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Abstract

We consider the following constrained maximization problem in discrete proba-
bilistic graphical models (PGMs). Given two (possibly identical) PGMs M and
M, defined over the same set of variables and a real number ¢, find an assignment
of values to all variables such that the probability of the assignment is maximized
w.r.t. M and is smaller than ¢ w.r.t. Ms. We show that several explanation and
robust estimation queries over graphical models are special cases of this problem.
We propose a class of approximate algorithms for solving this problem. Our algo-
rithms are based on a graph concept called k-separator and heuristic algorithms for
multiple choice knapsack and subset-sum problems. Our experiments show that
our algorithms are superior to the following approach: encode the problem as a
mixed integer linear program (MILP) and solve the latter using a state-of-the-art
MILP solver such as SCIP.

1 Introduction

This paper is about solving the following combinatorial optimization problem: given a set of discrete
random variables X and two possibly identical probabilistic graphical models (cf. [7,[20]]) or log-linear
models defined over X, find the most likely assignment to all variables w.r.t. one of the log-linear
models such that the weight (or probability) of the assignment is smaller than a real number ¢ w.r.t.
the second model. We call this task constrained most probable explanation (CMPE) problem. CMPE
is NP-hard in the strong sense and thus it cannot have a fully polynomial time approximation scheme
(or FPTAS) unless P = NP. However, it is only weakly NP-hard when the log-linear models exhibit
certain properties such as their features are conditionally independent of each other (e.g., Naive Bayes,
Logistic Regression, etc.) or all connected components in the two models have bounded number of
variables (e.g., small-world graphs [33]]) or both given a small subset of variables. We exploit this
weak NP-hardness property to develop approximation algorithms for CMPE.

We are interested in solving the CMPE problem because several estimation, prediction and explanation
tasks can be reduced to CMPE. For example, the nearest assignment problem (NAP) [30]—a problem
that is related to the nearest neighbors problem—which requires us to find an assignment of values
to all variables such that the probability of the assignment is as close as possible to an input value
q, can be reduced to CMPE. Similarly, the problem of computing the most likely assignment to all
unobserved variables given evidence such that a log-linear model makes a particular (single class or
multi-label) classification decision can be reduced to CMPE. This problem is the optimization analog
of the same decision probability problem [J5, 6} 29]. Other problems that reduce to CMPE include
finding diverse m-best most probable explanations [1} [12]], the order statistics problem [32] and the
adversarial most probable explanation problem.

We propose a novel approach that combines graph-based partitioning techniques with approximation
algorithms developed in the multiple choice knapsack problem (MCKP) literature [22} 27, 31]] for
solving CMPE. MCKP is a generalization of the 0/1 knapsack problem in which you are given a
knapsack with capacity ¢ and several items which are partitioned into bins such that each item is
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associated with two real numbers which denote its profit and cost respectively; the problem is to find
a collection of items such that exactly one item from each bin is selected, the total cost of the selected
items does not exceed ¢ and the total profit is maximized. We show that when the combined primal
graph, which is obtained by taking a union of the edges of the primal graphs of the two graphical
models, has multiple connected components and each connected component has a constant number
of variables, CMPE is an instance of bounded MCKP. We exploit the fact that such bounded MCKPs
are weakly NP-hard and can be solved efficiently using approximate algorithms with guarantees [[19].

On graphical models in which the number of variables in each connected component is not bounded
by a constant, we propose to condition on variables, namely remove variables from the combined
primal graph, until the number of variables in each connected component is bounded (above) by a
constant k. We formalize this conditioning approach using a graph property called k-separator [2].
A k-separator of a graph G is a subset of vertices which when removed from G yields a graph G’
such that the number of vertices in each connected component of G’ is at most k. Our proposed
conditioning (local search) algorithm solves the sub-problem over the k-separator via local/systematic
search and the sub-problem over the connected components given an assignment to all variables in
the k-separator using MCKP methods. Our algorithm yields a heuristic approximation scheme with
performance guarantees when the size of the k-separator is bounded. In practice, it is likely to yield
high quality estimates when the size of the k-separator is small (e.g., in small-world networks [33]]).

We performed a detailed experimental evaluation comparing the impact of increasing k on the quality
of estimates computed by our proposed method. As a strong baseline, we encoded CMPE as a mixed
integer linear program (MILP) and used a state-of-the-art open source MILP solver called SCIP
[L3]. We used various benchmark graphical models used in past UAI competitions [[11, [16]. Our
experiments show that somewhat counter intuitively most CMPE problems are easy in that our method
yields close to optimal solutions within seconds even when k is small (we expect our method to be
more accurate when k is large). Hard instances of CMPE arise when q is close to the unconstrained
maximum or when the parameters of the graphical model are extreme. Such hard instances do benefit
from using a large value of k& while easy instances do not. Our experiments clearly show that our
proposed algorithm is superior to SCIP.

2 Preliminaries and Notation

LetX = {X;,..., X, } denote a set of discrete random variables and D; = {1, ..., d} be the domain
of X;, namely we assume that each variable X, takes values from the set D;. A graphical model
or a Markov network denoted by M is a triple (X, f, G) where: (1) f = {f1,..., fm} is a set of
log-potentials where each log-potential f; is defined over a subset S(f;) C X called the scope of
fi» and (2) G(V, E) is an undirected graph called the primal graph where V. = {V;,...,V,} and
E ={E,..., E;} denote the set of vertices and edges in G respectively. G has (exactly) one vertex
V; for each variable X; in X and an edge E; = (V,, V}) if the corresponding variables X, and X,
appear in the scope of a function f in f. M represents the following probability distribution:

PM(X) = % exp Zf(XS(f)) where Z = ZGXP Z f(XS(f))

fef fef

where X = (x1,...,7,) is an assignment of values to all variables in X and xg(s) denotes the
projection of x on the set S(f). Note that x € D where D = Dy X ... x D,, is the Cartesian product
of the domains. Z ¢ is normalization constant called the partition function. For brevity, henceforth,
we will write f(xg(s)) as f(x).

Given an assignment x of values to all variables in X of a graphical model M = (X, f, G), we call
> rer £ (x) the weight of x w.r.t. M. We focus on the following constrained optimization problem,
which we call the constrained most probable explanation problem (CMPE). Given two graphical
models M; = (X,f;,G1) and My = (X, f3, G) and a real number ¢, find an assignment X = x
such that the weight of x w.r.t. M; is maximized and is bounded above by g w.r.t. M. Formally,

max ) f(x) st Y g(x) <q )

fef g€efs



2.1 Multiple Choice Knapsack and Subset Sum Problems

Given n items where each item ¢ has an associated cost ¢; and profit p;, and a container/knapsack
having capacity ¢, the Knapsack problem (KP) is to select a subset of the items such that the total
cost does not exceed ¢ and the total profit is maximized. Let the items be denoted by the integers 1,
2,...,n, and let X; be a Boolean variable taking the value 1 if item ¢ is selected and O otherwise. Let
X = (z1,...,,) denote a 0/1 assignment to all the Boolean variables. Then, the Knapsack problem
can be mathematically stated as: maxy ., p;x; 8.t >, ¢;x; < g. The subset-sum problem (SSP)
is a special case of the knapsack problem where profit p; equals the cost ¢; for all items <.

The multiple choice Knapsack problem (MCKP) is a generalization of KP in which the items are
partitioned into bins and the constraint is that exactly one item from each bin must be chosen. Let m
be the number of bins and Ny, ..., N,, denote the number of items in each bin. Leti = 1,...,m
index the bins and j = 1,..., IV; index the items in bin ¢. Let ¢;; and p;; denote the cost and profit
respectively of the j-th item in the ¢-th bin. Let X;; be a Boolean variable taking the value 1 if j-th
item in the ¢-th bin is selected and 0 otherwise. Let x;; denote the 0/1 assignment to the Boolean
variable X;; and x denote a 0/1 assignment to all the Boolean variables. Then, the MCKP is given by

m

m
HlanZ Z Pijxij  S.t Z Z CijTij < q and Z Tij = 1, :=1,....m )

i=1jEN; i=1jEN; JEN;

The multiple choice subset-sum problem (MCSSP) is a special case of MCKP where p;; equals c;;
for all ¢, j. We focus on a bounded version of MCKP where N; is bounded by a constant for all i.

All of the aforementioned problems, KP, SSP, MCKP and MCSSP are NP-hard. However, they can be
solved in pseudo-polynomial time via a dynamic programming algorithm if the profits and weights
are integers. There exists a vast literature on algorithms for solving these problems with specific
interest from the operations research community. The different types of algorithms presented in
literature include branch and bound algorithms [9} [10, 26, 131]], local search algorithms, dynamic
programming algorithms [9} 18} |27]], heuristic algorithms with performance guarantees [10}14] and
fully polynomial time approximate schemes (FPTAS) [4.[22]. The purpose of this paper is to show
that these algorithms can be leveraged, in addition to graph-based methods to solve the CMPE task.

3 Applications of CMPE

In this section, we show that the nearest assignment problem and the decision preserving most
probable assignment problem can be reduced to CMPE.

3.1 The Nearest Assignment Problem

Given a graphical model M = (X, f, G) and a real number ¢, the nearest assignment problem (NAP)
is to find an assignment x to all variables in X such that [¢—_ ;. f(x)| is minimized. We can express
NAP as CMPE using the following transformation. For each function f € f, let g be a function
defined as follows: g(y) = f(y) — ¢/m, where y is an assignment of values to all variables Y = S(f)
and m is the number of log-potentials, namely m = |f|. Let x and x* be two assignments defined as
follows:

l u
X' = arg m&xZgi(x) s.t. Zgi(x) <0 and x" =arg m;:mxz —gi(x) s.t. Z —gi(x) <0

i=1 i=1 i=1 i=1
‘We can show that:

Proposition 1. argminy [q — ;. f(x)| wherex € {x!,x%} is the nearest assignment.

By inspection, the expressions for x' and x* are CMPE tasks. Thus NAP can be solved by solving two
CMPE tasks. Rouhani et al. [30]] describe an approximation algorithm that uses a 0-cutset [3] to solve
NAP. O-cutsets are equivalent to 1-separators. Thus, our general-purpose algorithm can be seen as a
generalization of Rouhani et al.’s approach. Moreover, their approach is not applicable to variables
having non-binary domains while our proposed approach does not have such limitations. Finally,
Rouhani et al.’s approach can be used if and only if the graphical model in the objective function



is identical to the graphical model in the cost constraint. Our approach allows different graphical
models to be present in the objective and cost constraint. It turns out that NAP instances are one of
the hardest CMPE problems; since they have subset-sum type constraints.

3.2 The Decision Preserving Most Probable Assignment

Consider the following problem from robust estimation or decision theory that is useful in interactive
settings for solving human-machine tasks. You are given a log-linear model with a few observed
variables E and a decision variable C' (or a small subset C C X) that takes values from the domain
{0, 1}. Suppose that you have made the decision C' = ¢ given evidence E = e because the weight of
the partial assignment (¢, e) is higher than that of (1 — ¢, e). Your task is to find the most probable
assignment to all unobserved variables H such that the same decision will be madem Formally, given
a graphical model M = (X, f, G) where X = {C'} U E U H, we have to solve

max Y f(h,c,e) st > f(hc,e)>> f(h1—ce) 3)
" fet fef fef
Letg = {f(h,1—c,e) — f(h,c,e)|f € f}. Then, we can rewrite Eq. (3) as:
mlzllxz f(h,c,e) s.t. Z g(h,e) <0 4)
fet S

By inspection, it is clear that Eq. @) is an instance of the CMPE problem.

The generated assignment h can then be sent to an expert (human in the human-machine task) for
analyzing the robustness of the decision. As mentioned earlier, the problem just described is an
optimization analog of the same decision probability problem [5| 6] where one seeks to find the
probability that the same decision will be made after observing all the unobserved variables.

4 Our Approach

4.1 CMPE with Multiple Connected Components

We show that if the combined primal graph associated with M; and M has multiple connected
components and the number of variables in each connected component is bounded by a constant k,
then CMPE can be encoded as a bounded MCKP. We begin by defining a combined primal graph.

Definition 4.1. A combined primal graph of two graphical models M; = (X, f;,G1) and Mo =
(X, 5, Gs) is a graph G(V, E) such that G has a vertex V}, for each variable X}, in X and an edge
E, = (V,, V}) if the corresponding variables X, and X, appear in the scope of f; € f; or f; € fs.

Let G denote the combined primal graph of M; and M. Let ¢ denote the number of connected
components of G. Let X; denote the set of variables (corresponding to the set of vertices) in the i-th
connected component of G (1 <4 < ¢). Let g1, ..., 9. and hq, ..., h. denote the functions obtained
from M and My s.t.fori=1,...,c

gi(x)= > flx) and hi(x)= > f(x)

Fen:S(£CX; etz S(f)CX;

Encoding 4.2. Given a collection of functions g = {¢1,..., 9.}, h = {h1,..., h.} such that no two
functions in g (and h) share any variables and S(g;) = S(h;) for 1 < i < ¢, and a real number g,
we can construct a MCKP, denoted by P as follows. We start with an empty MCKP. Then we create
an item for each entry j in each function g; (or h;). For each component indexed by ¢, we add a bin
(indexed by ¢) to P (thus there are c bins) and add all items corresponding to the entries in function
g; (or h;) to the i-th bin. We attach a knapsack with capacity ¢ to P. The profit and cost of each item
(4,4) in P equals the value of corresponding j-th entry in the functions g; and h; respectively.

Fig.[T)illustrates the process of converting a given CMPE problem to MCKP using Encoding 4.2. It is
easy to show that Encoding 4.2 is correct, namely we can construct a (feasible or optimal) solution to
the CMPE problem from a solution of the corresponding MCKP. Formally,

"Note that this is not the same as computing the most probable assignment H = h* given e and c. For
example, if >, f(h",c,e) <3, f(h",1—c,e) then (h", ) will flip the decision fromcto 1 —c.
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Figure 1: (a) Combined primal graph of two graphical models M1, M having 5 binary variables { X1, ..., X5}.
The graph has two connected components { X1, X2, X3} and { X4, X5}. (b) CMPE problem over M and Mo
with ¢ = 10, example log-potentials g1, g2 computed from M, and example log-potentials i1, ho computed
from M. Values of the two potentials are generated randomly. (c) Multiple choice knapsack problem (MCKP)
encoding of the CMPE problem given in (b) (see Encoding 3.2). The MCKP has 2 bins; the first bin has 8 items
while the second has 4 items with capacity = g = 10. Optimal solution to the MCKP and the corresponding
optimal solution to the CMPE problem is highlighted in red.

Proposition 2. (Equivalence) Let P be a MCKP constructed from a CMPE problem, denoted by
R using Encoding 4.2. Then there exists a one-to-one mapping between every feasible (or optimal)
solution of P and R. Moreover, a feasible (or optimal) solution to R can be constructed from a
Sfeasible (or optimal) solution to P in time that scales linearly with the size of M1 and M.

Since the number of items in each bin ¢ equals the number of entries in g;, the number of items in
bin 7 is exponential in the number of variables in the scope of g;, namely it equals exp(|X;|). Thus
Encoding 4.2 will yield a bounded MCKP if |X;| is bounded by a constant for all ¢.

4.2 A Conditioning Algorithm Based on k-separators

Graphical models typically encountered in practice will have just one connected component and
therefore the approach presented in the previous subsection will be exponential in n (number of
variables). To address this issue, we propose to condition on variables until the size of each bin in the
encoded MCKP is bounded by a constant. We formalize this approach using the following definition:

Definition 4.2. (k-separators) Given a graph G(V,E) and an integer k > 1, a k-separator of a
graph is a set of vertices S C V such that each connected component of a graph G’ obtained from G
by removing S has at most k vertices. A k-separator S is minimal when no proper subset of S is a
k-separator. A k-separator S is optimal if there does not exist a k-separator " such that |S'| < |S].

In practice, we want k-separators that are optimal. Unfortunately, finding optimal k-separators is a
NP-hard problem [2] and therefore we will use greedy algorithms that yield minimal k:—separatorsE]
One such greedy algorithm is to iteratively remove a vertex having the maximum degree from each
connected component having more than & vertices until all components have at most & vertices.

Given a k-separator S C X obtained from the combined primal graph of M; and M, we can use
the following conditioning algorithm to yield a solution to CMPE. For each assignment of values s to
S, we get a CMPE sub-problem R such that the MCKP encoding of Rg, denoted by F is bounded.
Specifically, P is such that the number of items in each bin is bounded by exp(k) while the number
of bins equals the number of components ¢ which in turn is bounded above by (|X| — |S|). We can
either explore the space of assignments to S systematically using branch and bound search or via
simulation techniques such as random sampling and local search. Both approaches will yield anytime
algorithms whose performance improves with time. As before, we can solve each MCKP sub-problem
using advanced MCKP algorithms presented in literature on knapsack problems (cf. [19]).

The above setup and discussion yields Algorithm[I} which is an anytime algorithm for approximately
solving the CMPE problem. The algorithm begins by heuristically selecting a minimal k-separator S

2Note that the number of vertices in the optimal k-separator of a graph can be quite large even if its treewidth
is bounded by k. For instance, a complete binary tree has treewidth of 1 but the number of vertices in its
1-separator is bounded by O(2"~') where h is the height of the tree.



Algorithm 1 ANYTIME-CMPE (M1, My, q, k)
Input: Two Markov networks M1 = (X, f1, G1) M2 = (X, f2, G2), a real number ¢ and an integer k
Output: An estimate of the CMPE problem defined over (M1, M2, ¢, k).
Begin:
1: Heuristically select a minimal k-separator S C X using the combined primal graph G
2: G’ = graph obtained by removing S from G. Let c denote the number of connected components of G’ and
let X; denote the set of variables in the i-th connected component of G’

3: best = —o0

4: repeat

5: Generate an assignment s of S via random sampling or local search or systematic enumeration
6 & =4 Dsers(pcs S )

7: for i =1tocdo

8: Compute gi(Xi) = 3" rcp,.s5(p)cx; /(Xir8)

9: Compute hi(Xi) = - rcq,.50p)cx, £ (X0, 8)

10: Construct a MCKP P from {g1,...,9gc}, {h1,...,hc} and ¢s using Encoding 4.2

11: Use the Greedy MCKP method of [14] to solve Fs and store the objective function value in current,
12: current = currenty + 3 rep . s(pycs f(5)

13: if P is feasible and current > best then best = current

14: until there is time
15: return best

End.

of the combined primal graph G (line 1). Then it searches, either via random sampling or local search
or systematic enumeration, over the assignments s of S (lines 4-16). To perform local search, it selects
a neighbor of the current state having the highest value of the objective function or makes a random
move if the algorithm is stuck in local maxima. A neighbor of an assignment s is an assignment s’
that differs from s in assignment to only one variable. Then, in lines 6-10, it converts the CMPE
sub-problem obtained after conditioning on the assignment S = s to MCKP, as detailed in Encoding
4.2. The CMPE sub-problem is constructed by updating g appropriately (line 6) and computing the
functions g; and h; for each component 7 of G’ (the graph obtained by removing S from the combined
primal graph G) (lines 7-9). The algorithm solves the MCKP using a greedy approach (see [[14.[19]
for details) (line 11) and updates the best solution computed so far if the current solution has a higher
value for the objective function. The algorithm stops when a user specified time bound is reached and
returns the best value of the objective function found so far (line 16).

4.3 Computational Complexity of ANYTIME-CMPE

Since the size of each function g; and h; is bounded exponentially by k, the time complexity of lines
7-10 of Algorithm ANYTIME-CMPE is O(cexp(k)). Since the time complexity of the greedy MCKP
method [14] is linear in the number of items, and the number of items is bounded by O(cexp(k)), the
time complexity of line 11 is also bounded by O(c exp(k). Thus, the overall time complexity of lines
4-14is O(n+ cexp(k)). If a systematic enumeration method is used for generating the assignment of
values to S then the worst case time complexity of ANYTIME-CMPE is O((n + cexp(k)) x exp(|S|)).

Since the greedy algorithm of Gens and Levner [14] has a performance factor of 4/5, ANYTIME-CMPE
with systematic enumeration yields a polynomial time approximation scheme with a performance
factor of 4/5 when k and |S| are bounded by a constant (e.g., in some small-world graphs [33]]).
Algorithm ANYTIME-CMPE can also be used to yield a fully polynomial time approximation scheme
(FPTAS) by using a FPTAS algorithm for MCKP [[15, 21] in lieu of the greedy algorithm in line 11
(when k and |S| are bounded by a constant). Note that these guarantees are the best we can hope for
because CMPE is strongly NP-hard and is unlikely to have an FPTAS algorithm unless P=NP.
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Figure 2: Easy problems: Results on DBN_16 Markov network having 44 variables and 528 potentials.
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Figure 3: Easy problems: Results on Grids_11 Markov network having 100 variables and 300 potentials.
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Figure 4: Easy problems: Results on Segmentation_12 Markov network with 229 variables and 851 potentials.
5 Experiments

5.1 Setup

We compared the performance of Algorithm ANYTIME-CMPE with SCIP [13], a state-of-the-art open
source mixed integer linear programming (MILP) solverEl We evaluated the impact of increasing k
and time on the performance of ANYTIME-CMPE. We experimented with the following five values of
k: {1,3,5,7,9}. For each k, we ran our algorithm on each probabilistic network for 1200 seconds.
SCIP was also run for 1200 seconds on each network.

Implementation Details. We used restart-based local search to perform search over the value as-
signments to S. Specifically, our implementation makes locally optimal moves if it improves the
evaluation score. Otherwise, the local search is stuck in local maxima and we make a random move.
We implemented the greedy MCKP algorithm of to solve F;. We improve the greedy solution
further by performing local search over P until a local maxima is reached. We used the max-degree
heuristic outlined in section 4.2 to select a minimal k-separator.

31t is straight forward to encode CMPE as MILP (cf. [20]). We also experimented with Gurobi [17]. Its
performance was inferior to SCIP because of precision problems.



fis) & 102 . & 10
5 AN \, 10'
1] M
10 10 ‘.\;______ =~
——————————— ~
g o CO R S SO 10° e e s N
100 300 500 700 900 1100 100 300 500 700 900 1100 100 300 500 700 900 1100
Time in Seconds Time in Seconds Time in Seconds
— K=1 == K=5 === K=9 — K=1 == K=5 == K=9 — K=1 == K=5 == K=9
K=3 —: K=7 K=3 —: K=7 K=3 —: K=7
(a) ¢ = 6684822.85 (b) g = 4845547.43 (c) g =4733941.8

Figure 5: Hard problems: Results on (a) Grids_17 Markov network with 400 variables and 1160 potentials, (b)
Segmentation_12 Markov network with 229 variables and 851 potentials, and (c) Segmentation_14 Markov
network with 226 variables and 845 potentials.

Benchmarks and Methodology. We experimented with the following benchmark graphical models,
available from the UAI 2010 and 2014 competitions [L1}[16]: (1) Large Dynamic Bayesian Networks,
(2) Ising models and (3) Image Segmentation networks. For each benchmark network, we selected
ten g values as follows. We generated a million assignments uniformly at random and divided their
weights into 10 quantiles (deciles). Then, we selected a random weight from each of the 10 quantiles
as a value for ¢g. We found that most CMPE problems generated this way were easy problems in
that the maximum value of the objective function (or close to it) was reached quickly by all of our
local search algorithms. Similar observations have been made in the literature on knapsack problems
[28]. Therefore, in order to generate hard CMPE problems, we made the following modifications: (1)
for each network, we kept the network structure the same but changed the parameters by sampling
each parameter from the range [0, 10000]; (2) we selected values of ¢ that are close to the weight of
the (unconstrained) most probable assignment; and (3) we focused on multiple choice subset sum
problems, namely we chose M1 = M. We use the quantity ¢ — o, which we call error to measure
performance where o is value of the objective function output by the competing algorithms. Note that
the maximum value of the objective function is bounded by ¢ (since we are solving hard subset sum
type problems) and therefore smaller the error, better the algorithm.

5.2 Results

We present results for two classes of problems: (1) relatively easy subset-sum type problems on
the original networks; and (2) hard subset-sum type problems on the modified networks (only the
parameters are modified as described above) with a value of ¢ that is close to the unconstrained
maximum. Detailed results (on knapsack type problems) are presented in the supplement.

Figures 2H4] show the results for easy problems. For each network, the first two plots (in sub-figures
(a) and (b)) show the impact of increasing time for two randomly chosen ¢ values and the last plot
(in sub-figure (c)) shows the impact of increasing ¢ for a given time bound. The results are averaged
over 10 runs. We observe that smaller values of k, specifically £ = 3,5 perform the best overall.
The performance of k£ = 1 is only slightly inferior to £ = 3,5 on average while the performance
of k = 7,9 is 1-2 orders of magnitude inferior to k¥ = 3, 5. We also observe that the performance
of higher values of k£ improves with time while the performance of smaller values of k£ does not
significantly improve with time. SCIP is substantially worse than our proposed algorithms.

Figures show the results for hard problems for three different (network, q) pairs. To avoid clutter,
we have excluded SCIP (since its performance is much worse than our algorithm). We observe that
higher values of k, specifically k = 7,9 perform the best overall. k¥ = 1 is the worst performing
scheme. As before, we see that the performance of higher values of k& improves with time while the
performance of smaller values of k does not significantly improve with time.

The discrepancy between the results for easy and hard problems can be “explained away” using
the following intuitive arguments. As k increases the number of nodes explored goes down which
negatively impacts the performance (because the complexity of constructing the MCKP sub-problem
is exponential in k). However, assuming that the MCKP solution obtained using greedy MCKP
algorithms is close to optimal, as k increases, we have access to a high quality solution to an
exponentially increasing sub-problem. This positively impacts the performance. In other words, k
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Figure 6: Hard problems: Results on (a) Grids_12 Markov network with 100 variables and 200 potentials, (b)
Grids_13 Markov network with 100 variables and 300 potentials, and (c) Grids_14 Markov network with 100
variables and 300 potentials.
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Figure 7: Hard problems: Results on (a) Grids_16 Markov network with 400 variables and 1160 potentials, (b)
Grids_18 Markov network with 400 variables and 1160 potentials, and (c) Segmentation_15 Markov network
with 232 variables and 853 potentials.

helps us explore the classic “exploration versus exploitation” trade off. When k is small, the algorithm
focuses on exploration while when £ is large, the algorithm spends more time on each state, exploiting
good performing schemes having high computational complexity. Exploration is more beneficial on
easy problems since there are many close to optimal solutions. On the other hand, for hard problems,
exploitation is more beneficial because there are very few close to optimal solutions and it is easy to
miss them or spend exponential time exploring them.

6 Conclusion and Future Work

In this paper, we presented a novel approach for solving the constrained most probable explanation
(CMPE) problem in probabilistic graphical models. This problem is strongly NP-hard in general. We
showed that developing advanced solvers for this problem is important because several explanation
and estimation tasks can be reduced to it. The key idea in our approach is to condition on a subset of
variables such that the remaining sub-problem can be encoded as a multiple choice knapsack (subset
sum) problem, a weakly NP-hard problem that admits several efficient approximation algorithms.
We showed that we can reason about the optimal subset of variables to condition on using a graph
concept called k-separator. This allowed us to define powerful heuristic approximations to CMPE
and analyze their computational complexity. Experiments on several benchmark networks showed
that our algorithm is superior to SCIP, a state-of-the-art open source MILP solver. Our experiments
also showed that when time is limited, higher values of k are beneficial for hard CMPE problems
while smaller values are beneficial for easy CMPE problems.

Future work includes: developing approximate dynamic programming algorithms; developing branch
and bound algorithms by leveraging the mixed networks framework [25] and AND/OR search
[8l 23] 24]; developing techniques for solving the constrained marginal most probable explanation
problem; extending our approach to solve the same decision probability task [5], etc.



7 Broader Impact

Our work has mostly theoretical value and will require substantial effort and human-power in order
to be used for commercial, government or defense purposes. The presented CMPE problem has
potential applications in many sub-fields of Al and machine learning (ML) including computer vision,
robotics, economics, operations research, NLP, and computational Biology where graphical models
are used to represent and reason about structural features and uncertainty. The algorithm developed in
this paper can be immediately leveraged to solve hard reasoning problems in these domains.

Apart from these obvious advantages that any optimization algorithm can bring to bear, as scientific
research evolves, our work and technology can be misused deliberately or unknowingly. For example,
finding the most likely assignment to all unobserved variables given evidence such that the model
makes a specific decision is an application of our research. While it benefits the society via its
superior prediction ability and potentially improving users’ trust in the system, it can be misused
by making a model make decisions in favor of a special group of people and harm the vulnerable
ones (by appropriately modifying the constraints in CMPE), specifically in financial organizations.
Our research can potentially lead to a practical tool which helps physicians diagnose diseases in
a robust manner and fill up appropriate prescriptions by resolving conflicts. However, if the prior
knowledge expressed in the graphical model is wrong or the relationships are learned inaccurately
or the approximation error of our proposed algorithm is large (e.g., the problem belongs to one
of the hard cases described in the experiments section), it may lead physicians to make a wrong
decision/diagnosis. The negative consequences of this can be quite dire.

Today, a wide variety of tasks which are special cases of CMPE are solved by hand. In particular,
several local experts who understand problem structure and who use implicit heuristic algorithms
for solving special cases of CMPE are employed by various small businesses such as mom-and-pop
moving companies, florists and local food delivery companies (not Grubhub). An advanced, easy
to use tool for CMPE will obviate the need for local experts and may lead to significant job losses.
Although the regulation and legal systems supported by governments along with developing profound
knowledge about application fields can significantly manage potential harmful effects of such job
losses (e.g., universal basic income), some damages are naturally inevitable.
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