
Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. Lemma 1 states that given L(p̃, p
G

) defined in Eq. (8):

(a) p̃∗ , arg max
p̃

L(p̃, p
G

) = p
E

(b) arg min
p
G

L(p
E
, p
G

) = p
E

Starting with (a), we have:

arg max
p̃

L(p̃, p
G

) = arg max
p̃

∑
xi

p
E

(xi) logDp̃,p
G

(xi) + p
G

(xi) log(1−Dp̃,p
G

(xi))

, arg max
p̃

∑
xi

Li

Assuming infinite discriminator’s capacity, Li can be made independent for all xi ∈ X and we can
construct our optimal discriminator D∗p̃,p

G
as a look-up table D∗p̃,p

G
: X → ]0, 1[ ; xi 7→ D∗i with D∗i

the optimal discriminator for each xi defined as:

D∗i = arg max
Di

Li = arg max
Di

p
E ,i logDi + p

G,i log(1−Di), (13)

with p
G,i , p

G
(xi), p

E ,i , p
E

(xi) and Di , D(xi).

Recall that Di ∈ ]0, 1[ and that p
G,i ∈ ]0, 1[. Therefore the function p̃i 7→ Di =

p̃i
p̃i + p

G,i
is defined

for p̃i ∈]0,+∞[. Since it is strictly monotonic over that domain we have that:

D∗i = arg max
Di

Li ⇔ p̃∗i = arg max
p̃i

Li (14)

Taking the derivative and setting to zero, we get:

dLi
dp̃i

∣∣∣∣
p̃i

= 0 ⇔ p̃i = p
E ,i (15)

The second derivative test confirms that we have a maximum, i.e.
d2Li
dp̃2
i

∣∣∣∣
p̃∗i

< 0. The values of Li at

the boundaries of the domain of definition of p̃i tend to −∞, therefore Li(p̃∗i = p
E ,i) is the global

maximum of Li w.r.t. p̃i. Finally, the optimal global discriminator is given by:

D∗p̃,p
G

(x) =
p
E

(x)

p
E

(x) + p
G

(x)
∀x ∈ X (16)

This concludes the proof for (a).

The proof for (b) can be found in the work of Goodfellow et al. [8]. We reproduce it here for
completion. Since from (a) we know that p̃∗(x) = p

E
(x)∀x ∈ X , we can write the GAN objective

for the optimal discriminator as:

arg min
p
G

L(p̃∗, p
G

) = arg min
p
G

L(p
E
, p
G

) (17)

= arg min
p
G

Ex∼p
E

[
log

p
E

(x)

p
E

(x) + p
G

(x)

]
+ Ex∼p

G

[
log

p
G

(x)

p
E

(x) + p
G

(x)

]
(18)

Note that:
log 4 = Ex∼p

E
[log 2] + Ex∼p

G
[log 2] (19)
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Adding Eq. (19) to Eq. (18) and subtracting log 4 on both sides:

arg min
p
G

L(p
E
, p
G

) = − log 4 + Ex∼p
E

[
log

2p
E

(x)

p
E

(x) + p
G

(x)

]
+ Ex∼p

G

[
log

2p
G

(x)

p
E

(x) + p
G

(x)

]
(20)

= − log 4 +DKL

(
p
E

∥∥∥∥pE + p
G

2

)
+DKL

(
p
E

∥∥∥∥pE + p
G

2

)
(21)

= − log 4 + 2DJS (p
E
‖p
G

) (22)

Where DKL and DJS are respectively the Kullback-Leibler and the Jensen-Shannon divergences.
Since the Jensen-Shannon divergence between two distributions is always non-negative and zero if
and only if the two distributions are equal, we have that arg min

p
G

L(p
E
, p
G

) = p
E

.

This concludes the proof for (b).

A.2 Proof of Theorem 1

Proof. Theorem 1 states that given L(π̃, π
G

) defined in Eq. (9):

(a) π̃∗ , arg max
π̃

L(π̃, π
G

) satisfies qπ̃∗ = qπ
E

(b) π∗
G

= π̃∗ ∈ arg min
π
G

L(π̃∗, π
G

)

The proof of (a) is very similar to the one from Lemma 1. Starting from Eq. (9) we have:

arg max
π̃

L(π̃, π
G

) = arg max
π̃

∑
τi

Pπ
E

(τi) logDπ̃,π
G

(τi) + Pπ
G

(τi) log(1−Dπ̃,π
G

(τi)) (23)

= arg max
π̃

∑
τi

ξ(τi)
(
qπ
E

(τi) logDπ̃,π
G

(τi) + qπ
G

(τi) log(1−Dπ̃,π
G

(τi))
)

(24)

= arg max
π̃

∑
τi

Li (25)

Like for Lemma 1, we can optimise for each Li individually. When doing so, ξ(τi) can be omitted as
it is constant w.r.t π̃. The rest of the proof is identical to the one of but Lemma 1 with p

E
= qπ

E
and

p
G

= qπ
G

. It follows that the max of L(π̃, π
G

) is reached for q∗π̃ = qπ
E

. From that we obtain that the
policy π̃∗ that makes the discriminator Dπ̃∗,π

G
optimal w.r.t L(π̃, π

G
) is such that qπ̃∗ = q∗π̃ = qπ

E

i.e.
∏T−1
t=0 π̃∗(at|st) =

∏T−1
t=0 π

E
(at|st)∀ τ .

The proof for (b) stems from the observation that choosing π
G

= π̃∗ (the policy recovered by the
optimal discriminator Dπ̃∗,π

G
) minimizes L(π̃∗, π

G
):

π
G

(a|s) = π̃∗(a|s) ∀ (s, a) ∈ S ×A ⇒
T−1∏
t=0

π
G

(at|st) =

T−1∏
t=0

π̃∗(at|st) ∀τ ∈ T (26)

⇒ qπ
G

(τ) = qπ
E

(τ) ∀ τ ∈ T (27)

⇒ Dπ̃∗,π̃∗ =
1

2
∀ τ ∈ T (28)

⇒ L(π̃∗, π̃∗) = − log 4 (29)

By multiplying the numerator and denominator of Dπ̃∗,π̃∗ by ξ(τ) it can be shown in exactly the
same way as in Appendix A.1 that − log 4 is the global minimum of L(π̃∗, π

G
).
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B Adversarial Soft Q-Fitting: transition-wise Imitation Learning without
Policy Optimization

In this section we present Adversarial Soft Q-Fitting (ASQF), a principled approach to Imitation
Learning without Reinforcement Learning that relies exclusively on transitions. Using transitions
rather than trajectories presents several practical benefits such as the possibility to deal with asyn-
chronously collected data or non-sequential experts demonstrations. We first present the theoretical
setting for ASQF and then test it on a variety of discrete control tasks. We show that while it is
theoretically sound, ASQF is often outperformed by ASAF-1, an approximation to ASAF that also
allows to rely on transitions instead of trajectories.

Theoretical Setting We consider the GAN objective of Eq. (5) with x = (s, a), X = S × A,
p
E

= dπ
E

, p
G

= dπ
G

and a discriminator Df̃ ,π
G

of the form of Fu et al. [6]:

min
π
G

max
f̃

L(f̃ , π
G

) , L(f̃ , π
G

) , Edπ
E

[logDf̃ ,π
G

(s, a)] + Edπ
G

[log(1−Df̃ ,π
G

(s, a))],

with Df̃ ,π
G

=
exp f̃(s, a)

exp f̃(s, a) + π
G

(a|s)
,

(30)

for which we present the following theorem.

Theorem 2. For any generator policy π
G

, the optimal discriminator parameter for Eq. (30) is

f̃∗ , arg max
f̃

L(f̃ , π
G

) = log

(
π
E

(a|s)
dπ
E

(s)

dπ
G

(s)

)
∀(s, a) ∈ S ×A

Using f̃∗, the optimal generator policy π∗
G

is

arg min
π
G

max
f̃

L(f̃ , π
G

) = arg min
π
G

L(f̃∗, π
G

) = π
E

(a|s) =
exp f̃∗(s, a)∑
a′ exp f̃∗(s, a′)

∀(s, a) ∈ S ×A.

Proof. The beginning of the proof closely follows the proof of Appendix A.1.

arg max
f̃

L(f̃ , π
G

) =

arg max
f̃

∑
si,ai

dπ
E

(si, ai) logDf̃ ,π
G

(si, ai) + dπ
G

(si, ai) log(1−Df̃ ,π
G

(si, ai))
(31)

We solve for each individual (si, ai) pair and note that f̃i 7→ Di =
exp f̃i

exp f̃i + π
G,i

is strictly monotonic

on f̃i ∈ R ∀π
G,i ∈]0, 1[ so,

D∗i = arg max
Di

Li ⇔ f̃∗i = arg max
f̃

Li (32)

Taking the derivative and setting it to 0, we find that

dLi

df̃i

∣∣∣∣
f̃i

= 0 ⇔ f̃i = log

(
π
G,i

dπ
E
,i

dπ
G
,i

)
(33)

We confirm that we have a global maximum with the second derivative test and the values at the

border of the domain i.e.
d2Li

df̃2
i

∣∣∣∣∣
f̃∗i

< 0 and Li goes to −∞ for f̃i → +∞ and for f̃i → −∞.
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It follows that

f̃∗(s, a) = log

(
π
G

(a|s)
dπ
E

(s, a)

dπ
G

(s, a)

)
∀(s, a) ∈ S ×A (34)

=⇒ f̃∗(s, a) = log

(
����π
G

(a|s)
dπ
E

(s)π
E

(a|s)
dπ
G

(s)����π
G

(a|s)

)
∀(s, a) ∈ S ×A (35)

=⇒ f̃∗(s, a) = log

(
π
E

(a|s)
dπ
E

(s)

dπ
G

(s)

)
∀(s, a) ∈ S ×A (36)

This proves the first part of Theorem 2.

To prove the second part notice that

Df̃∗,π
G

(s, a) =

π
E

(a|s)
dπ
E

(s)

dπ
G

(s)

π
E

(a|s)
dπ
E

(s)

dπ
G

(s)
+ π

G
(a|s)

=
π
E

(a|s)dπ
E

(s)

π
E

(a|s)dπ
E

(s) + π
G

(a|s)dπ
G

(s)

=
dπ
E

(s, a)

dπ
E

(s, a) + dπ
G

(s, a)

(37)

This is equal to the optimal discriminator of the GAN objective Eq. (16) when x = (s, a). For
this discriminator we showed in Section A.1 that the optimal generator π∗

G
is such that dπ∗

G
(s, a) =

dπ
E

(s, a) ∀(s, a) ∈ S × A, which is satisfied for π∗
G

(a|s) = π
E

(a|s) ∀(s, a) ∈ S × A. Using the
fact that ∑

a′

exp f̃∗(s, a′) =
∑
a′

π
E

(a′|s)
dπ
E

(s)

dπ
G

(s)
=
dπ
E

(s)

dπ
G

(s)

∑
a′

π
E

(a′|s) =
dπ
E

(s)

dπ
G

(s)
. (38)

we can combine Eq. (36) and Eq. (38) to write the expert’s policy π
E

as a function of the optimal
discriminator parameter f̃∗:

π
E

(a|s) =
exp f̃∗(s, a)∑
a′ exp f̃∗(s, a′)

∀(s, a) ∈ S ×A. (39)

This concludes the second part of the proof.

Adversarial Soft-Q Fitting (ASQF) - practical algorithm In a nutshell, Theorem 2 tells us that
training the discriminator in Eq. (30) to distinguish between transitions from the expert and transitions
from a generator policy can be seen as retrieving f̃∗ which plays the role of the expert’s soft Q-function
(i.e. which matches Eq. (1) for f̃∗ = 1

αQ
∗
soft,E):

π
E

(a|s) =
exp f̃∗(s, a)∑
a′ exp f̃∗(s, a′)

= exp

(
f̃∗(s, a)− log

∑
a′

exp f̃∗(s, a′)

)
, (40)

Therefore, by training the discriminator, one simultaneously retrieves the optimal generator policy.

There is one caveat though: the summation over actions that is required in Eq. (40) to go from f̃∗

to the policy is intractable in continuous action spaces and would require an additional step such as
a projection to a proper distribution (Haarnoja et al. [11] use a Gaussian) in order to draw samples
and evaluate likelihoods. Updating in this way the generator policy to match a softmax over our
learned state-action preferences (f̃∗) becomes very similar in requirements and computational load to
a policy optimization step, thus defeating the purpose of this work which is to get rid of the policy
optimization step. For this reason we only consider ASQF for discrete action spaces.
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As explained in Section 3.3, in practice we optimize Df̃ ,π
G

only for a few steps before updating π
G

by normalizing exp f̃(s, a) over the action dimension. See Algorithm 2 for the pseudo-code.

Algorithm 2: Adversarial Soft-Q Fitting (ASQF)

Require: expert transitions DE = {(si, ai)}NEi=1

Randomly initialize f̃ and get π
G

from Eq. (40)
for steps m = 0 to M do

Collect transitions DG = {(si, ai)}NGi=1 by executing π
G

Train Df̃ ,π
G

using binary cross-entropy on minibatches of transitions from DE and DG
Get π

G
from Eq. (40)

end for

Experimental results Figure 4 shows that ASQF performs well on small scale environments but
struggles and eventually fails on more complicated environments. Specifically, it seems that ASQF
does not scale well with the observation space size. Indeed mountaincar, cartpole, lunarlander
and pommerman have respectively an observation space dimensionality of 2, 4, 8 and 960. This
may be due to the fact that the partition function Eq. (38) becomes more difficult to learn. Indeed,
for each state, several transitions with different actions are required in order to learn it. Poorly
approximating this partition function could lead to assigning too low a probability to expert-like
actions and eventually failing to behave appropriately. ASAF on the other hand explicitly learns the
probability of an action given the state – in other word it explicitly learns the partition function – and
is therefore immune to that problem.
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Figure 4: Comparison between ASAF-1 and ASQF, our two transition-wise methods, on environments
with increasing observation space dimensionality
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C Additional Experiments

C.1 GAIL - Importance of Gradient Penalty
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Figure 5: Comparison between original GAIL [13] and GAIL with gradient penalty (GP) [9, 14]

C.2 Mimicking the expert

To ensure that our method actually mimics the ex-
pert and doesn’t just learn a policy that collects
high rewards when trained with expert demonstra-
tions, we ran ASAF-1 on the Ant-v2 MuJoCo en-
vironment using various sets of 25 demonstrations.
These demonstrations were generated from a Soft
Actor-Critic agent at various levels of performance
during its training. Since at low-levels of perfor-
mance the variance of episode’s return is high, we
filtered collected demonstrations to lie in the tar-
geted range of performance (e.g. return in [800,
1200] for the 1K set). Results in Figure 6 show
that our algorithm succeeds at learning a policy
that closely emulates various demonstrators (even
when non-optimal).

0.0 0.6 1.2 1.8
Steps(M)

0.0

1.5

3.0

4.5

Ev
al

ua
tio

n 
Re

tu
rn

(K
)

ASAF-1 ON ANT
5K-expert
4K-expert
3K-expert
2K-expert
1K-expert

Figure 6: ASAF-1 on Ant-v2. Colors are 1K,
2K, 3K, 4K, 5K expert’s performance.

C.3 Wall Clock Time

We report training times in Figure 7 and observe that ASAF-1 is always fastest to learn. Note however
that reports of performance w.r.t wall-clock time should always be taken with a grain of salt as they
are greatly influenced by hyper-parameters and implementation details.
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Figure 7: Training times on MuJoCo tasks for 25 expert demonstrations.
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D Hyperparameter tuning and best configurations

D.1 Classic Control

For this first set of experiments, we use the fixed hyperparameters presented in Table 1.

Table 1: Fixed Hyperparameters for classic control tasks
RL COMPONENT
HYPER-PARAMETER DISCRETE CONTROL CONTINUOUS CONTROL

SAC
BATCH SIZE (IN TRANSITIONS) 256 256
REPLAY BUFFER LENGTH |B| 106 106

WARMUP (IN TRANSITIONS) 1280 10240
INITIAL ENTROPY WEIGHT α 0.4 0.4
GRADIENT NORM CLIPPING THRESHOLD 0.2 1
TRANSITIONS BETWEEN UPDATE 40 1
TARGET NETWORK WEIGHT τ 0.01 0.01

PPO
BATCH SIZE (IN TRANSITIONS) 256 256
GAE PARAMETER λ 0.95 0.95
TRANSITIONS BETWEEN UPDATE - 2000
EPISODES BETWEEN UPDATES 10 -
EPOCHS PER UPDATE 10 10
UPDATE CLIPPING PARAMETER 0.2 0.2

REWARD LEARNING COMPONENT
HYPER-PARAMETER DISCRETE CONTROL CONTINUOUS CONTROL

AIRL, GAIL, ASAF-1
BATCH SIZE (IN TRANSITIONS) 256 256
TRANSITIONS BETWEEN UPDATE - 2000
EPISODES BETWEEN UPDATES 10 -
EPOCHS PER UPDATE 50 50
GRADIENT VALUE CLIPPING THRESHOLD - 1

(ASAF-1)

ASAF, ASAF-w
BATCH SIZE (IN TRAJECTORIES) 10 10
EPISODES BETWEEN UPDATES 10 20
EPOCHS PER UPDATE 50 50
WINDOW SIZE w (SEARCHED) 200
GRADIENT VALUE CLIPPING THRESHOLD - 1

For the most sensitive hyperparameters, the learning rates for the reinforcement learning and discrim-
inator updates (εRL and εD), we perform a random search over 50 configurations and 3 seeds each
(for each algorithm on each task) for 500 episodes. We consider logarithmic ranges, i.e. ε = 10u

with u ∼ Uniform(−6,−1) for εD and u ∼ Uniform(−4,−1) for εRL. We also include in this
search the critic learning rate coefficient κ for PPO also sampled according to a logarithmic scale
with u ∼ Uniform(−2, 2) so that the effective learning rate for PPO’s critic network is κ · εRL. For
discrete action tasks, the window-size w for ASAF-w is sampled uniformly within {32, 64, 128}. The
best configuration for each algorithm is presented in Tables 2 to 7. Figure 1 uses these configurations
retrained on 10 seeds and twice as long.

Finally for all neural networks (policies and discriminators) for these experiments we use a fully-
connected MLP with two hidden layers and ReLU activation (except for the last layer). We used
hidden sizes of 64 for the discrete tasks and of 256 for the continuous tasks.
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Table 2: Best found hyper-parameters for Cartpole
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.028 0.039 0.00046 - 2.5*10−6 0.00036
RL UPDATE LR εRL - - - 0.0067 0.0052 0.012
CRITIC LR COEFFICIENT κ - - - - 0.25 0.29
WINDOW SIZE w - 64 1 - - -
WINDOW STRIDE - 64 1 - - -

Table 3: Best found hyper-parameters for Mountaincar
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.059 0.059 0.0088 - 0.0042 0.00016
RL UPDATE LR εRL - - - 0.062 0.016 0.0022
CRITIC LR COEFFICIENT κ - - - - 4.6 0.018
WINDOW SIZE w - 32 1 - - -
WINDOW STRIDE - 32 1 - - -

Table 4: Best found hyper-parameters for Lunarlander
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.0055 0.0015 0.00045 - 0.0002 0.00019
RL UPDATE LR εRL - - - 0.0036 0.0012 0.0016
CRITIC LR COEFFICIENT κ - - - - 0.48 8.5
WINDOW SIZE w - 32 1 - - -
WINDOW STRIDE - 32 1 - - -

Table 5: Best found hyper-parameters for Pendulum
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.00069 0.00082 0.00046 - 4.3*10−6 1.6*10−5

RL UPDATE LR εRL - - - 0.0001 0.00038 0.00028
CRITIC LR COEFFICIENT κ - - - - 0.028 84
WINDOW SIZE w - 200 1 - - -
WINDOW STRIDE - 200 1 - - -

Table 6: Best found hyper-parameters for Mountaincar-c
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.00021 3.8*10−5 6.2*10−6 - 1.7*10−5 1.5*10−5

RL UPDATE LR εRL - - - 0.0079 0.0012 0.0052
CRITIC LR COEFFICIENT κ - - - - 10 12
WINDOW SIZE w - 200 1 - - -
WINDOW STRIDE - 200 1 - - -

Table 7: Best found hyper-parameters for Lunarlander-c
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO
DISCRIMINATOR UPDATE LR εD 0.0051 0.0022 0.0003 - 0.0045 0.00014
RL UPDATE LR εRL - - - 0.0027 0.00031 0.00049
CRITIC LR COEFFICIENT κ - - - - 14 0.01
WINDOW SIZE w - 200 - - - -
WINDOW STRIDE - 200 - - - -
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D.2 MuJoCo

For MuJoCo experiments (Hopper-v2, Walker2d-v2, HalfCheetah-v2, Ant-v2), the fixed hyperparam-
eters are presented in Table 8. For all exeperiments, fully-connected MLPs with two hidden layers
and ReLU activation (except for the last layer) were used, where the number of hidden units is equal
to 256.

Table 8: Fixed hyperparameters for MuJoCo environments.
RL COMPONENT
HYPER-PARAMETER HOPPER, WALKER2D, HALFCHEETAH, ANT

PPO (FOR GAIL)
GAE PARAMETER λ 0.98
TRANSITIONS BETWEEN UPDATES 2000
EPOCHS PER UPDATE 5
UPDATE CLIPPING PARAMETER 0.2
CRITIC LR COEFFICIENT κ 0.25
DISCOUNT FACTOR γ 0.99

REWARD LEARNING COMPONENT
HYPER-PARAMETER HOPPER, WALKER2D, HALFCHEETAH, ANT

GAIL
TRANSITIONS BETWEEN UPDATES 2000

ASAF
EPISODES BETWEEN UPDATES 25

ASAF-1 AND ASAF-w
TRANSITIONS BETWEEN UPDATES 2000

For SQIL we used SAC with the same hyperparameters that were used to generate the expert
demonstrations. For ASAF, ASAF-1 and ASAF-w, we set the learning rate for the discriminator at
0.001 and ran random searches over 25 randomly sampled configurations and 2 seeds for each task
to select the other hyperparameters for the discriminator training. These hyperparameters included
the discriminator batch size sampled from a uniform distribution over {10, 20, 30} for ASAF and
ASAF-w (in trajectories) and over {100, 500, 1000, 2000} for ASAF-1 (in transitions), the number of
epochs per update sampled from a uniform distribution over {10, 20, 50}, the gradient norm clipping
threshold sampled form a uniform distribution over {1, 10}, the window-size (for ASAF-w) sampled
from a uniform distribution over {100, 200, 500, 1000} and the window stride (for ASAF-w) sampled
from a uniform distribution over {1, 50, w}. For GAIL, we obtained poor results using the original
hyperparameters from [13] for a number of tasks so we ran random searches over 100 randomly
sampled configurations for each task and 2 seeds to select for the following hyperparameters: the
log learning rate of the RL update and the discriminator update separately sampled from uniform
distributions over [−7,−1], the gradient norm clipping for the RL update and the discriminator update
separately sampled from uniform distributions over {None, 1, 10}, the number of epochs per update
sampled from a uniform distribution over {5, 10, 30, 50}, the gradient penalty coefficient sampled
from a uniform distribution over {1, 10} and the batch size for the RL update and discriminator
update separately sampled from uniform distributions over {100, 200, 500, 1000, 2000}.
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Table 9: Best found hyper-parameters for the Hopper-v2 environment
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 200
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 2000
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 10 10 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - 1.
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 10. 1. - 1.
EPOCHS PER UPDATE 50 50 30 - 5
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR εRL - - - 3 ∗ 10−4 1.8 ∗ 10−5

DISCRIMINATOR UPDATE LR εD 0.001 0.001 0.001 - 0.011
WINDOW SIZE w - 200 1 - -
WINDOW STRIDE - 1 1 - -

Table 10: Best found hyper-parameters for the HalfCheetah-v2 environment
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 1000
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 100
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 10 10 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1 1 - 10
EPOCHS PER UPDATE 50 10 30 - 30
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR εRL - - - 3 ∗ 10−4 0.0006
DISCRIMINATOR UPDATE LR εD 0.001 0.001 0.001 - 0.023
WINDOW SIZE w - 200 1 - -
WINDOW STRIDE - 1 1 - -

Table 11: Best found hyper-parameters for the Walker2d-v2 environment
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 200
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 500 - 2000
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 20 20 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1. 10. - -
EPOCHS PER UPDATE 30 10 50 - 30
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 1.
RL UPDATE LR εRL - - - 3 ∗ 10−4 0.00039
DISCRIMINATOR UPDATE LR εD 0.001 0.001 0.001 - 0.00066
WINDOW SIZE w - 100 1 - -
WINDOW STRIDE - 1 1 - -

Table 12: Best found hyper-parameters for the Ant-v2 environment
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL GAIL + PPO
RL BATCH SIZE (IN TRANSITIONS) - - - 256 500
DISCRIMINATOR BATCH SIZE (IN TRANSITIONS) - - 100 - 100
DISCRIMINATOR BATCH SIZE (IN TRAJECTORIES) 20 20 - - -
GRADIENT CLIPPING (RL UPDATE) - - - - -
GRADIENT CLIPPING (DISCRIMINATOR UPDATE) 10. 1. 1. - 10.
EPOCHS PER UPDATE 50 50 10 - 50
GRADIENT PENALTY (DISCRIMINATOR UPDATE) - - - - 10
RL UPDATE LR εRL - - - 3 ∗ 10−4 8.5 ∗ 10−5

DISCRIMINATOR UPDATE LR εD 0.001 0.001 0.001 - 0.0016
WINDOW SIZE w - 200 1 - -
WINDOW STRIDE - 50 1 - -

D.3 Pommerman

For this set of experiments, we use a number of fixed hyperparameters for all algorithms either
inspired from their original papers for the baselines or selected through preliminary searches. These
fixed hyperparameters are presented in Table 13.
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Table 13: Fixed Hyperparameters for Pommerman Random-Tag environment.
RL COMPONENT
HYPER-PARAMETER POMMERMAN RANDOM-TAG

SAC
BATCH SIZE (IN TRANSITIONS) 256
REPLAY BUFFER LENGTH |B| 105

WARMUP (IN TRANSITIONS) 1280
INITIAL ENTROPY WEIGHT α 0.4
GRADIENT NORM CLIPPING THRESHOLD 0.2
TRANSITIONS BETWEEN UPDATE 10
TARGET NETWORK WEIGHT τ 0.05

PPO
BATCH SIZE (IN TRANSITIONS) 256
GAE PARAMETER λ 0.95
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10
UPDATE CLIPPING PARAMETER 0.2
CRITIC LR COEFFICIENT κ 0.5

REWARD LEARNING COMPONENT
HYPER-PARAMETER POMMERMAN RANDOM-TAG

AIRL, GAIL, ASAF-1
BATCH SIZE (IN TRANSITIONS) 256
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10

ASAF, ASAF-w
BATCH SIZE (IN TRAJECTORIES) 5
EPISODES BETWEEN UPDATES 10
EPOCHS PER UPDATE 10

For the most sensitive hyperparameters, the learning rates for the reinforcement learning and discrim-
inator updates (εRL and εD), we perform a random search over 25 configurations and 2 seeds each for
all algorithms. We consider logarithmic ranges, i.e. ε = 10u with u ∼ Uniform(−7,−3) for εD
and u ∼ Uniform(−4,−1) for εRL. We also include in this search the window-size w for ASAF-w,
sampled uniformly within {32, 64, 128}. The best configuration for each algorithm is presented in
Table 14. Figure 3 uses these configurations retrained on 10 seeds.

Table 14: Best found hyper-parameters for the Pommerman Random-Tag environment
HYPER-PARAMETER ASAF ASAF-w ASAF-1 SQIL AIRL + PPO GAIL + PPO BC
DISCRIMINATOR UPDATE LR εD 0.0007 0.0002 0.0001 - 3.1*10−7 9.3*10−7 0.00022
RL UPDATE LR εRL - - - 0.00019 0.00017 0.00015 -
WINDOW SIZE w - 32 1 - - - -
WINDOW STRIDE - 32 1 - - - -

Finally for all neural networks (policies and discriminators) we use the same architecture. Specifically,
we first process the feature maps (see Section E.3) using a 3-layers convolutional network with number
of hidden feature maps of 16, 32 and 64 respectivelly. Each one of these layers use a kernel size of
3x3 with stride of 1, no padding and a ReLU activation. This module ends with a fully connected
layer of hidden size 64 followed by a ReLU activation. The output vector is then concatenated to the
unprocessed additional information vector (see Section E.3) and passed through a final MLP with
two hidden layers of size 64 and ReLU activations (except for the last layer).
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E Environments and expert data

E.1 Classic Control

The environments used here are the reference Gym implementations for classic control2 and for
Box2D3. We generated the expert trajectories for mountaincar (both discrete and continuous version)
by hand using keyboard inputs. For the other tasks, we trained our SAC implementation to get experts
on the discrete action tasks and our PPO implementation to get experts on the continuous action tasks.

E.2 MuJoCo

The experts were trained using our implementation of SAC [11] the state-of-the-art RL algorithm in
MuJoCo continuous control tasks. Our implementation basically refactors the SAC implementation
from Rlpyt4. We trained SAC agent for 1,000,000 steps for Hopper-v2 and 3,000,000 steps for
Walker2d-v2 and HalfCheetah-v2 and Ant-v2. We used the default hyper-parameters from Rlpyt.

E.3 Pommerman

The observation space that we use for Pommerman domain [21] is composed of a set of 15 feature
maps as well as an additional information vector. The feature maps whose dimensions are given
by the size of the board (8x8 in the case of 1vs1 tasks) are one-hot across the third dimension and
represent which element is present at which location. Specifically, these feature maps identify whether
a given location is the current player, an ally, an ennemy, a passage, a wall, a wood, a bomb, a flame,
fog, a power-up. Other feature maps contain integers indicating bomb blast stength, bomb life, bomb
moving direction and flame life for each location. Finally, the additional information vecor contains
the time-step, number of ammunition, whether the player can kick and blast strengh for the current
player. The agent has an action space composed of six actions: do-nothing, up, down, left, right and
lay bomb.

For these experiments, we generate the expert demonstrations using Agent47Agent, the open-source
champion algorithm of the FFA 2018 competition [28] which uses hardcoded heuristics and Monte-
Carlo Tree-Search5. While this agent occasionally eliminates itself during a match, we only select
trajectories leading to a win as being expert demonstrations.

E.4 Demonstrations summary

Table 15 provides a summary of the expert data used.

Table 15: Expert demonstrations used for Imitation Learning
TASK-NAME EXPERT MEAN RETURN NUMBER OF EXPERT TRAJECTORIES
CARTPOLE 200.0 10
MOUNTAINCAR -108.0 10
LUNARLANDER 277.5 10
PENDULUM -158.6 10
MOUNTAINCAR-C 93.92 10
LUNARLANDER-C 266.1 10
HOPPER 3537 25
WALKER2D 5434 25
HALFCHEETAH 7841 25
ANT 5776 25
POMMERMAN RANDOM-TAG 1 300, 150, 75, 15, 5, 1

2See: http://gym.openai.com/envs/#classic_control
3See: http://gym.openai.com/envs/#box2d
4See: https://github.com/astooke/rlpyt
5See: https://github.com/YichenGong/Agent47Agent/tree/master/pommerman
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