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1 Network architecture and training details

1.1 Network Architecture

We use a UNet [7] based encoder (e) - decoder (d) architecture. e consists of 6 convolutional blocks,
each consisting of two 3× 3 convolutions followed by a 2× 2 maxpooling layer with stride 2. While
training with global contrastive loss, we append a small network, g1, on top of e. g1 consists of two
dense layers with output dimensions 3200 and 128. While training with local contrastive loss, we add
a partial decoder dl, with l convolutional blocks, on top of the pre-trained e. Each block consists of
one upsampling layer with a factor of 2, followed by concatenation from corresponding level of e via
a skip connection, followed by two 3× 3 convolutions. Similar to g1, we have an additional small
network, g2, on top of last decoder block with two 1× 1 convolutions to obtain the feature map that is
used for the local loss computation. Lastly, we take the pre-trained e and dl and append the remaining
convolutional blocks of d along with skip connections such that we have a sufficient number of layers
d to output a segmentation with same dimensions as the input image. We use batch normalization [4]
and ReLU activations after all layers except the last convolutional layers of g2 and d.

For the computation of the local loss, the number of local regions (A) chosen from each feature map
was 13.

1.2 Training Details

For each training stage, we used the Adam optimizer [5] for 10,000 iterations, with a batch size of 40
and learning rate of 10−3. For pre-training with both contrastive losses, we experimented with two
values of the temperature parameter, τ : 0.1 and 0.5, that provided the best performance in [1]. We
observed a higher Dice score on the validation set for τ = 0.1. Hence, we set τ = 0.1 in all experi-
ments. A validation set was used for model selection during the fine-tuning stage: that is, we chose
the fine-tuned model that provided the highest Dice score on a validation set. Please refer to the code
on github for more implementation details: https://github.com/krishnabits001/domain_specific_cl.

1.3 Dataset and other training details

(a) Data pre-processing: All images are bias-corrected using N4 [8] bias correction ITK toolkit.

(b) Data split: The data split was chosen so as to have the number of volumes for pre-training (Xpre)
and testing (Xts) to be roughly 50% of each dataset. For clarity, we present the data split numbers
in table 1. For Prostate, although we have 48 volumes, labels were provided only for a subset of
them, so the number of volumes for each set were adjusted accordingly. For ACDC, we updated
the benchmark training with |Xtr| = 78 instead of 50 where we obtained test DSC of 0.912 that is
similar to 0.908, obtained with earlier evaluated configuration of |Xtr| = 50.
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Dataset Total no.
of volumes

|Xpre| |Xts| |Xtr| for
benchmark

ACDC 100 52 20 78 (+2 val)
Prostate 48 22 15 20 (+2 val)
MMWHS 20 10 10 8 (+2 val)

Table 1: Dataset split

Figure 1: A 2D slice is taken from each of the four partitions, across three different volumes, with
the partition number indicated by s. Here, each row presents four images from four partitions of a
selected volume.

(c) Validation set Xvl: We use Xvl fixed to 2 3D volumes during fine-tuning to determine when to
stop the training, used for final evaluation on the test set.

(d) Fine-tuning: As mentioned in main article, we experiment with 3 settings: |Xtr| = 1, 2, and 8 3D
volumes with Xvl fixed to 2 3D volumes.

1.4 Details of training time and convergence

On a Titan X GPU, the training time is approximately: (a) 2 hours for Lg pre-training, (b) 4 hours for
Ll pre-training, and (c) 2 hours for fine-tuning. Also, we found the pre-training convergence to be
consistently stable.

2 Illustration of slice correspondence in medical volumetric images

We illustrate 2D slices taken from each of the four partitions, from three different volumes in Fig. 1,
where the partition number is indicated by s. In this figure, even though we see changes in shape and
intensity characteristics for 2D slices of the same partition from different volumes, they contain the
same global information about the cardiac anatomy.
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3 Ablation studies

Here, we present an ablation study to investigate the effect of some of the hyper-parameters involved
in the proposed method. For all these experiments, we considered the proposed global loss contrasting
strategy GD for pre-training the encoder as it yielded the best performance in earlier experiments.
We used the ACDC dataset for these experiments.

3.1 Global Contrastive Loss

Firstly, we investigated the effect of batch size and the number of partitions per volume S used in the
pre-training of the encoder with global contrastive loss.

3.1.1 Batch Size

Here, we studied the effect of the batch size used during the encoder pre-training. Previous works
have suggested that large batch sizes are crucial for good performance, with some works leveraging
memory bank [9] or momentum contrast [3, 6] to accommodate higher number of negative samples
information per batch. In order to check if the same is applicable for our datasets as well, we
pre-trained the encoder with 3 batch sizes: 40, 250, 450, with the number of partitions S set to 4.

The results are presented in Table 2. We observed that for medical images, higher batch sizes do
not improve the results any further, rather the performance deteriorated for the batch size of 450.
Unlike natural image datasets, for the evaluated medical imaging datasets we observe that we may
not require large batch sizes in the pre-training stage to obtain high performance. Further evaluation
on more datasets is required to arrive at a more conclusive statement on the effect of batch size on
medical datasets.

Moreover, medical datasets generally contain a much lower number of unlabeled images compared to
natural image datasets that can be leveraged for pre-training. For instance, the largest of the 3 datasets
used in our experiments is the ACDC dataset with 100 volumes amounting to around 1000 2D images.
So, evaluating batch size values like 2048, 4096 used in natural image datasets for pre-training may
not be a practical setting for medical images.

Batch Size |Xtr|=1 |Xtr|=2 |Xtr|=8
40 0.691 0.784 0.870
250 0.685 0.779 0.862
450 0.668 0.770 0.857

Table 2: Mean dice score over test set (Xts) shown on ACDC dataset for the effect of batch size with
the number of partitions set (S) to 4 in the pre-training of the encoder with GD strategy and later is
fine-tuned to all training set sizes (|Xtr| = 1, 2, 8).

3.1.2 Number of partitions per 3D volume

Here, we evaluated 3 values for number of partitions (S) per 3D volume S=3, 4, 6 for a fixed batch
size of 40. The number of partitions determines the number of clusters that are formed in the latent
space for the proposed global loss strategy GD. The results are presented in Table 3. We observed
that the dice score degraded for higher values of S. As there are approximately 10 images per volume
in ACDC data, using higher values of S will force the network to create a cluster for each image in
the volume. This results in the unrealistic composition of both positive and negative pairs of images
across volumes, where an inaccurate association of dissimilar images will be forced to act as similar
pairs due to a higher value of S. Since the volumes are not perfectly aligned, this wrong association
in representation space leads to a subsequent drop in performance.

3.2 Local Contrastive Loss

Secondly, we investigated the effect of decoder size (dl), local region size (K ×K) that are used in
the proposed local contrastive loss for pre-training the decoder network. We considered the proposed
local contrastive loss strategy LD to pre-train the decoder blocks with the encoder kept frozen. The
encoder was earlier pre-trained with global loss strategy GD.
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No. of partitions (S) per 3D volume |Xtr|=1 |Xtr|=2 |Xtr|=8
3 0.686 0.776 0.868
4 0.691 0.789 0.870
6 0.652 0.760 0.859

Table 3: Mean dice score over test set (Xts) shown on ACDC dataset for the effect of the number of
partitions S per 3D volume for a fixed batch size of 40 in the pre-training of the encoder with GD

strategy and later is fine-tuned to all training set sizes (|Xtr| = 1, 2, 8).

3.2.1 Decoder size

We varied the number (l) of decoder blocks that are pre-trained. We investigated all five values:
l = {1, 2, 3, 4, 5}, where l = 5 (d5) means that the entire decoder is pre-trained. From Table 4,
we observe the performance for the number of decoder blocks of l = 1, 2, 3 yielded higher gains
compared to l = 4, 5. We hypothesize that this is because, at l = 5, local regions have a smaller
receptive field compared to other l values and thereby might not contain enough information to learn
useful representations.

Region size |Xtr|=1 |Xtr|=2
K ×K d1 d2 d3 d4 d5 d1 d2 d3 d4 d5
1× 1 0.738 0.704 0.705 0.702 0.683 0.780 0.777 0.770 0.774 0.764
3× 3 0.703 0.737 0.725 0.726 0.690 0.783 0.793 0.787 0.776 0.777

Table 4: Mean dice score over test set (Xts) on ACDC data for the proposed contrasting strategies
of GD and LD used to pre-train the encoder and a different number of decoder blocks (dl, l =
1, 2, 3, 4, 5) for two different values of local region sizes (K ×K) of 1 × 1 and 3 × 3 and later is
fine-tuned to two training set sizes (|Xtr| = 1, 2).

3.2.2 Size of local regions

We experimented with 2 values: K = 1 × 1 and K = 3 × 3, for the size of local region used to
obtain local representations in a given feature map. This was to study if the size of the local regions
influences the performance post pre-training. From Table 4, we observe a small difference in the
performance of around 2% between the two region sizes considered for d3, with 3× 3 size yielding
higher performance. This can be because 3 × 3 local region contains more information due to a
higher receptive field that is potentially more useful in the devised pre-training setting.

Additionally, we ran this ablation experiment on the remaining datasets (with dl = 3, and sampling
strategies GD, LD). Table 5 presents these results which show that local region size 3 × 3 works
better for most settings, as seen with ACDC.

3.3 Combination of Local and Global Contrastive Losses

Here, we present the combinations of local contrastive loss strategies (LR, LD) with both global loss
strategies (GR, GD) for different decoder block dl lengths (l=2,3,4) that is moved from the Table 1
in the main article to Table 6.

Dataset K×K |Xtr|=1 |Xtr|=2

Prostate 1× 1 0.554 0.614
3× 3 0.567 0.607

MMWHS 1× 1 0.559 0.674
3× 3 0.574 0.681

Table 5: Effect of local region sizes (K ×K) on downstream segmentation performance in DSC.
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Initialization of Dataset |Xtr|=1 |Xtr|=2 |Xtr|=8
Encoder Decoder dl=2 dl=3 dl=4 dl=2 dl=3 dl=4 dl=2 dl=3 dl=4

Local loss strategies LR, LD on encoder pre-trained with random strategy GR

GR random init ACDC 0.631 0.729 0.847
GR LR 0.642 0.668 0.655 0.754 0.760 0.732 0.860 0.850 0.860
GR LD 0.614 0.638 0.642 0.744 0.740 0.744 0.854 0.855 0.852
GR random init Prostate 0.521 0.580 0.654
GR LR 0.566 0.557 0.538 0.600 0.601 0.591 0.661 0.663 0.665
GR LD 0.536 0.542 0.543 0.583 0.605 0.597 0.656 0.672 0.659
GR random init MMWHS 0.500 0.659 0.785
GR LR 0.523 0.528 0.511 0.692 0.687 0.679 0.794 0.791 0.792
GR LD 0.510 0.520 0.515 0.697 0.664 0.684 0.797 0.779 0.781

Local loss strategies LR, LD on encoder pre-trained with proposed strategy GD

GD random init ACDC 0.691 0.784 0.870
GD LR 0.708 0.725 0.720 0.784 0.789 0.785 0.868 0.872 0.871
GD LD 0.737 0.725 0.726 0.793 0.787 0.776 0.865 0.874 0.868
GD random init PZ 0.579 0.600 0.677
GD LR 0.577 0.579 0.581 0.617 0.619 0.620 0.683 0.684 0.685
GD LD 0.562 0.567 0.564 0.608 0.607 0.599 0.675 0.686 0.680
GD random init MMWHS 0.553 0.686 0.793
GD LR 0.556 0.569 0.572 0.671 0.694 0.693 0.796 0.794 0.796
GD LD 0.545 0.574 0.551 0.677 0.681 0.689 0.803 0.791 0.789

Table 6: Mean Dice score over Xts for the proposed local contrastive loss on all datasets for the
decoder lengths dl, l = 2, 3, 4 and all training set sizes |Xtr|=1,2,8.

λl |Xtr|=1 |Xtr|=2
1 0.634 0.741
10 0.633 0.730
100 0.643 0.745
1000 0.644 0.739

Table 7: Results on ACDC dataset when using joint pre-training to train both encoder and decoder in
1 step instead of 2 steps.

3.4 Stage-wise training vs joint training

Results with joint training are shown in Table 7. We define the total loss: Lnet = Lg + λl ∗Ll, where
λl is a hyper-parameter to balance loss values. As per R4’s idea, the encoder weights are updated with
the net loss Lnet that includes Ll, unlike our stage-wise training, where only Lg was used to update
the encoder. We tried 4 values of λl on ACDC dataset for dl=3. Results indicate that stage-wise
training (where DSC is 0.725 for |Xtr|=1 and 0.789 for |Xtr|=2) performs better.

4 Experiments with Natural Image Datasets

In order to check the generality of the proposed method beyond medical imaging datasets, we
evaluated the proposed local contrastive loss on a natural image dataset "Cityscapes" [2] for the
segmentation task. We pre-trained the decoder using the proposed version of local contrastive loss
(LR) and the encoder with global contrastive loss (random strategyGR) as in [1]. We compared it to a
baseline with no pre-training and pre-training with only global contrastive loss as in [1]. Additionally,
we also evaluated the combination of proposed initialization along with Mixup [10] that yielded the
best results on medical images.

For the evaluation, we split the whole training and validation data provided into Xpre (2770 images)
and Xts (705 images) like earlier. We used this test set Xts only for the final evaluation. After pre-
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training with only images of Xpre (no labels are used), we fine-tuned the network for segmentation
task with a set of labeled images Xtr and validation images Xval chosen from Xpre ( Xtr, Xval ⊂
Xpre). We performed the fine-tuning in a limited annotation setting for three values of Xtr, Xval =
{(100,100), (200,200), (400,200)}. Table 8 presents these results.

To implement the global and local contrastive losses we need a reasonable batch size value of around
40. Due to memory issues, it was difficult to implement such a batch size with images in their original
dimensions (1024,2048). Therefore, we down-scaled the images by a factor of 4 to (256,512). Due to
the downsampling, some of the smaller objects either vanished or were reduced to a negligible size.
In order to avoid extreme class imbalance issues, we set these small objects as background. Thus, we
considered the following 12 foreground labels: road, sidewalk, building, wall, vegetation, terrain, sky,
person+rider, car, motorbike+bicycle, truck, bus, with the remaining labels set as background.

Training details: For augmentation, we used random cropping followed by random color jitter
(brightness, contrast, saturation, hue). Rest of the training details remain same as described for
medical imaging datasets.

Method Xtr, Xval =(100,100) Xtr, Xval =(200,200) Xtr, Xval =(400,200)
Baseline (Random init.) 0.451 0.495 0.524
Global loss GR [1] 0.457 0.496 0.535
Proposed init. (GR + LR) 0.469 0.517 0.549
Proposed init. + Mixup [10] 0.475 0.526 0.569
Benchmark 0.652

Table 8: Mean dice score over test set (Xts) for all the selected labels on Cityscapes [2] dataset for
the proposed pre-training compared to a baseline with the random initialization, and pre-training with
only global loss.
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