
A Proof of Lemma 3.1

Proof of Lemma 3.1. The algorithm is straightforward: choose a random point in S, and check if
strictly more than n/2 points lie within a ball of radius 2r around this point. If so, include all points
with distance at most 4r from this point. Note that we cannot calculate the `2 distance directly,
instead, using JL-lemma, we project all points onto RO(log d). If not, repeat, and run for O(log 1/δ)
iterations.

Similar to proof of Lemma E.5, let J ∈ Rr×d2 matrix whose each entries are i.i.d. entries from
N (0, 1/r) where r = O(log d). Note that Zv = (Y diag(v)Y >)[, then we can compute J · Z using
fact rectangular matrix multiplication by multiply each row of J to Z. Then, this takes Õ(T (N, d))

time. Note that for each iteration, we compute O(N) many `2 distance, which takes time Õ(N).
Thus, the total time is Õ(T (N, d) +N log(1/δ)) = Õ(T (N, d) log(1/δ)).

By the triangle inequality, if we ever randomly select a point from S′, then we terminate, and in this
case it is easy to see that the output satisfies the desired property. Thus, it is easy to see that the
probability we have not terminated after t iterations is at most 2−t. Suppose we have terminated.
Then in that iteration, we selected a point X ∈ S that has distance at most 2r to more than n/2 other
points in S. This implies that it has distance at most 2r to some point in S′. By triangle inequality,
this implies that all points in S′ are at distance at most 4r from X , and so the output in this iteration
must satisfy the claims of the Lemma.

B Proof of Lemma 4.3

Before we prove Lemma 4.3, we need the following preliminaries.
Lemma B.1 (Hanson-Wright). Let X1, X2, . . . XN be i.i.d. random vectors in Rd where Xi ∼
N (0,Σ) and Σ � I . Let U ∈ Rd×d and U � 0 and ‖U‖F = 1. Then, there exists a universal
constant C so that for all T > 0, we have

Pr

[∣∣∣∣∣ 1

N

n∑
i=1

tr(XiX
>
i U)− tr(U)

∣∣∣∣∣ > T

]
≤ 2 exp(−CN min(T, T 2)).

Corollary B.2. Under the same setting as Lemma B.1, let Zi = Xi⊗Xi and v ∈ Rd2 be an arbitrary
unit vector. Then, there exists a universal constant C > 0 so that for all T > 0, we have

Pr

[∣∣∣∣∣ 1

N

n∑
i=1

〈v, Zi〉 − E[〈v, Z〉]

∣∣∣∣∣ > T

]
≤ 2 exp(−CN min(T, T 2)).

Proof. This follows by letting the v in the statement be the flattening of U in Lemma B.1.

Using a standard ε-net argument (see e.g. [Ver10]), we get the following concentration bounds for
the empirical mean.
Lemma B.3. Under the same setting as Lemma B.1, let Zi = Xi⊗Xi there exist universal constants
A,C > 0 so that for all T > 0, we have

Pr

[∥∥∥∥∥ 1

N

n∑
i=1

Zi − µZ

∥∥∥∥∥
2

> T

]
≤ 2 exp(Ad2 − CN min(T, T 2)).

Now, we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. The parameter of γ1 directly follows from Lemma B.3 by choosing T =

ε
√

log(1/ε) and N = Ω(d2

ε2 log(1/ε)).

For β1, we apply Lemma B.3 for any fixed set S ⊂ [N] of size 2εN , we have

Pr

[∥∥∥∥∥ 1

|S|
∑
i∈S

Zi − µZ

∥∥∥∥∥
2

> T

]
≤ 2 exp(Ad2 − CεN min(T 2, T)).

12

Taking the union bound over all subsets of size 2εN , we get

Pr

[
∃S : |S| = 2εN and

∥∥∥∥∥ 1

|S|
∑
i∈S

Zi − µZ

∥∥∥∥∥
2

> T

]

≤ 2 exp(Ad2 + log

(
2εN

N

)
− CεN min(T 2, T))

≤ 2 exp(Ad2 +O(N · ε log 1/ε)− CεN min(T 2, T)).

By choose T = O(log(1/ε)) and N = Ω(d2

ε2 log(1/ε)), we have the probability above is less than
O(d−3).

For proof of γ2 and β2, see Theorem 4.13 of [DKK+16] and Proposition A.28 of [DKK+17].

C Proof of Lemma 4.4

Before we prove this lemma, we require the following pair of technical lemmata. The first is a
standard fact about the covariance of X ⊗X for X Gaussian.

Fact C.1 (see e.g. [CDGW19]). Let X ∼ N (0,Σ). Then the covariance of X ⊗X is 2Σ⊗ Σ.

This implies:

Lemma C.2. Let X ∼ N (0,Σ) and Z = X ⊗X . Let ΣZ ∈ Rd2×d2 be the covariance matrix of Z.
We have:
1. If Σ � I , then ΣZ � 2I .
2. If ‖Σ− I‖ ≤ ζ for 0 ≤ ζ < 1, then ‖ΣZ − 2I‖ ≤ 6ζ.

Proof. The first claim follows directly from Fact C.1, as ‖ΣZ‖ = 2‖Σ‖ ≤ 2. To prove the second
statement, note that if λ1, . . . , λd are the eigenvalues of Σ, the assumption implies that |λi − 1| ≤ ζ
for all i, and also that λi < 2 for all i. But all the eigenvalues of ΣZ are given by 2λiλj for i, j ∈ [d],
and |2λiλj − 2| ≤ 2(ζ2 + |λi|ζ + |λj |ζ) ≤ 6ζ. This proves the claim.

Proof of Lemma 4.4. The first claim follows because (γ1, γ2)-goodness is affine invariant. We now
turn our attention to the second claim. First, we show that the γ1 and β1 parameters are changed by
at most a constant multiplicative factor. Since Xi = Σ−1/2Xi, then we have

Zi = (Σ1/2 ⊗ Σ1/2)(Xi ⊗Xi) = (Σ1/2 ⊗ Σ1/2)Zi.

Then, we have

γ1(Zi) = ‖µ(Zi)− µZi
‖2 =

∥∥∥(Σ1/2 ⊗ Σ1/2)(µ(Zi)− µZi
)
∥∥∥

2
≤ O(ε log 1/ε),

where the last step follows by ‖A ⊗ B‖ ≤ ‖A‖‖B‖ and ‖Σ‖ ≤ 2. Similarly, we have that the β1

parameter increases by at most a constant multiplicative factor.

Now, we consider the second moment parameters γ2 and β2. Note that we have ZiZ>i = (Σ ⊗
Σ)1/2ZiZ

>
i (Σ⊗ Σ)1/2. By the goodness of Zi, then we have∥∥∥∥∥ 1

|S|
∑
i∈S

(Zi − µ(S))(Zi − µ(S))> − 2(Σ⊗ Σ)

∥∥∥∥∥ ≤ ‖Σ‖2 ·O(ε
√

log 1/ε) = O(ε
√

log 1/ε) .

Then, by Lemma C.2, we have ‖Σ⊗ Σ− 2I‖ ≤ 6ζ, so by, we have∥∥∥∥∥ 1

|S|
∑
i∈S

(Zi − µ(S))(Zi − µ(S))> − 2I

∥∥∥∥∥ ≤ O(ε
√

log 1/ε) + 6ζ ,

as claimed. The bound on the β2 parameter is identical, and omitted.

13

D Proof of Theorem 4.6 and Theorem 4.7

D.1 Approximate Score Oracles for Tensor Inputs

A key algorithmic ingredient to implementing both Theorem 4.6 and Theorem 4.7 will be the
following. We will be given access to a set of points X1, . . . , XN , and we will need approximate
augmented score oracles for the tensored set of points X1⊗X1, . . . , XN ⊗XN . Note that we cannot
even afford to write down the tensored versions of the Xi in the desired runtime. Despite this, we
show that we can construct these approximate augmented score oracles very efficiently:

Theorem D.1. Let δ > 0. Let X1, . . . , XN ∈ Rd, and let Zi = Xi ⊗Xi for all i = 1, . . . , N . Let
t > 0, and let w1, . . . , wt ∈ ΓN . Let α be such that α satisfies Equation (3). Then, there is an
algorithm APPROXIMATESCORE which takes as input α, δ, {X1, . . . , Xn}, and w1, . . . , wt, which
runs in time Õ(t2 · T (N, d) log 1/δ), and with probability 1− δ, is an approximate augmented score
oracle for {Z1, . . . , ZN} with weights w1, . . . , wt.

We defer the proof to Section E.

D.2 Getting O(
√
ε) error

In this section, we describe and analyze the routine FIRSTPHASE, which achieves a coarse estimate
of the true covariance. We restate the theorem below for convenience.

Theorem 4.6 (First Phase). Let S be a set of points satisfying Assumption 4.2. Moreover, let
Σt ∈ Rd×d be such that Σ � Σt. Then there is an algorithm FIRSTPHASE, which given S and Σt,
runs in time Õ(T (N, d) log log κ) and outputs a new upper bound matrix Σt+1 and a approximate
covariance matrix Σ̂ such that, with probability 1− 1/poly(d, log κ),

Σ � Σt+1 � Σ +O(
√
ε)Σt , and ‖Σ̂− Σ‖F ≤ O(

√
ε)‖Σt‖ .

We give the pseudocode for FIRSTPHASE in Algorithm 2. Our algorithm is simple: we simply run a
naive pruning step on the tensored inputs, then apply Lemma 3.3 to the remaining tensored inputs.

Algorithm 2 Robust Covariance Estimation With Bounded Covariance
1: procedure FIRSTPHASE(S = {X1, X2, . . . , Xn}, ε,Σt) . Theorem 4.6
2: for i = 1, . . . , N do
3: Yi ← Σ

−1/2
t Xi

4: Zi ← Yi ⊗ Yi
5: end for
6: S′ ← NAIVEPRUNE(Z1, . . . , ZN , 4d

2N2, 1/(dN log κ)) . Lemma 3.1
7: Let Oaug = APPROXIMATESCORE with δ = 1/ poly(d, log κ)

8: Let Σ̃ be the estimate of S′ computed by Lemma 3.3 with score oracle Oaug.
9: Σ̂← Σ

1/2
t Σ̃Σ

1/2
t .

10: Σt+1 ← Σ̂ +O(
√
ε)Σt

11: return Σ̂,Σt+1

12: end procedure

Proof of Theorem 4.6. By Assumption 4.2 and Lemma 4.4, the points Z1, . . . , ZN are
O(ε,O(

√
ε), O(1))-corrupted good with respect to Σ

−1/2
t ΣΣ

−1/2
t . Let σ2

t = ‖Σ−1/2
t ΣΣ

−1/2
t ‖. Let

S′ be the output of applying naive pruning to theZi. Observe that for all uncorrupted i ∈ [N], we have
that ‖Zi‖ ≤ O(σ2

t d logN). Thus, by the guarantee of Lemma 3.1, we have ‖Zi‖2 ≤ O(σ2
t d logN)

for all Zi ∈ S′, and S′ contains all remaining uncorrupted points in [N].

Now, we have S′ satisfy all the conditions of Lemma 3.3 with σ2 = σ2
t and R ≤ O(dσ2 logN). Let

Σ̃ be the estimation of Zi computed by Lemma 3.3 reshaped into d × d matrix. Condition on the
event that the output of APPROXIMATESCORE is a valid output of an approximate augmented score

14

oracle in every iteration it is called in, which by our choice of parameters, occurs with probability
1− 1/ poly(d, log κ). In this event, by the guarantee on Σ̃, we have

‖Σ̃− ΣY ‖F = ‖Σ̃− Σ
−1/2
t ΣΣ

−1/2
t ‖F ≤ O(

√
ε).

This immediately implies Σ̂ − O(
√
ε)Σt � Σ � Σ̂ + O(

√
ε)Σt. Moreover, using the fact that

‖AB‖F ≤ ‖A‖‖B‖F , we have

‖Σ̂− Σ‖F = ‖Σ1/2
t Σ̃Σ

−1/2
t − Σ‖F ≤ O(

√
ε)‖Σt‖,

This proves the correctness guarantee. The runtime guarantee follows by combining Lemma 3.1,
Lemma 3.3, and Theorem D.1.

D.3 Getting O(ε log 1/ε) error

We now turn our attention to SECONDPHASE, which allows us to refine a coarse estimate down to
error O(ε log 1/ε). We restate the theorem below for convenience.
Theorem 4.7 (Second Phase). Let S be a set of points satisfying Assumption 4.2. Let 0 < ζ < ζ0
for some universal constant ζ0. Given ζt and Σt where Σ � Σt � (1 + ζt)Σ as input, Algorithm 3
runs in time Õ(T (N, d)) and outputs a new upper bound matrix Σt+1 and a approximate covariance
matrix Σ̂ such that, with probability 1− 1/Nd, for ζt+1 = O(

√
εζt + ε log 1/ε), we have

Σ � Σt+1 � Σ + ζt+1Σt , and ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ ζt+1 .

Algorithm 3 Robust Covariance Estimation With Approximately Known Covariance
1: procedure SECONDPHASE(S = {X1, X2, . . . , Xn}, ε,Σt, ζt) . Theorem 4.7
2: for i = 1, . . . , N do
3: Yi ← Σ

−1/2
t Xi

4: Zi ← Yi ⊗ Yi
5: end for
6: S′ ← NAIVEPRUNE(Z1, . . . , ZN , O(d logN), 1/dN) . Lemma 3.1
7: Let Oaug = APPROXIMATESCORE with δ = 1/poly(d,N)

8: Let Σ̃ be the estimation of S′ computed by Lemma 3.4.
9: Σ̂← Σ

1/2
t Σ̃Σ

1/2
t .

10: return Σ̂
11: end procedure

Proof of Theorem 4.7. The proof is very similar to that of Theorem 4.6. By the definition of Yi and
condition on Σt, we know that

‖ΣY − I‖ = ‖Σ−1/2
t ΣΣ

−1/2
t − I‖ ≤ ζt.

Since ‖ΣY − I‖ ≤ ζ , by Lemma 4.4, the set {Z1, . . . , ZN} is O(ε,O(ε
√

log 1/ε), O(ε
√

log 1/ε+

ζ), O(log 1/ε), O(log2 1/ε+ ζ)-corrupted good with respect to DI .

Therefore, S′ satisfies all condition of Lemma 3.4. Condition on the event that the output of
APPROXIMATESCORE is a valid output of an approximate augmented score oracle in every iteration it
is called. By Lemma 3.4 and our choice of parameters, this occurs with probability 1−1/ poly(d,N).
Then, Lemma 3.4 guarantees that we can find a Σ̃ where

‖Σ̃[− E[Zi]‖2 = ‖Σ̃− ΣY ‖F ≤ O(
√
ζtε+ ε log 1/ε).

Then, we have

‖Σ−1/2Σ̂Σ−1/2 − I‖F = ‖Σ−1/2Σ
1/2
t Σ̃Σ

1/2
t Σ−1/2 − I‖F ≤ O(

√
ζtε+ ε log 1/ε),

where the last inequality follows by ‖AB‖F ≤ ‖A‖‖B‖F and ‖Σ − Σt‖ ≤ ζt = O(1). This
proves the correctness guarantee. Finally, the runtime guarantee follows by combining Lemma 3.1,
Lemma 3.4, and Theorem D.1.

15

E Fast Implementations for Tensor Inputs

In this section we describe how to implement the approximate score oracles described in Section 3.3.2
fast when the input is given as tensor products. Recall that an approximate score oracle takes as
input a set of points S of size n, and a sequence of weights w0, . . . , wt−1, wt, and computes λ̃ so
that λ̃ ≈0.1 ‖M(w0)− I‖, and τ̃t ∈ Rn where τ̃t,i ≈0.1 τt,i for all i and q̃t where

τt,i = (Zi − µ(wt))
>
Ut (Zi − µ(wt)) , (6)

|q̃t − qt| ≤ 0.1qt + 0.05‖M(wt)− I‖, where qt = 〈M(wt)− I, Ut〉 , (7)

and

Ut = exp

(
cId +

1

1.1α

t−1∑
i=0

M(wi)

)
=

exp
(
α
∑t−1
i=0 M(wi)

)
tr exp

(
α
∑t−1
i=0 M(wi)

) ,
where α > 0 is a parameter, and c is chosen so that tr(Ut) = 1.

E.1 Several Ingredients

To implement the approximate score oracle efficient, we need several ingredients. The first one is
Taylor series approximation for the matrix exponential:
Lemma E.1 ([AK16]). Let 0 < ε < 1, let X be a PSD matrix where ‖A‖ < M , there is a degree-`
polynomial P`, where ` = O(max(M, log 1/ε)), such that

(1− ε) exp(X) � P`(x) � (1 + ε) exp(X).

Another difficulty is that writing down the matrix Ut takes the time Ω(d4). Then, we need the
Johnson-Lindenstrauss Lemma [JL84] to construct a matrix in much lower dimension:
Lemma E.2 (Johnson-Lindenstrauss Lemma (JL Lemma)). Let J ∈ Rr×d be a matrix whose each
entries are i.i.d. samples from N (0, 1/r). For every vector v ∈ Rd and every ε ∈ (0, 1),

Pr[‖Jv‖2 ≈ε ‖v‖2] > 1− exp(−Ω(ε2r)).

Lemma E.3 (Tellegen’s Theorem, [BCS97]). Fix a matrix A ∈ Rr×c, if we can compute matrix-
vector product Ax for any x ∈ Rc in time t. Then, we can compute A>y for any y ∈ Rr in time
O(t).
Lemma E.4 (Power method). For any matrix A ∈ Rm×m, there exists an randomized algorithm,
with probability 1−δ, outputs its 1±ε approximation usingO(logm log(1/δ)/ε) many matrix-vector
multiplications.

E.2 Fast approximate score oracle

Observe that Oaug is strictly more powerful than Oapprox. In this section, we describe how to
implement Oaug fast.
Lemma E.5. Assuming α is chosen such that it always satisfies Equation (3), then
APPROXIMATESCORE(S,w1, . . . , wt) runs in time Õ(t2 · T (N, d) log 1/δ).

First, we show how to compute M(wi)v for any v by utilizing the fast rectangular matrix multiplica-
tion.
Lemma E.6. For any vector v ∈ Rd2 and wi ∈ RN . We can compute the matrix-vector product
M(wi) · v in O(T (N, d)) time.

Proof. Let Z ∈ Rd2×Nbe the matrix whose i-th column is Zi and Y ∈ Rd×Nbe the matrix whose
i-th column is Yi. Note that M(wi) = (Z − µ(wi)1

>) diag(wi/|wi|)(Z − µ(wi)1
>)>.

By Lemma E.3, (Z − µ(wi)1
>)>v has the same running time as (Z − µ(wi)1

>)v. We have
(Z − µ(wi)1

>)v = Zv − (1>v)µ(wi). We observe that Zv = (Y diag(v)Y >)[, then we can
compute Zv in O(T (N, d)) time. Then we can compute diag(wi/|wi|)(Z − µ(wi)1

>)>v in time
O(T (N, d)) since multiply a diagonal matrix by a vector can be done inO(N). Thus, we can compute
M(wi)v for any v in time O(T (N, d)).

16

Algorithm 4 Approximate Score Oracle
1: procedure APPROXIMATESCORE(δ, α, S = {Y1, . . . , YN}, w1, w2, . . . , wt)
2: r ← O(log 1/δ), `← t

3: Let J ∈ Rr×d2matrix whose each entries are i.i.d. samples from N (0, 1/r).
4: Let Zi = Yi ⊗ Yi and µ(wi) = 1

|wi|
∑N
j=1 wi,jZj ,

5: Let M(wi) = 1
|wi|

∑N
j=1 wi,j(Zj − µ(wi))(Zj − µ(wi)) and A = α

2

∑t−1
i=0 M(wi).

6: Compute Sr,` where Sr,` = J · P`(A)
7: Compute ν = tr(Sr,`S

>
r,`).

8: Compute B = Sr,`(Z − µ(wt)1
>)

9: for i = 1, . . . , N do
10: Let τ̃t,i = 1

ν ‖B:i‖22
11: end for
12: Let q̃t =

∑N
i=1(τ̃t,i − 1).

13: Compute λ̃ ≈0.1 ‖M(wt)− I‖ using power method with r many iterations.
14: Output τ̃t, q̃t, λ̃.
15: end procedure

Proof of Lemma E.5. By Lemma E.6, we can compute Av for any v in time O(tT (N, d)). By
repeatedly multiplying A on the left, we can compute Akv in time O(k · tT (N, d)). Since we
take ` = O(t), we can compute P`(A)v for any v in time Õ(t2 · T (N, d)). We can compute
J · P`(A) = (P`(A)J>)> by multiply each column of J>to P`(A). Thus, Sr,` can be computed in
time Õ(r · t2 · T (N, d)) = Õ(t2 · T (N, d)). We can compute Z>v in O(T (N, d)) by multiplying
each row of Sr,` with Z. Therefore, we can compute matrix the B in Õ(T (N, d)).

Now, we consider how to compute ν. Note that ν = tr(Sr,`S
>
r,`) =

∑r
i=1(Sr,`S

>
r,`)i,i =∑r

i=1 ‖Sr,`ei‖22. Thus, ν can also be computed in time Õ(T (N, d)). Once we have B and ν,
then we can compute τ̃ and q̃ in Õ(N) time.

Using power method (Lemma E.4), we can find a 1 ± 0.1 approximation of ‖M(wt) − I‖ using
O(log d log 1/δ) matrix-vector multiplications. By Lemma E.6, we can compute (M(w) − I) ·
v for any v in time O(T (N, d)). Then, the total runtime is O(T (N, d)) · O(log d log(1/δ)) =

Õ(T (N, d) log(1/δ)).

Thus, the algorithm runs in time Õ(t2 · T (N, d) log 1/δ).

Lemma E.7. The output of APPROXIMATESCORE(S,w1, . . . , wt, α) satisfies τ̃ ≈0.1 τ and q̃ ≈0.1 q
with probability 1− δ.

The correctness proof directly follows by the original correctness proof in [DHL19]; for completeness,
we prove it below.

Proof. We condition on two events occurring. Let λ̃ be the output of Line 13 in Algorithm 4.

• ‖J ·P`(A)v‖2 ≈0.01 ‖P`(A)v‖2 for all v ∈ {e1, . . . , ed2}∪{X1−µ(wt), . . . , XN−µ(wt)}.

• λ̃ ≈0.1 λ.

Note that by our choice of parameters, both events occur individually with probability at 1− δ
3 . Then,

by a union bound over failure probability, these two events succeeds with probability at 1− δ.

The guarantee on λ̃ directly follows from correctness of power method. Now, we show τ̃ ≈0.1 τ. Let
M = α

2

∑t−1
i=1 M(wi). Then, we have

τi = (Xi − µ(wt))
> exp(2M)

tr exp(2M)
(Xi − µ(wt)) =

1

tr exp(2M)
‖ exp(M)(Xi − µ(wt))‖22,

17

where as τ̃i = 1
tr(Sr,`S>

r,`)
‖Sr,`(Xi − µ(wt))‖22.

Note that

‖Sr,`(Xi − µ(wt))‖22 = ‖J · P`(A)(Xi − µ(wt))‖22 ≈0.01 ‖P`(A)(Xi − µ(wt))‖22
≈0.03 ‖ exp(M)(Xi − µ(wt))‖22, (8)

where the first line follows by Lemma E.2 and the last line follows by our choice of ` and Lemma E.1.

Similarly, we have exp(2M)i,i = ‖ exp(M)ei‖22 and (Sr,`S
>
r,`)i,i = ‖Sr,`ei‖22.

By definition of Sr,`, we have

‖Sr,`ei‖22 = ‖J · P`(A) · ei‖22 ≈0.01 ‖P`(A) · ei‖22 ≈0.03 ‖ exp(M)ei‖22

and this immediately implies tr(Sr,`S
>
r,`) ≈0.03 tr(exp 2M). Thus, we have τ̃i ≈0.07 τi.

Now, we show q̃is close to q. Rewriting q̃,we get

q̃ =
1

tr(Sr,`S>r,`)

N∑
i=1

(‖Sr,`(Xi − µ(wt))‖22 − tr(Sr,`S
>
r,`))

=
1

tr(Sr,`S>r,`)

〈
M(wt)− I, P`(M)JJ>P`(M)

〉
=

1

tr(Sr,`S>r,`)
(〈M(wt)− I, exp(2M)〉+ ξ),

where |ξ| ≤ 0.02‖M(wt)− I‖ · tr exp(2M). We complete the proof by note that tr(Sr,`S
>
r,`) ≈0.03

tr(exp 2M).

18

