Supplementary Material: Robust Optimal Transport
with Applications in Generative Modeling and
Domain Adaptation

1 Proofs

In this section, we present the proofs:

Duality:

Theorem 1. Let Px and Py be two distributions defined on a metric space. The robust Wasserstein
measure admits the following dual form

rob
Wy, (Px, Py) = mln kerrLli)Xl/D )dP ¢ — /D )dPy (D)

8.1, Df( <IPx) < p1, Dy (Py||Py) < pa.

Proof: We begin with the primal form of the robust optimal transport defined as

W;fbpz(Px,Py) o mm// c(z,y)m(x,y)dzdy

P EPT()b(X) ™
s.t. D(Pg||Px) < p1, Df(Py|[Py) < p2

[ rawdy =Py, [ wwa)i =,

The constraint P, Py € Prob(X) states that P and Py are valid probability distributions. For
brevity, we shall ignore explicitly stating it in the rest of the proof. Now, we write the Lagrangian
function with respect to marginal constraints.

L_Pm}n~l7¥l>ll(}¢g%}%y // c(x,y)m xydxdy—i—/(b (/ — 7(x, y)dy)dm
+ [ow (/ my)dw—Py)dy

s.t. Dy (P |[Px) < p1, Dp(Py||Py) < po
= nin mip max // c(z,y) )+w(y)]7r(:c,y)dxdy+/¢(x)dP5< —/w(y)dﬂ”y
s.t. Dp(P[|Px) < p1, Df(Py|[Py) < po

Since ™ > 0, we observe that

e(a,y) — dx) +ly) = { 0o if efay) = 9(a) +1(y) > 0
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Hence, the dual formulation becomes

wreb (Px,P = min ma / VP ¢ — / )dPy 2
ovps (Px, Py) L nax Pz Y(y (2)

s.t. ¢( ) = ¥(y) < clx,y)
Dy(Pgl|Px) < p1, Dy (Py|[Py) < p2
Furthermore, when the distributions lie in a metric space, we can further simplify this duality. Define

k(z) == ing(% y) +¥(y) 3)

Since the feasible set in the dual problem satisfies ¢(z) — ¥ (y) < c(x,y), ¢(x) < k(x), and by
using y = x in Eq (3), we obtain, k(z) < ¢(x). Hence, ¢(z) < k(z) < ¢(x).
k() — k(2')] = |infle(z, y) +¢(y)] — infle(a’, y) +

< le(z,y) — (@', y)|
Hence, k(.) is 1-Lipschitz. Using the above inequalities in (2), we obtain,

wreb (PX,PY)<mm max /k )dP 5 — /k )dPs.

P1,P2 o k€ Lip—1
s.t. Dy(P[|Px) < p1, Dp(Py||[Py) < po

Also, ¢(z) = k(x) and ¢(z) = k(z) is a feasible solution in optimization (2). Since (2) maximizes
over ¢(.) and ¢(.), we obtain

P1,P2 o k€Lip—1
s.t Df(PX;Pj() < p1, Ds(Py,Py) < p2

wreb (Px,Py) > mln max /k YdP ¢ — /k )Py

Combining these two inequalities, we obtain

rob _ ; - -
Wy, (Px, Py) —Pgl71%1? keHLl?;;X—I/k<x)dPX /k(m)dPY 4)

s.t Df(PXapf() < p1, Df(PY’Pf/) < p2
The above equation is similar in spirit to the Kantrovich-Rubinstein duality. An important obser-
vation to note is that the above optimization only maximizes over a single discriminator function

(as opposed to two functions in optimization (2)). Hence, it is easier to train it in large-scale deep
learning problems such as GANS.

Provable robustness:

Theorem 2. Let Px and Py be two distributions such that Px is corrupted with v fraction of
outliers i.e., Px = (1 — v)P% + vP%, where P is the clean distribution and P% is the outlier
distribution. Let W(P% ,P% ) = kEW(P%, Py), with k > 1. Then,

WTOb(IP’XJP’y) < max (17 1+ Eky—k\/2py(1 — 7))W

Proof: We consider the case of empirical distributions. Let {x¢}7, be the samples in the anomaly
distribution P%, {x$};"c; be the samples in the clean distribution P, and {y;}~, be the samples

in the distribution Py. We also know that ﬁ = .

W;fg’(]PX, Py ) is defined as

WTOb(PX7Py) = min H?gn E E Ti5Cij
g

P €Prob(X)

S.t. Z?Tij = Pj(, Zﬂ'ij = Py, DXQ(P)ZHPX) <p
j 7



Let 7¢* and 7®* be the optimal transport plans for W(P%, Py ) and W(P%, Py ) respectively. We
consider transport plans of the form S7®* 4 (1 — §)7°*, for § € [0, 1]. The marginal constraints can
then be written as

/57r“* + (1= B)n“dx = P& + (1 — B)P%
/BW“* + (1= p8)ndy =Py
For this to be a feasible solution for ;f})b (Px,Py), we require
Dy (BP% + (1 = B)Pk|[7Px + (1 = 7)P%) < p
The distribution SP% + (1 — 5)P% can be characterized as

LA
—

N terms N terms

Using this, the above constraint can be written as
(B=7)%<207(1 =) (5)

Hence, all transport plans of the form 7 + (1 — §)7“* are feasible solutions of W’""b(IP’ x, Py) if
(3 satisfies (8 — 7)? < 2py(1 — ). Therefore, we have:

Wi (B, Py) <mmZZczaW* + (1= p)ms]
§mﬁmﬂW( %> Py) + (1 = B)W(P%, Py)

st (B—7)? <20v(1—7)
By the assumption, we have:

W(P%,P%) = kW(P%, Py)
W( g(v}PY) S W( aXa]P)g() + W(P%,]Py)
< (B+1D)W(P%, Py)

Hence,
Wiy (Px,Py) < min(1 + Sk)W(P%, Py)
st (B—9)°<20v(1—7)
The smallest value 5 can take is v — \/2py(1 — ). This gives

WTOb(PX,}P’y) < max (1 1+ ky —kv/20y(1 — ) (P&, Py)

Note: The transport plan S7%* + (1 — 3)7°* is not the the optimal transport plan for the robust OT
optimization between corrupted distribution Px and Py-. However, this plan is a “feasible” solution
that satisfies the constraints of the robust OT. Hence, the cost obtained by this plan is an upper bound
to the true robust OT cost.

2 Practical Issues with Unbalanced Optimal Transport Dual
2.1 Dual Objective

The primal form of unbalanced OT [2, 1] is given by

W“b(]P’X,]P’y) = min /c(m,y)ﬂ(x,y)dxdyJer(]P’XH]P’X) + Ds(Py||Py) (6)
r€M(Pg Py )



where Dy is the f-divergence between distributions, defined as Ds(P||Q) = [ f (%)d@. Fur-
thermore, the authors of [2] derived a dual form for the problem. Let f be a convex lower semi-
continuous function. Define 7*(z) := sup,- %ﬂé) where f!_ = lim;_, oo @ Then,
W (Py,Py) = Igz?px/qb(x)dpx +/w(y)dPy (7)
st.r(@(x)) + 77 ((y)) < e(x,y)

In our case, f(x) = (z —1)2/2. Let us now, write the dual for this case. First, we need to find 7*(z)
for this function.

r(z) = Supo(S)
s>0 S
—(s—=1)2/2
BT CE )
5>0 S
2r —1—s%2+42s
=sup————
5>0 2s
20 —1 s
= sup — =41
5>0 S 2

We consider three cases:

Case 1: x > 1/2. Inthis case, r*(x) — coas s — 0.

Case2: x = 1/2. Inthis case, 7*(z) = 1.

Case 3: © < 1/2. In this case, for s — 0T, r*(2) — —oc. Also, when s — oo, r*(x) — —oc.

So, the maximizer has to lie somewhere in (0, 00).

Taking the derivative w.r.t. s, we obtain,

1-2z 1
— —==0
252 2
This gives
s=+v1-2x

The second derivative is also negative at this point. Hence, it is the maximizer point. Substituting
this in 7*(-), we obtain

r(z) =1—-+v1-2x

This gives the solution,

* ) 33>1/2
" (x){1—\/1—2x x<1/2

Hence, the dual form becomes

W“b(IP’X,]P’y) :Ia}%px/¢(x)dPX —i—/z/}(y)d]P’y (8)

st 1—+/1=24(x) +1— /1= 2¢(y) < c(x,y)
plz) <1/2, ¥(y) < 1/2
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Figure 1: Loss curves of training GANs using practical implementations of our proposed dual vs.
the dual of Unbalanced OT. Our model converges to a proper solution while the model trained using
the dual of unbalanced OT does not converge to a good solution.

2.2 Practical Implementation and Training Issues

To simplify notation, we make a substitution Dy () + 2¢(z) and Do(x) + 2¢(z) in (8). This
gives

WY (Px,Py) = nax / D, (z)dPx + / D (y)dPy 9)

s.t.l—\/l—Dl 2)+1—+/1-Da(y) < c(z,y)

Di(z) <1, Da(y) <1

Then, the second set of constraints (i.e. D1 (x) and D2 (y) to be less or equal to one) can be integrated
into the network design. The first constraint can be implemented using a Lagrangian constraint. This
leads us to the following objective:

ménDlrngsi Exnpiara D1(X) + Eznp. D2(G(2)) (10)

— AEx, [max (ﬂ "D (%) + /1 - Ds(G(2)) + c(x, G(z)) - 2,0)}

The constraint Dy, Dy < 1 means Dy (x) < 1,D5(x) < 1,Vx. We trained a model using this dual
objective on CIFAR-10 dataset using Resnet architecture for generator and discrminator network.
However, partially due to the presence of two discriminator networks D, and D5, the training is
challenging. Similar training difficulties in GANs with multiple discriminator networks have been
observed in [4]. Even with a sweep of hyper-parameters, we were not able to make the model based
on optimization 10 to converge to a proper solution.

Training loss curves of our model vs. that of unbalanced OT are shown in Figure. 1. Samples
generated by our dual and unbalanced OT dual is shown in Figure. 2. We observe that the model
trained using the Unbalanced OT dual produces loss curve that is flat and does not learn a proper
solution. This is also evident from Figure. 2. Models trained using our dual generates CIFAR-like
samples, while the one trained with unbalanced OT dual produces noisy images.

3 Choosing p and the tightness of the bound

The constant p in our formulation is a hyper-parameter that needs to be estimated. The value of
p denotes the extent of marginal relaxation. In applications such as GANs or domain adaptation,
performance on a validation set can be used for choosing p. In the absence of validation set, we
present two techniques for estimating p.

When outlier fraction is known:  When the outlier fraction -y is known, a good estimate of p is
p =7/2(1 — 7). Below we explain this claim.
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Figure 2: Samples generated by our dual and Unbalanced OT dual.

Ideally, we desire the perturbed distribution P to be such that
P =[k,k,...6 , 0,0,...0].

—_—

normal samples  outlier samples
Since the outlier fraction is +y, the number of normal samples is (1 — «)n and the number of outlier
samples is yn. For P; to be a valid pmf, we require,

kK(l—9y)n=1
1

(1 =)n
Also, we have a constraint on f-divergence to ensure D, 2(IP ¢||Px) < p. This condition simplifies
to

R =

1 [(a—1/n)?
2 1/n

(0—1/n)

| <p

Therefore, we obtain

v
>
Pz
Hence, to get a proper estimate of the robust Wasserstein distance, we choose p = v/2(1 — ). Note
that by substituting p = v/2(1 — +) in Theorem 1, we obtain, W,’;ﬁ)b(IP’ x, Py) < W(Px,Py).

Heuristic:  In general, estimating p is non-trivial. We now present a heuristic that can be used
for this purpose. First, we compute robust OT measure for various values of p. This curve has an
elbow shape, and its point of inflection can be used as an estimate of p. We demonstrate this with
an example. We use the mixture of four Gaussians datasets as shown in Figure 1 of the main paper
as our input distributions. The means of the Gaussians are placed in a circumference of a circle,
with two distributions being the rotated versions of each other. We introduce 5% outlier samples in
one distribution. A plot of robust Wasserstein measure varying p is shown in Fig. 3 (in blue). We
observe that initially as p increases, the robust OT value decreases sharply followed by a gradual
descent, resembling the pattern of the elbow curve in k-means clustering. The point of inflection in
this elbow curve is a proper estimate of p.

Tightness of the upper bound: In Figure. 3, we plot the upper bound of the robust OT estimate

as given by Theorem 2 in red. We observe that the upper bound is fairly tight in this case. It closely
approximates the true robust OT measure given by the blue curve.

4 Biases And Mode Drop

The model of outliers we assume in our paper is that of large noise (Section 3). Hence, our model
drops samples that are far from the true data distrubution in the Wasserstein sense. It is important
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Figure 3: Plot of robust OT estimate for different values of p

Table 1: Analyzing mode drop: Training robust GAN on imbalanced CelebA. Each column denotes
an experiment where GAN models are trained on input dataset having the respective fraction of
males as given in row 1. Rows 2 and 3 denote the fraction of males in the generated dataset obtained
by training Vanilla and Robust GAN respectively. We observe that images of males are generated
even when the fraction of males in the input dataset is as low as 2%.

Model | Fraction of males (in %)
Input dataset | 2.00 | 5.00 | 10.00 | 20.00

Vanilla GAN | 5.23 | 7.42 | 12.16 | 21.29
Robust GAN | 4.84 | 7.80 | 10.12 | 21.51

that these dropped samples do not correspond to rare modes in the dataset, or have a mechanism
to identify such mode dropping when it happens. In Table 1 of main paper, we observe no drop
in FID scores on clean CIFAR-10 dataset, which suggests that no mode drop has occured. To
further understand if biases in the dataset are exacerbated, we train our robust Wasserstein GAN
model on CelebA dataset with varying male:female ratio. We then measure the male:female ratio
of the generated distribution obtained from the trained GAN (using an attribute classifier). Table 1
shows the results. We observe that even when fraction of males in the input dataset are as low as
2%, images of males are generated in robust GAN model. This indicates that rare modes are not
dropped. Instead, our robust GAN model drops samples having large noise.

Identifying mode drop: In some cases, as pointed by the reviewer, rare modes can potentially be
dropped. In this case, we can use the weights estimated by our weight network W () to visualize
which modes are dropped (Fig 3 and 4 of the main paper). Samples with low weights are the ones
that are dropped. We can use these weights in a boosting framework to train a mixture model to
generate balanced datasets. This is a topic of future research.

5 Properties of Robust OT

For a measure to be a distance metric, it has to satisfy four propeties of non-negativity, identity,
symmetry and triangle inequality.

Non-negativity Robust Wasserstein measure W;ff’p ,(Px,Py) is non-negative. By definition,

Wrob P 71[]) = 3 1 s s dxd
”1’”( x:Py) IP’X,JP’{,IgIID%'ob(X) wenr(%glmy)//c(x y)m(, y)dedy

s.t. Dy (Pg||Px) < p1, Dy(Pyl[Py) < po.

Since the cost function ¢(.) and the transportation map 7(.) are non-negative, the robust OT measure
is non-negative.

Identity: = Robust Wasserstein measure satisfies identity. In other words, W;ff’m (Px,Px) = 0.

To prove this, consider the following solution: 7(z,y) = 1if x = y, and 7(z,y) = 0 otherwise,



P¢ = Px and Py = Py. Clearly, this is a feasible solution. Also, under this solution, the OT cost
is 0 as ¢(z, ) = 0. Since, robust OT is non-negative, this is the optimal solution.

Symmetry: In general, robust Wasserstein is not symmetric W;ffjpz (Px,Py) = 0 #
W;ff’m (Py,Px) = 0. This is because when p; # po, different f-divergence constraints are

imposed on the two marginals leading to different solutions. However, W;‘:f’ (Px,Py) is sym-
metric. This is because [ [ ¢(x,y)n(x,y)dzdy = [ [ c¢(y,z)n(y, z)dydz, and constraints on two
marginals are the same for both optimization problems W;_"’; (Px,Py) and W;f’p" (Py,Px).

Triangle inequality: W;lof)pz (Px,Py) does not satisfy triangle inequality.

6 Experiments

6.1 Generative modeling

The formulation of robust Wasserstein GAN is discussed in Section 5 of the main paper. The idea
is to modulate the discriminator loss using a weight network W (.). The output of the W (.) has a
ReLU transform to make it non-negative, and for each batch, the weights are normalized to satisfy
Exepy [W(x)] = 1. Then, the objective of robust Wasserstein GAN can be written as

Robust Wasserstein GAN:
min max Ex.py [W(x)D(x)] - E; [D(G(2))] + Amax (Expy [(W(x) = 1)°] = 2,0)
(1m)

We can similarly extend the robust GAN formulations to other GAN variants such as spectral nor-
malization GAN or non-saturating GAN as follows.

Robust Non-saturating GAN:
$1g mSXEXNPX [W(x)log(D(x))] + E,[log(1 — D(G(z)))] + A max (]EXNPX [(W(x) — 1)%] — 2p, O)

(12)
Robust Spectral Normalization GAN:
$ig mSXIEXN]pX [W(x) max(1 — D(x),0)] + E,[max(1 + D(G(z)),0)]
+ Amax (Expy [((W(x) — 1)%] — 2p,0) (13)

In what follows, we provide more details on the experimental settings used in main paper.

6.1.1 Dataset with outliers

In Section 5.1.1 of the main paper, we show experiments on CIFAR-10 dataset artificially corrupted
with MNIST and uniform noise outliers. Each experiment is conducted with a different outlier frac-
tion . For a given 7, the outlier-corrupted dataset is constructed so that outliers occupy ~ fraction
of samples. In all experiments, the total size of the dataset (including outliers) was maintained as
50000. All models were trained using robust Wasserstein loss given in Eq. (11). Experiments were
performed on two architectures - DCGAN and Resnet.

For quantitative evaluation, FID scores with respect to clean CIFAR-10 dataset are reported. That is,
let m. and C'. denote the mean and covariance matrices of Inception network features obtained from
clean CIFAR-10 dataset (CIFAR-10 without outliers), and m and C denote the mean and covariance
of Inception network features obtained from generated samples. Then, the FID score is computed as

FID = ||m — me|2 + T (c ro, - 2(006)1/2) .
To compute the FID score, the mean and covariance matrices were computed over 50000 samples.

On sketch domain on DomainNet dataset, robust spectral normalization GAN (Eq. (13)) was trained.
Resnet architectures were used for both discriminator and generator.



Algorithm 1 Robust Wasserstein GAN training algorithm

Require: N;;..: Number of training iterations, N.,;+;.: Number of critic iterations, Np,¢cp,: Batch
size, Nwelqht Number of weight update iterations
I: fortin1: Njse, do
2 Sample a batch of real samples {x;}st<" ~ D
3: Sample a batch of noise vectors {z; }~"et<" ~ D
4
5

Normalize weight vectors as W (x;) < W (x;)/ ZNZ"”"”‘ W (x;)
Obtain GAN loss as

1
LGAN _Nbatch ZW XL Nbatch XZ:D(G(ZZ»

+ Amax (N ! zi:[(vv(xi) —1)%] = 2p, 0) +Aar g !

batch batch

S (DG - 172

6: Update discriminator as D < D +npVpLagan
7: if t % Nweight == 0 then
8: Update weight network as W < W — 1, Vw Lgan
9: end if
10: if t % Neriric == 0 then
11: Update generator as G <+~ G —n,VaLaan
12: end if
13: end for

Table 2: Architectures and hyper-parameters: Resnet model

Generator [ Discriminator
z € R ~ N(0,1) Input x € R32X32X3
Dense, 4 x 4 x 128 ResBlock down 128
ResBlock up 128 ResBlock down 128
ResBlock up 128 ResBlock 128
ResBlock up 128 ResBlock 128
BN, ReLLU, Conv 3 x 3 ReLU, Global sum pooling
Tanh Dense — 1
Hyperparameters
Generator learning rate 0.0002
Discriminator learning rate 0.0002
Weight net learning rate 0.0002
Generator optimizer Adam, Betas (0.0,0.999)
Discriminator optimizer Adam, Betas (0.0,0.999)
Weight net optimizer Adam, Betas (0.0, 0.999)
Number of critic iterations 5
Weight update iterations 5
Gradient penalty 10
Batch size 128
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Figure 4: Visualizing samples generated on CIFAR-10 dataset corrupted with MNIST outliers.
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Figure 5: Visualizing samples generated on CIFAR-10 dataset corrupted with uniform noise outliers.

6.1.2 Clean datasets
In Section 5.1.2 of the main paper, robust Wasserstein GANs were trained on clean datasets (datasets
with no outlier noise). Expeirments were performed on CIFAR-10 and CIFAR-100 datasets. On

CIFAR-10, unconditional model was trained, whereas on CIFAR-100, conditional GAN using con-
ditional batch normalization (similar to [3]) was trained.

6.1.3 Architectures and Hyper-parameters

Models and hyperparameters used for DCGAN and Resnet models are provided in Tables 2 and 3.
For both models, the architecture used for the weight network is provided in Table 4.
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Table 3: Architectures and hyper-parameters: DCGAN model

Generator [ Discriminator
z € R ~ N(0,1) Input x € R32X32%3
Dense, 4 x 4 x 512 + BN + ReLU Conv 3 x 3, str 1, (64) + LReLU
ConvTranspose 4 X 4, str 2, (256) + BN + ReLU | Conv 4 x 4, str 2, (128) + BN + LReLU
ConvTranspose 4 x 4, str 2, (128) + BN + ReLU | Conv 4 X 4, str 2, (256) + BN + LReLU
ConvTranspose 4 x 4, str 2, (64) + BN + ReLU | Conv 4 x 4, str 2, (512) + BN + LReLU
Conv 3 x 3, str 1, (3) + TanH Conv 4 x 4, str 1, (1)
Hyperparameters
Generator learning rate 0.0001
Discriminator learning rate 0.0001
Weight net learning rate 0.0001
Generator optimizer Adam, Betas (0.5,0.9)
Discriminator optimizer Adam, Betas (0.5,0.9)
Weight net optimizer Adam, Betas (0.5,0.9)
Number of critic iterations 5
Weight update iterations 5
Gradient penalty 10
Batch size 128

Table 4: Architectures of weight network

Weight network

Input x € R32X32X3
Conv 3 x 3, str 1, (64) + ReLU + Maxpool(2 x 2)
Conv 3 x 3, str 1, (128) + ReLU + Maxpool(2 x 2)
Conv 3 x 3, str 1, (256) + ReLU + Maxpool(2 x 2)
Conv 4 x 4, str 1, (1)

6.2 Domain Adaptation

In all domain adaptation experiments, we update the weight vectors using discrete optimzation ver-
sion discussed in Section 4.3.1 of the main paper. For all models, an entropy regularization on target
logits is used. A complete algorithm is provided in Alg. 2. We evaluate our approach on VISDA-17
dataset using Resnet-18, 50 and 101 architectures as discussed in Section 5.2 of the main paper.

Baselines:  Two standard baselines for the domain adaptation problem include source only and
Adversarial alignment. In the source only model, the feature network F and the classifier C are
trained only on the labeled source dataset. In the adversarial alignment, domain discrepancy between
source and target feature distributions is minimized in addition to the source classification loss. This
is essentially an unweighted version of our adaptation objective.

Architectures:  In our experiments, the feature network F is implemented using Resnet archi-
tectures (Resnet-18, 50 and 101). Following the usual transfer learning paradigm, the last linear
layer is removed in the Resnet network. The feature network is intialized with weights pretrained
on Imagenet. The classifier network C is a linear layer mapping the features to probability vector
with dimension equal to the number of classes. The classifier network is trained from scratch. The
discriminator is realized as a 3-layer MLP with ReLU non-linearities and hidden layer dimension
256. Spectral normalization is used on the discriminator network. The hyper-parameters used in all
experiments are described in Table 5.

Weight visualization: We visualize the weights learnt by our domain adaptation module by plot-
ting the histogram of weights in Figure 7. Additionally, target samples sorted by weights are shown
in Figure 6.
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Algorithm 2 Domain adaptation training algorithm

Require: N;;.,.: Number of training iterations, N,.;+;.: Number of critic iterations, Npq¢cp,: Batch

1:

7:
8:
9:
10:
11:
12:
13:
14:
15:

size, Nyeight: Number of weight update iterations
Intialize weight bank w;, = [w1, wa,...wy,] , where each w; corresponds to weight of target
t
X;
for tin 1 : N;se, do
Sample a batch of labeled source images {x;, yf}ﬁ\ﬁf“h ~ D and unlabeled target images
Nyatcn
{Xf}i:blf_ "~Dy . .
Obtain the weight vectors w! corresponding to the target samples x’ from the weight bank
Wy
Obtain discriminator loss as

Nbitch ; Lpcr(D(F(x7)),0) +

1
Nbatch

ACdisc =

Obtain source label prediction loss as
1
£cls = Ni Z LCE(C(F(Xf))7 yzs)

Update discriminator D <~ D — 13V p Lygisc
Update feature network and classifier F <~ F — VgL, C <+ C—n.VcLleas
if t % Nweight == 0 then
Update weight bank wy, using Algorithm 3
end if

ift %Ncritic == (0 then
Update feature network as F <— F + 1 VE Lgisc
end if
end for

Algorithm 3 Algorithm for updating weights

1:
2:

3:

Form the discriminator vector d = [D(x}), D(x5),... D(x},)]
Obtain wy, as the solution of the following second-order cone program

min(w)'d
w
st [|lw—1], < /201Ny
w>0, (w)il=N,

Return wy,

Table 5: Hyper-parameters for domain adaptation experiments

Hyperparameters
F network learning rate 0.0005
C network learning rate 0.0005
D network learning rate 0.0001

F network optimizer SGD with Inv LR scheduler
C network learning rate | SGD with Inv LR scheduler
D network learning rate Adam betas (0.9,0.999)
Number of critic iterations 5

Batch size 28
Entropy weight 0.25
Weight update iterations 500
Outlier fraction p 0.2
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Figure 6: Visualizing target domain samples sorted by learnt weights
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Figure 7: Visualizing histograms of weights learnt in robust domain alignment
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