analysis. In order to analyze the performance of this algorithm, we study the properties of some
related functions and then derive the regret bound for the algorithm.

Fix a bid vector b. Let r; be a vector consisting of reserve prices on item j, i.e., 7; = (714, ...,7n;)-
As b is fixed and the selling procedure of each item depends only on the reserve prices to
the item, so for simplicity denote REV,(r,b) as REV,(r;) and REV(r,b) as REV(r). De-
fine a function h; : {0,1}"*(M+1 — R such that h;(17) = max{REV,(17),REV;(1y)} =
max{REV,(r),REV;(0)} where r; is the reserve price corresponding to 17 for T C [n x (M +1)].
Let H; : [0,1]"*(M+1) 5 R be the multilinear extension of h;. Moreover, define H :
[0, 1]7*mx(M+1) 3 R as the multilinear extension of max{REV (), REV(0)} defined as

H(z) = Z max{REV(1g),REV(1y)} H Zijk H (1 — zijn)

SCnxmx(M+1)] (i,5,k)€S (i,,k)¢S

Lemma 7 It holds that H(z) = Z;nzl H,(z;) where z; is the restriction of z to the coordinate
related to item j.

Proof As items are sold separately,

H(z) = > (ihj(lA)) T = II =z

SCnxmx(M+1)] Nj=1 (i,4,k)€S (i,5,k)¢S

where A C [n x (M + 1)] is the restriction of .S on coordinates related to item j. Therefore,

H(z) =) > > hj(lA)> IT = IT 0=z

J=1UC[nx(m—1)xM] | AC[nx(M+1)] (i,k)EA (i, k)¢ A

independent of U since the allocation of 5 depends only on bids to item j.

H Zij'k H (1= zijrk)

(i,5",k)€U (4,5",k)¢U,5'#j
:Z[ Yoo ma) [T = 11 (1—Zijk)]
j=1 LAcinx (M+1)] (ik)EA  (i.k)EA
> II =z 11 =z
UCnx(m—1)x (M+1)] (6,5 k)€U (i3 k) UG/ 4]

=1

S8 e I s I 0-a] -
j=1ta

Clnx (M+1)] (i,k)EA (i,k)¢A j=1

We will prove that H is (1, 1)-concave. By Lemma it is sufficient to prove that property for every
function H;.

Lemma 8 Function H; is (1,1)-concave.

15



Proof We prove that the condition ([1|) of the (1, 1)-concavity holds for all points in the lattice. As
the multilinear extension can be seen as the expectation over these points, the lemma will follow. Fix
a bid profile b; = (b1, ..,bn;). Without loss of generality, assume that by; > ba; > ... > by;. Let
r; and 77 be two arbitrary reserve price vectors. We will show that

n

> {maX{REVj(r_ij, r};),REV;(0)} — max{REV;(r;),REV;(0)}

i=1
> max{REV;(r}),REV;(0)} — max{REV,;(r;),REV;(0)}  (9)

where r_;; stands for the reserve price vectors on item j without the reserve price of bidder 7.

Observe that the revenue max{REV;(r’),REV;(0)} for every reserve price 7’ is at least the second
highest bid bo; (that is obtained in REV;(0)). Moreover, for any reserve price r/; such that the
auctioneer either (1) removes the first bidder (with highest bid) or (2) removes the second bidder and
r’lj < by, the revenue

max{REV;(r}),REV;(0)} = REV,(0).
Hence, max{REV,(7}), REV;(0)} # REV;(0) if and only if bay; < r{; < by;.
By these observations, we deduce that
max{REV;(r_;;,7;;),REV;(0)} # max{REV;(r;),REV;(0)}
if and only if ¢ = 1 and

e cither bgj < 715 7é T‘T]- < blj;

e Or ’I“Tj S (sz, blj] but T15 §é (bgj, blj];

e orinversely r1; € (baj, b1j] butry; & (b, byjl.
Thus, proving Inequality (9) is equivalent to showing that

max{REV,(r_q;, r{j), REV;(0)} — max{REV,(r;),REV;(0)}
> max{REVj(r;),REvj(O)} — max{REV,(r;),REV,(0)}

Case 1: byj <71 # r]; < by;. In this case, both sides are equal to r{; — r1;.
Case2: rj; € (baj,b1;] but 1 & (baj, b1;]. In this case, both sides are equal to 7 — b2j
Case 3: 715 € (bzj,b1;] but i, & (b2, b1;]. In this case, both sides are equal to by; — 71

Case 4: the complementary of all previous cases. In this case, both sides are equal to 0.

Therefore, Inequality (9) holds and so the lemma follows. ]

Theorem 4 The online bandit reserve price algorithm achieves the regret bound of
(1/27O(mn3/2(logT)3/2(loglogT)\/T)).

Proof Consider an imaginary algorithm which is similar to our online reserve price algorithm but
at every step ¢, its gain on item j is max{REV,(r"), REV;(0)}. (This algorithm is called imaginary
since one cannot decide which reserve price between ? and 0 is better when the bid vector is not
known.) We verify the conditions of Theorem [2| The discretization satisfies the condition that
for any given bids b, for any reserve price r, there exists a reserve price 7 in the lattice which
gives [REV(7,b) — REV(7,b)| < m - 2~ Moreover, Lemmashows the (1, 1)-concavity of H.
Therefore, applying Theorem [2] the imaginary algorithm achieves the regret bound of (1, R(T"))
where

R(T) = O(mn3/2(log T)%/%(log log T)\/T)

As the online reserve price algorithm selects at every step t either 7 or 0 with probability 1/2, the
revenue of the algorithm is at least half that of the imaginary algorithm. The theorem follows.  [J
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6 Bandit No-Envy Learning in Auctions

In this section we consider the bandit item selection problem. In the problem, there are m items and a
player with monotone submodular valuation v : 2™ — [0,1]. At every time step 1 < t < T, the
player chooses a subset of items S C [m] and the adversary picks adaptively (probably depending on
the history up to time ¢ — 1 but not on the current set S*) a threshold vector pt. The player observes
only the thresholds pj; for j € S* and gets reward v(S*) — 37, pj. Without loss of generality,

assume that 0 < v(S) < 1forall S C [m] and also 0 < p} < 1 forall ¢ and j.

We seek an r-approximate no-envy learning algorithm for some constant 0 < r < 1. That is, for any
adaptively chosen sequence of threshold vectors p* for 1 < ¢ < T, the sets S¢ for 1 < ¢ < T chosen
by the algorithm satisfy

T T
t t t
]E[Z (U(S ) — Z pj>] > ;rglé[lgi] Z(r -v(S) — ij> — R(T)
=1 jeSt t=1 JES
where the regret R(T') = o(T).
Let V : [0,1]™ — RT be the multilinear relaxation of the monotone submodular valuation v.

Formally,
V(z)= Z v(S) H Zj H(l — Zzj).
Scm] JjES  j¢S
It is well-known that if v is monotone submodular then V is also monotone and it satisfies the
diminishing return property: VV (x) > VV (y) for all z,y € [0, 1]™ such that < y. Here for two
vectors a, b, we mean a < biff a; < b; forall j.

The following lemma, which has been implicitly proved in [22]], shows that the multilinear relaxation
V is (1, 2)-concave.

Lemma 9 ([22]) For every x,y € [0, 1]™, it holds that
(VV(z),y —x) > V(y) —2V(x)

Proof Given vector ,y, let  V y be the vector such that its i*" coordinate is max{z;, y;} for every

1 < ¢ < n. Similarly, let & A y be the vector such that its it" coordinate is min{z;,y;} for every
1 <1< n.

For any vectors ¢ < z, using the diminishing return property VV (z) > VV(x + t(z — x)) for
0 <t <1, wehave

1
V(z) - V(z) = /0 (z—x,VV(x+t(z—x)))dt

< /0 (z—x, VV(x))dt = (z — @, VV(x))

Therefore,
VeVvy)—V(z) < (xVy—z,VV(x)). (10)

Similarly for vectors < z, we have
1
V(z)-V(x) = / (z—x,VV(x+t(z—x)))dt
0

1
> / (2 — @, VV(2))dt = (2 — @, VV(2).
0
Therefore,
VieAy)—V(z) <{zAy—=z,VV(z)) (11)
Summing and and using the fact (x V y) + (z A y) = = + y, we obtain
VeVvy) +V(eAy) —2V(z) < (y — =z, VV(x)).
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As V is monotone and non-negative, we deduce that
V(y)—2V(z) < (y —z,VV(x)).
O

In order to apply our framework, we first prove the guarantee of the mirror-descent algorithm similar
to the one in Section 3,11

Mirror descent. Let ® be a ag-strongly convex function w.r.t || - ||. Initially, let z* is an arbitrary
feasible point. At time step ¢, play z! and receive the vector p*. Compute —g’ an unbiased estimate
of $V(V(2') — (p', 2')) = 3VV(2") — p'. Update 2"+ as follows:

t+1

2 = arg max {(ng’,z —2") — Da(2|2")}

z€[0,1]™

Theorem 5 Then the mirror descent algorithm above achieves

T

Z(V(zt) - <Pt,zt>) > max d (;V(z) - <pt’z>> _ %D@( ") 2772?: g2

- n
t=1 =€l i

Proof The analysis in similar to that of Theorem |1} Let z* € argmax e 1pn >op—; (2V(2) —
(p', z)). Define the potential as W' = %Dq>(z* |2?). By the same argument as in the analysis of
Theorem [T} we have

2
Da(="|[2) — Da(="|12") < 5|2~ n(g", =" — = (12)

Using the bound of the potential change due to Inequality (12)), we get

> (3t - w2 - Vi + 02

t=1
T
1
<U; + Z(2V(z*) — V(zt) — <pt,z* _ zt> Lttt \Ift)
t=1
T
<wi+ Y (VG -V - s - ) - (g2 - ) + g
= 2 P g9 sllg'
t=1
T
| 1 . .
St Z(zv(z )= V(=) - 5(VV ("), 2"~ 2') + z%lgtlla
t=1
! * n - t)2
1

The third inequality holds because of the (1, 2)-concavity of V, i.e., V (2*) =2V (") —(VV (2!), 2* —
z') < 0. The theorem follows. O

Combining Theorem [5]and Theorem [2] we obtain the following result.

Theorem 6 Using Algorithm |I|with the specification that in line ES’] replace f'(x') by Lv(S") —
Zjest pj, one gets a bandit algorithm with the following guarantee.

Z(v(st) -y pz,) > max <;’U(S) - Zp;) — O(m*?(10g T)**(loglog T)VT).
t=1 1

s
jest i jes
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7 Conclusion

In this paper, we have introduced a framework to design efficient online learning algorithms. Apart
of standard regularity requirements (such as compact convex domain, Lipschitz, etc), a new crucial
property is the (A, pu)-concavity. Designing efficient online learning algorithms is now reduced to
constructing (\, pt)-concave offline algorithms (also with other standard regularity conditions). We
show the applicability of the framework through applications in auction design. Due to the simplicity
of the conditions, we hope that our approach would be useful in designing efficient online algorithms
with approximate regret bounds for different problems.
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