
A Details of the genetic operators

In this paper, we use crossover and mutation proposed by Jensen [24] for exploring the chemical
space.

Crossover. The crossover randomly applies either non_ring_crossover or ring_crossover,
with equal probability. This generates two (possibly invalid) child molecules. If both the child
molecules are invalid, e.g., violating the valency rules, the crossover is re-applied with limited number
of trials. If valid molecules exist, the we choose one of them randomly. In the following, we provide
further details on the non_ring_crossover and ring_crossover.

a. The non_ring_crossover cuts an arbitrary edge, which does not belong to ring, of two
parent molecules, and then attach the subgraphs from different parent molecules.

b. The ring_crossover cuts two edges in an arbitrary ring, and attach the subgraphs from
different parent molecules.

Mutation. The mutation randomly applies one of the seven different ways for modify-
ing a molecule: atom_deletion, atom_addition, atom_insertion, atom_type_change,
ring_bond_deletion, ring_bond_addition, and bond_order_change. After mutation, if the
modified molecule is not valid, we discard it and re-apply mutation. Details of seven different ways
of modifying a molecule are as follows.

a. The atom_deletion removes a single atom and rearrange neighbor molecules with
minimal deformation from the original molecule.

b. The atom_addition connects a new atom to a single atom.
c. The atom_insertion puts an atom between two atoms.
d. The atom_type_change newly changes a type of an atom.
e. The bond_order_change alters the type of a bond.
f. The ring_bond_deletion cuts a bond from ring.
g. The ring_bond_addition creates a “shortcut” between two connected atoms.
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B Additional experiments

Table 3: Experiment results for quantitative estimate of drug-likeness (QED) task.
Algorithm Type Objective

MCTS [Jensen 2019] MCTS 0.851
ORGAN [Guimaraes et al. 2017] DRL 0.896
JT-VAE [Jin et al. 2018] DEO 0.925
ChemGE [Yoshikawa et al. 2018] GA 0.948
GCPN [You et al. 2018] DRL 0.948
MRNN [Popova et al. 2019] DRL 0.948
MolDQN [Zhou et al. 2019] DRL 0.948
GraphAF [Shi et al. 2020] DRL 0.948
GB-GA [Jensen 2019] GA 0.948
HC-MLE [Jensen 2019] DRL 0.948
MSO [Winter et al. 2019] DEO 0.948
GEGL† (Ours) DRL 0.948

Table 4: Experimental results on relatively straight-forward tasks from the Guacamol benchmark.

Task
ChEMBL

[62]
MCTS

[24]
ChemGE

[23]
HC-MLE

[13]
GB-GA

[24]
GEGL

(Ours)

logP (target: -1.0) 1.000 1.000 1.000 1.000 1.000 1.000
logP (target: 8.0) 1.000 1.000 1.000 1.000 1.000 1.000
TPSA (target: 150.0) 1.000 1.000 1.000 1.000 1.000 1.000
CNS MPO 1.000 1.000 1.000 1.000 1.000 1.000
C7H8N2O2 0.972 0.851 0.992 1.000 0.993 1.000
Pioglitazone MPO 0.982 0.941 1.000 0.993 0.998 0.999

In this section, we provide additional experimental results for the tasks in the GuacaMol benchmark
Brown et al. [31] that were determined to be relatively more straight-forward than other tasks. To
this end, we first report our result for unconstrained optimization of the quantitative estimate of
drug-likeness (QED) [51] in Table 3. Next, we evaluate GEGL on other tasks from the GaucaMol
benchmark in Table 4. In the Table 3 and 4, we observe GEGL to achieve the highest scores for six
out of seven tasks. See Appendix E for details on the tasks considered in this section.

16



C Baselines for de novo molecular design

In this section, we briefly describe the algorithms we used as baselines for evaluating our algorithm.

1. GVAE+BO [7] trains a grammar variational autoencoder and applies Bayesian optimiza-
tion on its embedding space.

2. SD-VAE [11] propose a syntax directed variational autoencoder and applies Bayesian
optimization on its embedding space.

3. ORGAN [6] trains a generative adversarial network along with reinforcement learning for
maximizing the object.

4. VAE+CBO [20] trains a molecule-generating variational autoencoder and applies con-
strained Bayesian optimization on its embedding space.

5. CVAE+BO [8] trains a constrained variational autoencoder and applies Bayesian opti-
mization on its embedding space.

6. JT-VAE [12] trains a junction tree variational autoencoder and applies Bayesian optimiza-
tion on its embedding space.

7. ChemTS [53] proposes a SMILES-based genetic algorithm.
8. GCPN [9] trains a policy parameterized with graph convolutional network with rein-

forcement learning to generate highly-rewarding molecules. The reward is defined as a
linear combination of the desired property of the molecule and a discriminator term for
generating “realistic” molecules.

9. Molecular recurrent neural network (MRNN) [16] trains a recurrent neural network using
reinforcement learning.

10. MolDQN [18] trains a molecular fingerprint-based policy with reinforcement learning.
11. GraphAF [19] trains a auto-regressive flow model with reinforcement learning.
12. GB-GA [24] proposes a graph-based genetic algorithm.
12. MCTS [24] proposes a Monte Carlo tree search algorithm.
13. MSO [17] applies particle swarm optimization on the embedding space of a variational

autoencoder.
14. DEFactor [14] trains a variational autoencoder where computational efficiency was en-

hanced with differentiable edge variables.
15. VJTNN [54] trains a graph-to-graph model with supervised learning on the highly-

rewarding set of molecules.
16. HC-MLE [13] proposes a “hill-climbing” variant of reinforcement learning to train a

recurrent network.
17. CReM [26] proposes a genetic algorithm based on “chemically reasonable” genetic

operator to generate a set of chemically reasonable molecules.
18. HierG2G [21] trains a graph-to-graph, hierarchical generative model with supervised

learning on the highly-rewarding set of molecules.
19. DA-GA [25] proposes a genetic algorithm based on its fitness function augmented with a

discriminator which assigns higher scores to “novel” elements.
20. PGFS [22] proposes a reinforcement learning algorithm that generates molecules from

deciding the synthesis route given the set of available reactants.
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D Additional Illustration of the Generated Molecules

Figure 7: Additional illustration of highly-scoring molecules for the unconstrained PenalizedLogP
optimization. Below each molecule, we denote the associated objective.

Figure 8: Additional illustration of highly-scoring molecules for the similarity-constrained
PenalizedLogP optimization. Below each molecule, we denote the associated (objective, sim-
ilarity).

Figure 9: Additional illustration of the molecules generated for the GuacaMol benchmark, that have
passed and rejected from the filtering procedure. Below each molecule, we denote the associated
objective.
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E Details on the GuacaMol benchmark

In this section, we further provide details on the tasks considered in the GuacaMol benchmark.

• Rediscovery. The {celecoxib, troglitazone, thiothixene} rediscovery tasks desire the
molecules to be as similar as possible to the target molecules. The algorithms achieve
the maximum score when they produce a molecule identical to the target molecule. These
benchmarks have been studied by Zaliani et al. [59] and Segler et al. [47].

• Similarity. The {aripiprazole, albuterol, mestranol} similarity tasks also aim at finding a
molecule similar to the target molecule. It is different from the rediscovery task since the
metric is evaluated over multiple molecules. This similarity metric has been studied by
Willett et al. [60].
• Isometry. The tasks of C11H24, C9H10N2O2PF2Cl, C7H8N2O2 attempt to find molecules

with the target formula. The algorithms achieve an optimal score when they find all of the
possible isometric molecules for the tasks.

• Median molecules. The median molecule tasks searches for molecules that are simulta-
neously similar to a pair of molecules. This previously has been studied by Brown et al.
[41].

• Multi property optimization. The {osimertinib, fexofenadine, ranolazine, perindopril,
amlodipine, CNS, Pioglitazone} multi property optimization (MPO) tasks attempt to fine-
tune the structural and physicochemical properties of known drug molecules. For example,
for the sitagliptin MPO benchmark, the models must generate molecules that are as dissimilar
to sitagliptin as possible, while keeping some of its properties.

• Other tasks. The valsartan SMARTS benchmark targets molecules containing a SMARTS
pattern related to valsartan while being characterized by physicochemical properties corre-
sponding to the sitagliptin molecule. Next, the scaffold Hop and decorator Hop benchmarks
aim to maximize the similarity to a SMILES strings, while keeping or excluding specific
SMARTS patterns, mimicking the tasks of changing the scaffold of a compound while
keeping specific substituents, and keeping a scaffold fixed while changing the substitution
pattern. The LogP tasks aim at generating molecules with the targeted value of octanol-water
partition coefficient. The TPSA task attempts to find a molecule with the targeted value of
topological polar surface area. The QED task aims at maximizing the quantitative estimate
of drug-likeness score.
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F Discussion on GuacaMol molecules

Figure 10: Illustration of the molecules generated for the GuacaMol benchmark, that have passed and
rejected from the filtering procedure. Below each molecule, we also denote the associated objectives.

(a) (b) (c)

Figure 11: (a) The main fragments in the passed molecule of Ranolazine MPO are marked. Two main
fragments exist in reality: (b) N-(2-fluoro-6-methylphenyl) formamide, (c) 2-(2-methoxyphenoxy)
ethanol.

In this section, we further provide descriptions on the molecules generated from GEGL for the tasks
of GuacaMol benchmark, illustrated in Figure 10.

Molecules passed from the post-hoc filtering. We first report some of the discovered molecules
that pass the post-hoc filtering procedure and have realistic yet novel structures. For example, one
may argue that the passed molecule for the Ranolazine MPO (in Figure 10) is chemically realistic; its
main fragments of N-(2-fluoro-6-methylphenyl) formamide, (Figure 11b) and 2-(2-methoxyphenoxy)
ethanol (Figure 11c) actually exist in reality. We have also verified the molecule to be novel from the
chemical databases such as Scifinder [72] and Drugbank [73]. We provide the detailed illustration for
the discovered molecule in Figure 11.

Molecules rejected from the post-hoc filtering. In Figure 10, we illustrate an example of rejected
molecules for the Albuterol similarity, Ranolazine MPO, Sitagliptin MPO, and Zaleplon MPO,
respectively. They are filtered out as they are chemically reactive with high probability. Specifically,
the molecule from the Albuterol similarity was rejected due to containing a SMILES of SH, i.e., I5
Thiols. The molecule from the Ranolazine MPO was due to C=CC=C6, and that from the Sitagliptin
MPO was due to NNC=O, i.e., acylhydrazide. Functional groups like SH, C=CC=C, and NNC=O are
known to be reactive with high probability, hence they are rejected from the filtering procedure.

6Note that C=CC=C in a ring is stable, but C=CC=C not in a ring is reactive, i.e., the left side of the molecule.

20


