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Abstract

Gaussian processes are an effective model class for learning unknown functions,
particularly in settings where accurately representing predictive uncertainty is of
key importance. Motivated by applications in the physical sciences, the widely-
used Matérn class of Gaussian processes has recently been generalized to model
functions whose domains are Riemannian manifolds, by re-expressing said pro-
cesses as solutions of stochastic partial differential equations. In this work, we
propose techniques for computing the kernels of these processes on compact Rie-
mannian manifolds via spectral theory of the Laplace–Beltrami operator in a fully
constructive manner, thereby allowing them to be trained via standard scalable
techniques such as inducing point methods. We also extend the generalization from
the Matérn to the widely-used squared exponential Gaussian process. By allow-
ing Riemannian Matérn Gaussian processes to be trained using well-understood
techniques, our work enables their use in mini-batch, online, and non-conjugate
settings, and makes them more accessible to machine learning practitioners.

1 Introduction

Gaussian processes (GPs) are a widely-used class of models for learning an unknown function within
a Bayesian framework. They are particularly attractive for use within decision-making systems, e.g.
in Bayesian optimization [36] and reinforcement learning [10, 11], where well-calibrated uncertainty
is crucial for enabling the system to balance trade-offs, such as exploration and exploitation.

A GP is specified through its mean and covariance kernel. The Matérn family is a widely-used class
of kernels, often favored in Bayesian optimization due to its ability to specify smoothness of the GP
by controlling differentiability of its sample paths. Throughout this work, we view the widely-used
squared exponential kernel as a Matérn kernel with infinite smoothness.

Motivated by applications areas such as robotics [4, 22] and climate science [5], recent work has
sought to generalize a number of machine learning algorithms from the vector space to the manifold
setting. This allows one to work with data that lives on spheres, cylinders, and tori, for example. To
define such a GP, one needs to define a positive semi-definite kernel on those spaces.

In the Riemannian setting, as a simple candidate generalization for the Matérn or squared exponential
kernel, one can consider replacing Euclidean distance in the formula with the Riemannian geodesic
distance. Unfortunately, this approach leads to ill-defined kernels in many cases of interest [14].

An alternative approach was recently proposed by Lindgren et al. [25], who adopt a perspective
introduced in the pioneering work of Whittle [42] and define a Matérn GP to be the solution of
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a certain stochastic partial differential equation (SPDE) driven by white noise. This approach
generalizes naturally to the Riemannian setting, but is cumbersome to work with in practice because
it entails solving the SPDE numerically. In particular, setting up an accurate finite element solver can
become an involved process, especially for certain smoothness values [2, 3]. This also prevents one
from easily incorporating recent advances in scalable GPs, such as sparse inducing point methods
[21, 41], into the framework. This in turn impedes one from easily employing mini-batch training,
online training, non-Gaussian likelihoods, or incorporating GPs as differentiable components within
larger models.

In this work, we extend Matérn GPs to the Riemannian setting in a fully constructive manner, by
introducing Riemannian analogues of the standard technical tools one uses when working with GPs
in Euclidean spaces. To achieve this, we first study the special case of the d-dimensional torus Td.
Using ideas from abstract harmonic analysis, we view GPs on the torus as periodic GPs on Rd, and
derive expressions for the kernel and spectral measure of a Matérn GP in this case.

Building on this intuition, we generalize the preceding ideas to general compact Riemannian manifolds
without boundary. Using insights from harmonic analysis induced by the Laplace–Beltrami operator,
we develop techniques for computing the kernel and generalized spectral measure of a Matérn
GP in this setting. These expressions enable computations via standard GP approaches, such as
Fourier feature or sparse variational methods, thereby allowing practitioners to easily deploy familiar
techniques in the Riemannian setting. We conclude by showcasing how to employ the proposed
techniques through a set of examples.

2 Gaussian processes

Let X be a set, and let f : X → R be a random function. We say that f ∼ GP(µ, k) if, for any n
and any finite set of points x ∈ Xn, the random vector f = f(x) is multivariate Gaussian with
prior mean vector µ = µ(x) and covariance matrix Kxx = k(x,x). We henceforth, without loss of
generality, set the mean function to be zero.

Given a set of training observations (xi, yi), we let yi = f(xi) + εi with εi ∼ N(0, σ2). Under the
prior f ∼ GP(0, k) the posterior distribution f | y is another GP, with mean and covariance

E(f | y) = K(·)x(Kxx + σ2I)−1y Cov(f | y) = K(·,·) −K(·)x(Kxx + σ2I)−1Kx(·) (1)

where (·) denotes an arbitrary set of test locations. The posterior can also be written

(f | y)(·) = f(·) + K(·)x(Kxx + σ2I)−1(y − f(x)− ε) (2)

where equality holds in distribution [43]. This expression allows one to sample from the posterior by
first sampling from the prior, and transforming the resulting draws into posterior samples.

On X = Rd, one popular choice of kernel is the Matérn family with parameters σ2, κ, ν, defined as

kν(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν
‖x− x′‖

κ

)ν
Kν

(√
2ν
‖x− x′‖

κ

)
(3)

where Kν is the modified Bessel function of the second kind [17]. The parameters of this kernel have
a natural interpretation: σ2 directly controls variability of the GP, κ directly controls the degree of
dependence between nearby data points, and ν directly controls mean-square differentiability of the
GP [29]. As ν →∞, the Matérn kernel converges to the widely-used squared exponential kernel

k∞(x, x′) = σ2 exp

(
−‖x− x

′‖2

2κ2

)
(4)

which induces an infinitely mean-square differentiable GP.

For a bivariate function k : X × X → R to be a kernel, it must be positive semi-definite, in the
sense that for any n and any x ∈ Xn, the kernel matrix Kxx is positive semi-definite. For X = Rd,
a translation-invariant kernel k(x, x′) = k(x − x′) is called stationary, and can be characterized
via Bochner’s Theorem. This result states that a translation-invariant bivariate function is positive
definite if and only if it is the Fourier transform of a finite non-negative measure ρ, termed the spectral
measure. This measure is an important technical tool for constructing kernels [29], and for practical
approximations such as Fourier feature basis expansions [20, 28].
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Figure 1: The Matérn kernel k1/2(x, ·), defined on a circle, sphere and dragon. The point x is marked
with a red dot. The height of the solid line and color, respectively, give the value of the kernel.

2.1 A no-go theorem for kernels on manifolds

We are interested in generalizing the Matérn family from the vector space setting to a compact
Riemannian manifold (M, g) such as the sphere or torus. One might hope to achieve this by replacing
Euclidean norms with the geodesic distances in (3) and (4). In the latter case, this amounts to defining

k(x, x′) = σ2 exp

(
−dg(x, x

′)2

2κ2

)
(5)

where dg is the geodesic distance with respect to g on M . Unfortunately, one can prove this is not
generally a well-defined kernel.
Theorem 1. Let (M, g) be a complete, smooth Riemannian manifold without boundary, with associ-
ated geodesic distance dg . If the geodesic squared exponential kernel (5) is positive semi-definite for
all κ > 0, then M is isometric to a Euclidean space.

Proof. Feragen et al. [14, Theorem 2].

Since Euclidean space is not compact, this immediately implies that (5) is not a well-defined kernel on
any compact Riemannian manifold without boundary. We therefore call (5) and its finite-smoothness
analogues the naı̈ve generalization.

In spite of this issue, the naı̈ve generalization is usually still positive semi-definite for some κ, and
it has been used in a number of applied areas [22]. Feragen and Hauberg [13] proposed a number
of open problems arising from these issues. In Section 3, we show that, on the torus, the naı̈ve
generalization is locally correct in a sense made precise in the sequel. We now turn to an alternative
approach, which gives well-defined kernels in the general case.

2.2 Stochastic partial differential equations

Whittle [42] has shown that Matérn GPs on X = Rd satisfy the stochastic partial differential equation(
2ν

κ2
−∆

) ν
2 + d

4

f =W (6)

for ν < ∞, where ∆ is the Laplacian andW is Gaussian white noise re-normalized by a certain
constant. One can show using the same argument that the limiting squared exponential GP satisfies

e−
κ2

4 ∆f =W (7)

where e−
κ2

4 ∆ is the (rescaled) heat semigroup [12, 18]. This viewpoint on GPs has recently been
reintroduced in the statistics literature by Lindgren et al. [25], and a number of authors, including
Särkkä et al. [33] and Simpson et al. [35], have used it to develop computational techniques, notably
in the popular INLA package [32].

One advantage of the SPDE definition is that generalizing it to the Riemannian setting is straight-
forward: one simply replaces ∆ with the Beltrami Laplacian andW with the canonical white noise
process with respect to the Riemannian volume measure. The kernels of these GPs, computed in the
sequel, are illustrated in Figure 1. Unfortunately, the SPDE definition is somewhat non-constructive:
it is not immediately clear how to compute the kernel, and even less clear how to generalize familiar
tools to this setting. In practice, this restricts one to working with PDE-theoretic discretization
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Figure 2: The distances being considered in definitions (9) and (10).

techniques, such as Galerkin finite element methods, the efficiency of which depend heavily on the
smoothness of f , and which can require significant hand-tuning to ensure accuracy. It also precludes
one from working in non-conjugate settings, such as classification, or from using recently-proposed
techniques for scalable GPs via sparse inducing point methods [20, 21, 41], as they require one to
either be able to compute the kernel point-wise, or compute the spectral measure, or both.

2.3 State of affairs and contribution

In this work, our aim is to generalize the standard theoretical tools available for GPs on Rd to the
Riemannian setting. Our strategy is to first study the problem for the special case of a d-dimensional
torus. Here, we provide expressions for the kernel of a Matérn GP in the sense of Whittle [42] via
periodic summation, which yields a series whose first term is the naı̈ve generalization. Building
on this intuition, we develop a framework using Laplace–Beltrami eigenfunctions that allows us to
provide expressions for the kernel and generalized spectral measure of a Matérn GP on a general
compact Riemannian manifold without boundary. The framework is fully constructive and compatible
with sparse GP techniques for scalable training.

A number of closely related ideas, beyond those described in the preceding sections, have been
considered in various literatures. Solin and Särkkä [38] used ideas based on spectral theory of the
Laplace–Beltrami operator to approximate stationary covariance functions on bounded domains of
Euclidean spaces. These ideas were applied, for instance, to model ambient magnetic fields using
Gaussian processes by Solin et al. [37]. An analog of the expression we provide in equation (18) for
the Riemannian Matérn kernel was concurrently proposed as a practical GP model by Coveney et al.
[8]—in this work, we derive said expression from the SPDE formulation of Matérn GPs. Finally, the
Riemannian squared exponential kernel, also sometimes called the heat or diffusion kernel, has been
studied by Gao et al. [15]. We connect these ideas with stochastic partial differential equations.

In this work, we concentrate on Gaussian processes f : M → R whose domain is a Riemannian
manifold. We do not study models f : R → M where the range is a Riemannian manifold—this
setting is explored by Mallasto and Feragen [27].

3 A first example: the d-dimensional torus

To begin our analysis and build intuition, we study the d-dimensional torus Td, which is defined
as the product manifold Td = S1 × ... × S1 where S1 denotes a unit circle2. Since functions on a
circle can be thought of as periodic functions on R, and similarly for Td and Rd, defining a kernel
on a torus is equivalent to defining a periodic kernel. For a general function f : Rd → R, one can
transform it into a function g : Td → R by periodic summation

g(x1, ..., xd) =
∑
n∈Zd

f(x1 + n1, ..., xd + nd) (8)

where xj ∈ [0, 1) is identified with the angle 2πxj and the point exp(2πixj) ∈ S1. Define addition of
two points in S1 by the addition of said numbers modulo 1, and define addition in Td component-wise.

Periodic summation preserves positive-definiteness, since it preserves positivity of the Fourier
transform, which by Bochner’s theorem is equivalent to positive-definiteness—see Schölkopf and

2Note that T2 = S1 × S1 is diffeomorphic but not isometric to the usual donut-shaped torus whose metric
is induced by embedding in R3. This is important, because it is the Riemannian metric structure that gives
rise to the Laplace–Beltrami operator and hence to the generalized Matérn and squared exponential kernels.
Diffeomorphisms do not necessarily preserve metric structure, so they may not preserve kernels.
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Smola [34, Section 4.4.4] for a formal proof. This gives an easy way to construct positive-definite
kernels on Td. In particular, we can generalize Matérn and squared exponential GPs from Rd to Td
by defining

kν(x, x′) =
∑
n∈Zd

σ221−ν

C ′νΓ(ν)

(√
2ν
‖x− x′ + n‖

κ

)ν
Kν

(√
2ν
‖x− x′ + n‖

κ

)
(9)

where C ′(·) is a constant given in Appendix B to ensure k(·)(x, x) = σ2, and

k∞(x, x′) =
∑
n∈Zd

σ2

C ′∞
exp

(
−‖x− x

′ + n‖2

2κ2

)
(10)

respectively. We prove that these are the covariance kernels of the SPDEs introduced previously.
Proposition 2. The Matérn (squared exponential) kernel k in (9) (resp. (10)) is the covariance kernel
of the Matérn (resp. squared exponential) Gaussian process in the sense of Whittle [42].

Proof. Appendix C.

This result offers an intuitive explanation for why the naı̈ve generalization based on the geodesic
distance might fail to be positive semi-definite on non-Euclidean spaces for all length scales, yet
work well for smaller length scales: on Td, it is locally correct in the sense that it is equal to the first
term in the periodic summation (9). To obtain the full generalization, one needs to take into account
not just geodesic paths, but geodesic-like paths which include loops around the space—a Matérn GP
incorporates global topological structure of its domain. For the circle, these are visualized in Figure 2.
For spaces where this structure is even more elaborate, definitions based purely on geodesic distances
may not suffice to ensure positive semi-definiteness or good numerical behavior. We conclude by
presenting a number of practical formulas for Matérn kernels on the circle.
Example 3 (Circle). Take M = S1. For ν =∞, the kernel and spectral measure are

k∞(x, x′) =
σ2

C∞
ϑ3(π(x− x′), exp(−2π2κ2)) ρ∞(n) =

σ2

C∞
exp(−2π2κ2n2) (11)

where n ∈ Z, ϑ3(·, ·) is the third Jacobi theta function [1, equation 16.27.3], and C∞ =
ϑ3(0, exp(−2π2κ2)). This kernel is normalized to have variance σ2.

Example 4 (Circle). Take M = S1. For ν = 1/2, the kernel and spectral measure are

k1/2(x, x′) =
σ2

C1/2
cosh

(
|x− x′| − 1/2

κ

)
ρ1/2(n) =

2σ2 sinh(1/2κ)

C1/2κ

(
1

κ2
+ 4π2n2

)−1

(12)

where C1/2 = cosh(1/2κ). This kernel is normalized to have variance σ2.

A derivation and more general formula, valid for ν = 1/2 + n, n ∈ N, can be found in Appendix B.
Note that these spectral measures are discrete, as the Laplace–Beltrami operator has discrete spectrum.
Finally, we give the Fourier feature approximation [20, 28] of the GP prior on T1 = S1, which is

f(x) ≈
N∑

n=−N

√
ρν(n)

(
wn,1 cos(2πnx) + wn,2 sin(2πnx)

)
wn,j ∼ N(0, 1). (13)

We have defined Matérn and squared exponential GPs on Td and given expressions for the kernel,
spectral measure, and Fourier features on T1. With sharpened intuition, we now study the general case.

4 Compact Riemannian manifolds

The arguments used in the preceding section are, at their core, based on ideas from abstract harmonic
analysis connecting Rd, Td, and Zd as topological groups. This connection relies on the algebraic
structure of groups, which does not exist on a general Riemannian manifold. As a result, different
notions are needed to establish a suitable framework.
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Figure 3: Examples of eigenfunctions of Laplace–Beltrami operator on a circle, sphere, and dragon.
For the circle, the value of the eigenfunction is given by the (signed) distance between the solid line
and dashed unit circle. For the sphere and dragon, the value of the eigenfunction is given by the color.

Let (M, g) be a compact Riemannian manifold without boundary, and let ∆g be the Laplace–Beltrami
operator. Our aim is to compute the covariance kernel of the Gaussian processes solving the SPDEs
(6) and (7) in this setting. Mathematically, this amounts to introducing an appropriate formalism so
that one can calculate the desired expressions using spectral theory. We do this in a fully rigorous
manner in Appendix D, while here we present the main ideas and results.

First, we discuss how the operators on the left-hand side of SPDEs (6) and (7) are defined. By
compactness of M , −∆g admits a countable number of eigenvalues, which are non-negative and
can be ordered to form a non-decreasing sequence with λn → ∞ for n → ∞. Moveover, the
corresponding eigenfunctions form an orthonormal basis {fn}n∈Z+

of L2(M), and −∆g admits the
representation

−∆gf =

∞∑
n=0

λn〈f, fn〉fn (14)

which is termed the Sturm–Liouville decomposition [6, 7]. This allows one to define the operators
Φ(−∆g) for a function Φ : [0,∞) → R, by replacing λn with Φ(λn) in (14), and specifying
appropriate function spaces as domain and range to ensure convergence of the series in a suitable
sense. This idea is called functional calculus for the operator −∆g . Using it, we define

(
2ν

κ2
−∆g

) ν
2 + d

4

f =

∞∑
n=0

(
2ν

κ2
+ λn

) ν
2 + d

4

〈f, fn〉fn (15)

e−
κ2

4 ∆gf =

∞∑
n=0

e
κ2λn

4 〈f, fn〉fn. (16)

Figure 3 illustrates the eigenfunctions fn. Note that when M = Td, the orthonormal basis {fn}n∈Z+

consists of sines and cosines, and thus the corresponding functional calculus is defined in terms
of standard Fourier series. This also agrees with the usual way of defining such operators in the
Euclidean case using the Fourier transform.

Next, we proceed to define the remaining parts of the SPDEs. The theory of stochastic elliptic
equations described in Lototsky and Rozovsky [26] gives an appropriate notion of white noiseW for
our setting, as well as a way to uniquely solve SPDEs of the form Lf =W , where L is a bounded
linear bijection between a pair of Hilbert spaces. We show that the operators

(
2ν

κ2
−∆g

) ν
2 + d

4

: Hν+ d
2 (M)→ L2(M) e

κ2

4 ∆g : H κ2

2 (M)→ L2(M) (17)

are bounded and invertible, where Hs(M) are appropriately defined Sobolev spaces on the manifold,
andHs(M) are the diffusion spaces studied by De Vito et al. [9].

We prove that the solutions of our SPDEs in the sense of Lototsky and Rozovsky [26] are Gaussian
processes with kernels equal to the reproducing kernels of the spaces Hν+d/2(M) andHκ2/2(M),
which are given by De Vito et al. [9]. Summarizing, we get the following.
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Theorem 5. Let λn be eigenvalues of−∆g , and let fn be their respective eigenfunctions. The kernels
of the Matérn and squared exponential GPs on M in the sense of Whittle [42] are given by

kν(x, x′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)−ν− d2
fn(x)fn(x′) (18)

k∞(x, x′) =
σ2

C∞

∞∑
n=0

e−
κ2

2 λnfn(x)fn(x′) (19)

where C(·) are normalizing constants chosen so that the average variance3 over the manifold satisfies
volg(M)−1

∫
X
k(·)(x, x)dx = σ2.

Proof. Appendix D.

Our attention now turns to the spectral measure. In the Euclidean case, the spectral measure, assuming
sufficient regularity, is absolutely continuous—its Lebesgue density is given by the Fourier transform
of the kernel. In the case of Td, the spectral measure is discrete—its density with respect to the
counting measure is given by the Fourier coefficients of the kernel. Like in the case of the torus,
for a compact Riemannian manifold the spectral measure is discrete—its density with respect to the
counting measure is given by the generalized Fourier coefficients of the kernel with respect to the
orthonormal basis fn(x)fn′(x′) on L2(M ×M). For Matérn and square exponential GPs, these are

ρν(n) =
σ2

Cν

(
2ν

κ2
+ λn

)−ν− d2
ρ∞(n) =

σ2

C∞
exp

(
−κ

2

2
λn

)
n ∈ N. (20)

This allows one to recover most tools used in spectral theory of GPs. In particular, one can construct
a regular Fourier feature approximation of the GPs by taking the top-N eigenvalues, and writing

f(x) ≈
N−1∑
n=0

√
ρ(n)wnfn(x) wn ∼ N(0, 1). (21)

Other kinds of Fourier feature approximations, such as random Fourier features, are also possible.
We now illustrate an example in which these expressions simplify.
Example 6 (Sphere). Take M = Sd to be the d-dimensional sphere. Then we have

kν(x, x′) =

∞∑
n=0

cn,d ρν(n) C(d−1)/2
n

(
cos
(
dg(x, x

′)
))

(22)

where cn,d are constants given in Appendix B, C(·)
n are the Gegenbauer polynomials, dg is the geodesic

distance, and ρν(n) can be expressed explicitly in terms of λn = n(n + d − 1) using (20). See
Appendix B for details on the corresponding Fourier feature approximation.

A derivation with further details can be found in Appendix B. Similar expressions are available for
many other manifolds, where the Laplace–Beltrami eigenvalues and eigenfunctions are known.

4.1 Summary

We conclude by summarizing the presented method of computing the kernel of Riemannian Matérn
Gaussian processes defined by SPDEs. The key steps are as follows.

1. Obtain the Laplace–Beltrami eigenpairs for the given manifold, either analytically or numer-
ically. This step needs to be performed once in advance.

2. Approximate the kernel using a finite truncation of the infinite sums (18) or (19).

This kernel approximation can be evaluated pointwise at any locations, fits straightforwardly into
modern automatic differentiation frameworks, and is simple to work with. The resulting truncation
error will depend on the smoothness parameter ν, dimension d, and eigenvalue growth rate, which is
quantified by Weyl’s law [44]. For ν <∞ convergence will be polynomial, and for ν =∞ it will be
exponential. If σ2 is trainable, the constant Cν which normalizes the kernel by its average variance
can generally be disregarded. If Fourier feature approximations of the prior are needed, for instance,
to apply the pathwise sampling technique of Wilson et al. [43], they are given by (21).

3The marginal variance k(·)(x, x) can depend on x, thus we normalize the kernel by the average variance.
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(c) Posterior samples for one trajectory

Figure 4: Visualization of the dynamical system’s learned phase diagram. Middle: we simulate 40
trajectories starting at the red dots, integrate the learned Hamilton’s equations forward and backward
in time until they approximately intersect other trajectories, and plot 95% intervals in phase space.
Right: we simulate the trajectory beginning from the yellow dot, and plot mean and 95% intervals.

5 Illustrated Examples

Here we showcase two examples to illustrate the theory: dynamical system prediction and sample
path visualization. We focus on simplified settings to present ideas in an easy-to-understand manner.

5.1 Dynamical system prediction

We illustrate how Riemannian squared exponential GPs can be used for predicting dynamical systems
while respecting the underlying geometry of the configuration space the system is defined on. This
is an important task in robotics, where GPs are often trained within a model-based reinforcement
learning framework [10, 11]. Here, we consider a purely supervised setup, mimicking the model
learning inner loop of said framework.

For a prototype physical system, consider an ideal pendulum, whose configuration space is the circle
S1, and whose phase space is the cotangent bundle T ∗S1, which is isometric to the cylinder S1 × R
equipped with the product metric. The equations of motion are given by Hamilton’s equations,
which are parameterized by the Hamiltonian H : T ∗S1 → R. To learn the equations of motion
from observed data, we place a GP prior on the Hamiltonian, with covariance given by a squared
exponential kernel on the cylinder, defined as a product kernel of squared exponential kernels on the
circle and real line. Following Hensman et al. [21], training proceeds using mini-batch stochastic
variational inference with automatic relevance determination. The full setup is given in Appendix A.

To generate trajectories from the learned equations of motion, following Wilson et al. [43], we
approximate the prior GP using Fourier features, and employ (2) to transform prior sample paths into
posterior sample paths. We then generate trajectories by solving the learned Hamilton’s equations
numerically for each sample, which is straightforward because the approximate posterior is a basis
function approximation and therefore easily differentiated in the ordinary deterministic manner.
Results can be seen in Figure 4. From these, we see that our GP learns the correct qualitative behavior
of the equations of motion, mirroring the results of Deisenroth and Rasmussen [11].

5.2 Sample path visualization

To understand how complicated geometry affects posterior uncertainty estimates and illustrate the
techniques on a general Riemannian manifold, we consider a posterior sample path visualization
task. We take M to be the dragon manifold from the Stanford 3D scanning repository, modified
slightly to remove components not connected to the outer surface. We represent the manifold using a
202490-triangle mesh and obtain 500 Laplace–Beltrami eigenpairs numerically using the Firedrake
package [30].

For training data, we introduce a ground truth function by fixing a distinguished point at the end of
the dragon’s snout, and compute the sine of the geodesic distance from that point. We then observe
this function at 52 points on the manifold chosen from the mesh’s nodes, and train a Matérn GP
regression model with smoothness ν = 3/2 by maximizing the marginal likelihood with respect to
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(a) Ground truth (b) Mean (c) Standard deviation (d) One posterior sample

Figure 5: Visualization of a Matérn Gaussian process posterior on the dragon. We plot the true
function values, posterior mean, marginal posterior variance, and one posterior sample evaluated
on the entire mesh. Here, black dots denote training locations, and color represents value of the
corresponding functions. Additional posterior samples can be seen in Appendix A.

the remaining kernel hyperparameters. By using the path-wise sampling expression (2), we obtain
posterior samples defined on the entire mesh.

Results can be seen in Figure 5. Here, we see that posterior mean and uncertainty estimates match
the manifold’s shape seamlessly, decaying roughly in proportion with the geodesic distance in most
regions. In particular, we see that the two sides of the dragon’s snout have very different uncertainty
values, despite close Euclidean proximity. This mimics the well-known swiss roll example of manifold
learning [24, Section 6.1.1], and highlights the value of using a model which incorporates geometry.

6 Conclusion

In this work, we developed techniques for computing the kernel, spectral measure, and Fourier feature
approximation of Matérn and squared exponential Gaussian processes on compact Riemannian
manifolds, thereby constructively generalizing standard Gaussian process techniques to this setting.
This was done by viewing the Gaussian processes as solutions of stochastic partial differential
equations, and expressing the objects of interest in terms of Laplace–Beltrami eigenvalues and
eigenfunctions. The theory was demonstrated on a set of simple examples: learning the equations
of motion of an ideal pendulum, and sample path visualization for a Gaussian process defined on a
dragon. This illustrates the theory in settings both where Laplace–Beltrami eigenfunctions have a
known analytic form, and where they need to be calculated numerically using a differential equation
or graphics processing framework. Our work removes limitations of previous approaches, allowing
Matérn and squared exponential Gaussian processes to be deployed in mini-batch, online, and non-
conjugate settings using variational inference. We hope these contributions enable practitioners in
robotics and other physical sciences to more easily incorporate geometry into their models.

Broader Impact

This is a purely theoretical paper. We develop technical tools that make Matérn Gaussian processes
easier to work with in the Riemannian setting. This enables practitioners who are not experts in
stochastic partial differential equations to model data that lives on spaces such as spheres and tori.

We envision the impact of this work to be concentrated in the physical sciences, where spaces of
this type occur naturally. Since the state spaces of most robotic arms are Riemannian manifolds,
we expect these ideas to improve performance of model-based reinforcement learning by making it
easier to incorporate geometric prior information into models.

Since climate science is concerned with studying the globe, we also expect that our ideas can be
used to model environmental phenomena, such as sea surface temperatures. By employing Gaussian
processes for data assimilation and building them into larger frameworks, this could facilitate more
accurate climate models compared to current methods.

These impacts carry forward to potential generalizations of our work. We encourage practitioners to
consider impacts on their respective disciplines that arise from incorporating geometry into models.
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