
A Experiment Details1

A.1 Hyperparameters2

In this section, we list out all the selected hyperparameters in our experiments for reproducibility in3

Table 1 and Table 2. For selecting the number of layers in the GS and the segmented transformer4

networks. We did a hyperparameter sweeping of [2, 4, 6, 8] network layers for both GS and the5

segmented transformer network and find the optimal hyperparameters as presented in below table.6

Table 1: Hyperparameters for Policy Network. gs layers: GraphSAGE layers, gs knn: GraphSAGE
maximum neighbors, trf d model: Dimension of the segmented transformer model, trf n head:
Number of attention heads, trf layers: Number of transformer layers, trf d heads: Dimension of
each attention head, trf d inner: Dimension of inner hidden size in positionwise feed-forward.

Parameters Value Parameters Value

gs layers 4 gs dim 128
gs knn 5 trf layers 4

trf d model 128 trf n head 3
trf d head 15 trf d inner 512

Table 2: Hyperparameters for PPO.
Parameters Value Parameters Value

learing rate 0.5 num of rollouts 800
minibatches 40 epochs 20

epsilon 0.2 entropy 0.5
optimizer Adam

A.2 Input Graphs7

We used important workloads that are widely used in real applications or are incorporated in industry8

standard benchmarks like MLPerf. These include ResNet, InceptionNet, WaveNet, Transformer-XL,9

AmoebaNet, NMT, and RNNLM. In this section, we give a detailed explanation on the selected10

models and hyperparameters.11

A.2.1 Inception-V312

Inception-V3 [6] is a multi-branch convolutional network used for a variery of computer vision13

tasks, including classification, recognition, or generation. The network consists of blocks made of14

multiple branches of concolutional and pooling operations. Within a block, the branches of ops can15

be executed in parallel. However, the model is mostly sequential as the outputs of each block are16

concatenated together to form the input to the next block. We use a batch size of 64. The TensorFlow17

graph of this model contains 24,713 operations.18

A.2.2 AmoebaNet19

AmoebaNet [5] is an automatically designed neural network that yields SOTA performance on20

ImageNet. Similar to Inception-V3, it contains Inception-like blocks called cells, which receives a21

direct input from the previous cell and a skip input from the cell before it. The network is made of22

redundant cells stacked together, therefore is more modular than Inception-V3. We use a batch size23

of 64. The TensorFlow graphs contains 9,430 operations.24

A.2.3 RNNLM25

Recurrent Neural Network Language Model [10, 4] is made of many LSTM cells organized in a26

grid structure. The processing of each LSTM cell only depends on the results of 2 other cells (from27

the previous layer, and from the previous time step), which make the concurrent execution of many28

LSTM cells possible given enough hardware resources. We use batch size 64 and a hidden size of29

1



2048. The corresponding TensorFlow graph contains 9,021 operations for a 2-layer model. The30

number of ops grow roughly proportional with the number of layers.31

A.2.4 GNMT32

Neural Machine Translation with attention mechanism [1, 9] has an architecture similar to that of33

RNNLM, but its many hidden states make it far more computationally expensive than RNNLM. To34

reduce the training time, prior work [9] propose placing each LSTM layer, as well as the attention and35

the softmax layer, on a separate device. This strategy demonstrates early success in human placement,36

we show that GO can find significantly better placements. We use batch size 64. The original 2-layer37

encoder-decoder consisting of 28,044 operations. An extended 4-layer version consisting of 46,60038

operations, An even larger 8-layer version consisting of 83,712 operations.39

A.2.5 Transformer-XL40

Transformer-XL [2] is an modified version of Transformer [8] that supports segement-level recurrence41

and a novel positional encoding scheme. This innovation enables learning dependency that is 80%42

longer than RNNs, and 450% longer than vanilla Transformers. We use a transformer-XL with batch43

size of 64, sequence length of 256, segment length of 64, model hidden dimension of 500 and feed44

forward hidden dimension of 1000, 10 heads, and head dimension of 50. The 2-layer Transformer-XL45

contains 2,618 operations. The number of ops grow roughly proportional with the number of layers.46

A.2.6 WaveNet47

WaveNet [7] is a generative model for speech synthesis. The model is fully probabilistic and48

autoregressive, with the predictive ditribution for each audio sample conditioned on all previous ones.49

Architecturally, WaveNet uses causal convolutions with dilations, to obtain a large receptive field.50

We use a WaveNet model with batch size 64 and a receptive field size of 2048 (9-layers per stack).51

An 5-stack WaveNet contains 4,374 operations and a 10-stack WaveNet contains 8,516 operations.52

A.3 Performance Model53

An analytical performance model [3] based on the roofline model is used in this work. Specifically, the54

execution time of a kernel is estimated using analytically modeled flops and bytes of memory accessed,55

together with GPU’s peak achievable FLOPS and memory bandwidth. The kernel launching overhead56

is not considered. For data transfer between devices, the transfer time is estimated using the tensor57

size and bandwidth. A virtual scheduler is developed to handle the dependency among different ops58

in the graph within and across devices with several available scheduling policies including the priority59

based one used in this work. The accuracy of the performance model has been validated against true60

runtime measurements (on actual hardware) on several industry standard models, including MLP,61

CNN, RNN, LSTM, Transformer, BERT, etc.62

B Ops Scheduling63

B.1 Default Scheduling is Sub-optimal When Coupled with Device Placement64

Many of the large machine learning models require partitioning of the dataflow graph for the model65

over a set of heterogeneous devices (like CPUs and GPUs). This partitioning is necessary to overcome66

the memory limitations of a single device while also reducing the step time (i.e., execution time of67

a single training step) by exploiting the inherent parallelism in the model architecture. However,68

the best partitioning of the graph over a set of devices is a complex non-differentiable function of69

the graph structure and computation capabilities of the devices. Furthermore, even for a seemingly70

good partitioning and placement of the graph, poor choices in scheduling operations can often lead71

to near-sequential execution of the partitioned blocks and therefore poor runtimes and low device72

utilization. For instance, consider the timelines for a single step of Transformer XL model with73

identical partitioning and placement shown in Figure 1. While the first timeline schedules operations74

first-in-first-out (FIFO), the second timeline uses a human expert provided schedule. By carefully75

choosing the ordering in which operations are scheduled, we can reduce step time (as illustrated76

2



Figure 1: Effect of human expert scheduling on timelines for Transformer-XL workload. Step time
is reduced by 25.5% from (a) to (b) as shown by the shorter timeline (compressed x-axis). Higher
device utilization is observed in (b), with less idle time (as represented by white space). One layer is
placed on each device (each row), with colors denoting segments. Each successive device can start
on a segment only after it is completed on the previous device.

through a shorter timeline) as well as increase device utilization (as illustrated through less white77

space in the timelines).78

B.2 Ops Scheduling for Individual Graphs79

Baseline – Heuristics. We use First-In-First Out (FIFO), which is the default scheduling policy in80

TensorFlow, and a static Fanout heuristic, which assigns priorities based on the number of dependent81

operations as baselines. Fanout heuristic aims to be a simplification of heuristics such as critical-path-82

first, and aims to capture the sentiment of prioritizing operations that other ops depend on. In our83

experiments, Fanout heuristic utilizes the priority scheduler implementation while FIFO numbers are84

from the default scheduler.85

Baseline – Human expert optimization. To show the potential for scheduling, we manually added86

artificial control dependencies to our workloads. This required delving into timelines, diagnosing87

scheduling issues, and identifying which of the 49K nodes to add dependencies between. After88

adding 21 dependencies, we reduced the step time of an 8-layer Transformer-XL model by 25.5%89

as shown in Figure 1. With FIFO scheduling, we note that operations from different segments are90

interleaved on each device, which we infer to be the cause of unnecessary waiting on subsequent91

devices.92

Setup. We evaluate our approach on the workloads RNNLM [11, 4] and Transformer-XL [2]. These93

workloads are used for language modeling and represent complex state-of-the-art models with grid-94

like dependencies that offer opportunities for model parallelism. We use a manual placement of95

assigning one layer to each GPU, and set the number of layers and thus dictating the size of the96

model to be equal to the number of GPUs. We use a batch size of 64 for training, and a GPU cluster97

topology consisting of a single machine with 8 Nvidia Tesla P100s, each with 16 GB of memory and98

NVLink interconnect.99

We ran simulated annealing twice with different random seeds but same starting point, with 5000100

iterations each. We trained the RL model with a replay buffer and a rollout of 400 actions per iteration.101

To speed up the search, we use tf-sim1 to estimate the step time. It considers operations’ running102

time characteristics and data transfer times on target hardware.103

1TensorFlow Performance Simulator. Publication in progress.

3



Table 3: Effect of scheduling priorities on reductions in step times (relative to default FIFO policy).
Workload Layers FH SA RL

RNNLM 2 -0.84% 2.96% 8.77%
RNNLM 4 -0.74% 12.01% 7.85%
RNNLM 8 -0.59% 14.65% 4.30%
Transformer-XL 2 -4.86% 6.30% 14.46%
Transformer-XL 4 -3.17% 9.27% 26.98%
Transformer-XL 8 -0.05% 19.27% 10.67%

2 4 8
GPUs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%
 re

du
ct

io
n 

ov
er

 F
IF

O

RNNLM

2 4 8
GPUs

0

10

20

Transformer-XL

First-In-First-Out
Fanout Heuristic
Simulated Annealing
Reinforcement Learning

Figure 2: Effect of scheduling priorities on reductions in step times.

SA and RL priority scheduling reduce step time. Table 3 and Figure 2 show step time reductions104

from our simulated runs, where the step time is the time needed to train one minibatch. We observe105

that simulated annealing (SA) performs strongly, achieving the most reduction in step time for half of106

the workloads. SA was difficult to tune to get good results, especially in designing the action space107

and finding a set of hyperparameters that could work well for all workloads. Given that we did not do108

such tuning for the RL model, its performance should be considered positively given that it was a109

more automated solution and still outperformed SA for half the workloads in addition to achieving110

up to 26.98% over FIFO, which was greater than that of SA’s 19.27% over FIFO.111

From examining timelines such as those in Figure 1, we expected the potential amount of scheduling112

badness (and thus maximum possible speedup from scheduling) to grow near linearly with the number113

of devices. This is consistent with the trend of the maximum achieved speedup scaling with the114

number of GPUs. We observed that the Fanout heuristic performs worse than FIFO scheduling,115

underlining the difficulty of designing a heuristic that works well across all real workloads.116

C Ablation Study117

C.1 Model Architecture118

As we discussed model architecture alternatives and explained how we designed the network archi-119

tecture in Section 4.2 in the main paper, we provide more empirical results compared to a decision120

network based on MLPs and a decision network based on Graph Attention Networks (GATs). The121

MLPs is combined with GraphSAGE to provide generalization while the GATs supports general-122

ization naturally. We don’t compare with an LSTM or a vanilla Transformer model as they cannot123

scale to problem size interesting enough. According to Figure 3, for many bigger models (e.g.124

AmoebaNet, GNMT, 8-layer RNNLM and Transformer-XL), GATs failed to generate any valid graph125

optimizations. For the workloads they can generate valid optimizations, GATs is on average 8%126

worse and MLP is on average 11% worse in the optimized graph run time, compared to GO-one. The127

results also shows that the global attention brings in about 11% additional performance, compared to128

non-attention based decision network.129

C.2 Fine-tuning Results130

We also evaluate a fine-tuning strategy by pre-training the graph embedding and placement network131

and fine-tuning the network on the down stream tasks. The difference here compared to the main132

4



0.95

1.00

1.05

1.10

1.15

1.20

1.25

Inception-v3

2-layer trf
xl

4-layer trf
xl

8-layer trf
xl

2-layer rn
nlm

4-layer rn
nlm

8-layer rn
nlm

2-layer nmt

AmoebaNet

Average

GO-one GATs MLPs

Figure 3: Learnt Policy Comparison with Alternative Decision Networks.

rnnlm 2-layer
rnnlm 4-layer
rnnlm 8-layer

nmt 4-layer
nmt 8-layer
trfxl 4-layer
trfxl 8-layer 

inception
amoebanet
wavenet 2-
wavenet 4-

GEOMEAN

0 0.25 0.5 0.75 1 1.25

normalized run time normalized search time

Figure 4: Normalized run time (step time for the generated placement) and normalized training time
(search time) for fine-tuning. Time is normalized to GO-one.

paper Section 5.1 ”Generalization Across Graphs” is that we also include the target graphs in the133

pre-training dataset. When GO-batch is used as a pre-training strategy, the graph embedding and134

placement network assimilate meaningful graph representations and placement policies from a wide135

set of graphs, thus can be used as a strong baseline network for fine-tuning on downstream tasks. We136

compare the generated placement run time and the placement search time, normalized to GO-one. We137

find that fine-tuning further reduces the the placed graph run time by an average of 5% and placement138

search time by an average of 86%, compared to GO-one.139

References140

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly141

learning to align and translate. In ICLR 2015. 2015.142

[2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-143

dinov. Transformer-xl: Attentive language models beyond a fixed-length context. ACL, 2019.144

[3] Google. TF-Sim: TensorFlow Performance Simulator, under submission. 2020.145

[4] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring146

the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.147

[5] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for148

image classifier architecture search. CoRR, abs/1802.01548, 2018.149

5



[6] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.150

Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.151

[7] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex152

Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative153

model for raw audio. CoRR, abs/1609.03499, 2016.154

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,155

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,156

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural157

Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.158

[9] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang159

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,160

Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,161

Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason162

Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey163

Dean. Google’s neural machine translation system: Bridging the gap between human and164

machine translation. CoRR, abs/1609.08144, 2016.165

[10] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.166

CoRR, abs/1409.2329, 2014.167

[11] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.168

arXiv preprint arXiv:1409.2329, 2014.169

6


	Experiment Details
	Hyperparameters
	Input Graphs
	Inception-V3
	AmoebaNet
	RNNLM
	GNMT
	Transformer-XL
	WaveNet

	Performance Model

	Ops Scheduling
	Default Scheduling is Sub-optimal When Coupled with Device Placement
	Ops Scheduling for Individual Graphs

	Ablation Study
	Model Architecture
	Fine-tuning Results


