
Paper ID 10989: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning. We thank all reviewers for1

their valuable feedback. Reviewers found that this work is solid, the main idea is interesting and clearly presented.2

Below is the point-by-point responses to the reviewers.3

R1-Q1. Comparison to Yang et. al. [40]: R1 appreciates the difference between ours and [40], especially the unique4

link between tensor train and HO-CRNN. There are two major differences between our work and [40]: (1) while [40]5

relies on the classic tensor-train decomposition (TTclassic) based on [18], our convolutional tensor-train decomposition6

(CTTD, Eq.(6)) factorizes the tensor with convolutions instead of inner products; (2) [40] compresses only input-hidden7

weights within one time-step in LSTM. Our CTTD compresses spatio-temporal interactions over time. This is a8

new design of tensor-train decomposition for spatio-temporal data. We add a new comparison between ours and9

[40] in the table below. For fair comparison, we applied the core idea of [40] to ConvLSTM (baseline) as follows:10

[I(t);F(t); C̃(t);O(t)] = σ(TTclassic({Wi}) ∗ X (t) + K ∗ H(t− 1)). From the comparison, we observe that our11

model outperforms [40] on MNIST and KTH (except LPIPS on KTH) with similar number of parameters.12

Dataset TTclassic [40] ConvLSTM Conv-TT-LSTM
(predicted frames) SSIM LPIPS SSIM LPIPS SSIM LPIPS

MNIST (10) 0.890 59.09 0.882 67.13 0.915 40.54
MNIST (30) 0.817 125.2 0.806 140.1 0.840 90.38
KTH (20) 0.900 120.1 0.903 137.1 0.907 133.4
KTH (40) 0.874 163.5 0.876 201.3 0.882 191.2

Params. 2.20M 3.97M 2.69M

Furthermore, we believe our work is orthogonal to [40] —13

[40] can be used to further compress our model by decom-14

posing each factor G(i) (in Eq.(6)) with TTclassic.15

R1-Q2. Efficiency evaluation. We agree that there is a16

trade-off between FLOPs and latency. Therefore, we intro-17

duce two algorithms in Appendix A. While Alg. 2 signifi-18

cantly decreases the complexity in FLOPs, it also lowers the degree of parallelism. However, Alg. 1 shows how our19

model can be parallelized. Ideally, these two algorithms can be combined using CUDA multi-streams (execute multiple20

kernels in parallel): use Alg. 1 for the beginning iterations of i and Alg. 2 for the later ones (the beginning ones have21

smaller kernel sizes). In our current implementation, we use Alg. 2 to reduce the GPU memory requirement. The22

run-time of current implementation is 27.3 mins (37.83 GFLOPs) for Conv-TT-LSTM and 26.2 mins (55.83 GFLOPs)23

for ConvLSTM (per epoch on KTH). We will add the run-time and this discussion in the final version.24

R2-Q1. Motivation of higher-order RNN. While vanilla RNN can be a universal approximator or Turing complete25

theoretically, there is no guarantee that the model will find the optimal solution. R2 believes that in practice, the26

vanishing/exploding gradients prevent RNNs from learning higher-order interaction. Our proposed model addresses the27

vanishing/exploding gradient problem by incorporating long-term dependencies with higher-order RNNs [8].28

R2-Q2. Use case of higher-order RNNs. The applications in our experiments requires future prediction. To predict29

the most possible future, understanding the long-term dynamics is essential. The early activity recognition task requires30

a model to understand the dynamics of the video, so the model can predict an activity at the early stage. For the video31

prediction tasks, the model learns to predict 10 frames during training. In testing, the model further predicts 30-4032

frames. Optical flow features (based on short-term dynamics) are not sufficient to make such predictions.33

R2-Q3. Add ablation studies. The choice of a 12 layer baseline. The paper already includes the detailed ablation34

studies in Table 3 and Appendix B.6: single v.s. higher-order model, the necessity of convolutions in CTTD, 4 v.s. 1235

layers, the benefit of scheduling tricks, etc. The results show that Conv-TT-LSTM consistently outperforms ConvLSTM36

baseline under all scenarios. Necessity of a deep model for video prediction has been already discussed in [43].37

R2-Q4. Many scheduling tricks. These scheduling tricks are used for both our model and the baseline ConvLSTM, so38

our performance improvement is NOT due to the scheduling tricks (also shown by the aforementioned ablation studies).39

These scheduling tricks are commonly used for prediction and early activity recognition tasks [19,23-24].40

R2-Q5. Pre-processing conflicts with the paper’s motivation (higher-order interaction). The reviewer misunder-41

stood the difference between order in RNNs and order of a tensor decomposition. The former refers to the number of42

previous time-steps used at each update, while the latter denotes the number of factors in tensor decomposition. In fact,43

we propose the pre-processing module mainly to decouple these two concepts (explained in Lines 136-146), and the44

order of tensor decomposition only controls the complexity of the mapping function Φ.45

R2-Q6. Include videos in the appendix. ’10989_result_videos’ in the supplementary file already includes the videos.46

R3-Q1. Analysis of “implicit regularizer” leading to “generalized models”. The relationship between low-rank47

regularizer and generalized models is discussed in Line 40-42, and analyzed theoretically in [11, 12]. Intuitively, consider48

a linear model y = Ax, where A ∈ Rq×p is factorized as A = UV with U ∈ Rq×r,V ∈ Rr×p, r < min(p, q). The49

factorization implicitly creates a bottleneck h since the model can be evaluated as h = Vx and y = Uh. Since h has50

lower dimension than x, the bottleneck filters out redundant information, leading to more generalized models.51

R3-Q2. Difference between ConvLSTM [4] and ConvLSTM (baseline). ConvLSTM [4] is the original model52

proposed by [4]. We re-implemented ConvLSTM of [43] as our baseline. It has exactly the same model size, skip53

connections and uses the same training strategies as our Conv-TT-LSTM. We will add the clarification in the paper.54


