Appendix A: Missing Proofs

A.1 Proof of Lemma 1

Proof: We only prove the existence of 71 (+), as the existence of 72(+) can be proved in the same
way. Suppose that the elements in Sy are {uq,- -, us} (listed according to the order that they are
added into S7). We use an argument inspired by [15] to construct 1 (+). Let Ly = OTUOf UO; UOs.
We execute the following iterations from j = s to 7 = 0. At the beginning of the j-th iteration, we
compute a set A; = {x € Li\{uy, - ,uj_1}: {w1, - ,uj_1,2} € I}. Ifu; € OF UO; (so
u; € Aj), then we set m (u;) = uj and D = {u;}. If u; ¢ OF UO; and A; # (), then we pick an
arbitrary e € A; and set 71 (e) = u;; D; = {e}. If A; = (), then we simply set D; = (). After that,
we set L;_1 = L;\D; and enter the (j — 1)-th iteration.

From the above process, it can be easily seen that 71 (-) has the properties required by the lemma as
long as it is a valid function. So we only need to prove that each e € O;” UO;] U O, U O3 is mapped
to an element in S, which is equivalent to prove Lo = () as each e € L\ L is mapped to an element
in Sy according to the above process. In the following, we prove Lo = () by induction, i.e., proving
|L;j| <jforall0 <j<s.

We first prove | Ls| < s. By way of contradiction, let us assume || = [0 UO; UO; UO3| > s =
|S1]. Then, there must exist some z € O5 U Os satisfying S; U {x} € T according to the exchange
property of matroids. Moreover, according to the definition of O3, we also have = ¢ Os, which
implies x € O5 . So we can get Pre(z, S1) U {z} € T due to Pre(z,S1) C 51,51 U{z} € T and
the hereditary property of independence systems, but this contradicts the definition of O, . Therefore,
|L;| < j holds when j = s.

Now suppose |L;| < j for certain j < s. If A; # (), then we have D; # () and hence [L;_| =

|L;j| —1<j—1.1f A; = (), then we know that there does not exist z € L;\{u1,--- ,u;_1} such
that {uq,--- ,uj_1}U{z} € Z. This implies [{u1,--- ,uj_1}| > |L;| due to the exchange property
of matroids. So we also have |L;_1| = |L;| < j — 1, which completes the proof. O

A.2 Proof of Lemma 2

For clarity, we decompose Lemma 2 into three lemmas (Lemmas 4-6) and prove each of them.

Lemma 4 The TwinGreedy algorithm satisfies

FOF 1 S2) < Y d(mle)); f(O5]81)< > b(mae)) (15)

e€cOf e€OF

Proof of Lemma 4:  'We only prove the first inequality, as the second one can be proved in the same
way. For any e € Of‘, consider the moment that TwinGreedy inserts e into S;. At that moment,
adding e into .S, also does not violate the feasibility of Z according to the definition of Of’. Therefore,
we must have f(e | Pre(e, S2)) < d(e), because otherwise e would not be inserted into S; according
to the greedy rule of TwinGreedy. Using submodularity and the fact that 7 (e) = e, we get

fle|82) < f(e]| Pre(e, S2)) < 8(e) = 8(mi(e)), Ve € Of (16)
and hence
ST FOF18)< > fle] S2) < ) d(mie)), (17)
ecOy ecOy ecOy
which completes the proof. (]

Lemma 5 The TwinGreedy algorithm satisfies

(07 182) < Y d(mae));  f(O7 [S1) < > d(mile) (18)

ecO; ecO,



Proof of Lemma 5:  'We only prove the first inequality, as the second one can be proved in the
same way. For any e € O7, consider the moment that TwinGreedy inserts 72 (e) into S2. At that
moment, adding e into Sy also does not violate the feasibility of Z as Pre(ma(e), S2) U {e} € T
according to Lemma 1. This implies that e has not been inserted into S; yet. To see this, let us
assume (by way of contradiction) that e has already been added into .S; when TwinGreedy inserts
m2(e) into Sy. So we have Pre(e, S2) C Pre(ma(e), S2). As Pre(ma(e), S2) U {e} € Z, we must
have Pre(e, S2) U {e} € Z due to the hereditary property of independence systems. However, this
contradicts Pre(e, S2) U {e} ¢ Tase € O7 .

As e has not been inserted into S; yet at the moment that my(e) is inserted into Ss, and
Pre(ma(e), S2) U {e} € Z, we know that e must be a contender to m2(e) when TwinGreedy in-
serts m2(e) into Sz. Due to the greedy selection rule of the algorithm, this means d(mz(e)) =
f(ma(e) | Pre(ma(e),S2)) > f(e | Pre(ma(e),Sa)). As Pre(ma(e),S2) C Si, we also have
f(e| Pre(ma(e), S2)) > f(e | Se). Putting these together, we have

(07 ] 82) < Zfe|52 Zfe|Pre772 25772 (19)
ecOy ecOy ecOy

which completes the proof. (|

Lemma 6 The TwinGreedy algorithm satisfies

03 | Sl Z 5 7T'1 5 (04 ‘ 52) S Z (5(7'('2(6)) (20)

e€03 e€Oy

Proof of Lemma 6:  'We only prove the first inequality, as the second one can be proved in the
same way. Consider any e € Os. According to Lemma 1, we have Pre(m(e), S1) U {e} € T,
which means that e can be added into S; without violating the feasibility of Z when 1 (e) is
added into S;. According to the greedy rule of TwinGreedy and submodularity, we must have
d(mi(e)) = f(mi(e) | Pre(mi(e), S1)) > f(e | Pre(m(e), S1)), because otherwise e should be
added into S7, which contradicts e € Os. Therefore, we get

FOs181) < > fle| S1) < Y fle|Pre(mi(e),S1)) < Y d(mi(e)) (21)
e€O3 e€O3 e€O3
which completes the proof. 0

A.3 Proof of Theorem 1

Proof:  We only consider the special case that .S; or Sy is empty, as the main proof of the theorem
has been presented in the paper. Without loss of generality, we assume that S5 is empty. According
to the greedy rule of the algorithm, we have

FONS B < > flelh< Y de)< D dle)=f(S1]0) (22)

ecONS, eeONSy e€Sy

and f(O\S1 [ 0) <> .covs, f(e [ 0) < 0. Combining these with
FIO\SY) + f(ONS1) = f(O) + f(0), (23)
we get f(S1) > f(O), which proves that S; is an optimal solution when S5 is empty. O

A.4 Proof of Lemma 3

For clarity, we decompose Lemma 3 into three lemmas (Lemmas 7-9) and prove each of them.

Lemma 7 For the TwinGreedyFast algorithm, we have

1|SQ Z(STQ 2|51 Z(Sﬂ'g (24)

ecO; e€cOF



Proof of Lemma 7:  The proof is similar to that of Lemma 4, and we present the full proof for
completeness. We will only prove the first inequality, as the second one can be proved in the same
way. For any e € Of, consider the moment that TwinGreedy inserts e into S and suppose that
the current threshold is 7. Therefore, we must have §(e) > 7. At that moment, adding e into
S5 also does not violate the feasibility of Z according to the definition of Of. So we must have
f(e | Pre(e, S2)) < d(e), because otherwise we have f(e | Pre(e, S2)) > d(e) > 7, and hence e

would be inserted into S according to the greedy rule of TwinGreedyFast. Using submodularity and
the fact that 7 (e) = e, we get

f(e|S2) < f(e| Pre(e, S2)) < 8(e) = d(mi(e)), Ve € Of (25)
and hence
D FOF18:)< Y fle]Sh) < Y d(mie)), (26)
e€Oy e€O; ecOy
which completes the proof. (|

Lemma 8 For the TwinGreedyFast Algorithm, we have

FO7 | S2) < (1+¢€) Y d(male)); f(O5 |S1) < (1+¢€) Y d(me) (27)

ecOy ecOy

Proof of Lemma 8: 'We only prove the first inequality, as the second one can be proved in the same
way. For any e € Oy, consider the moment that TwinGreedyFast adds 72 (e) into S2. Using the same
reasoning with that in Lemma 5, we can prove: (1) e has not been inserted into .S; at the moment that
ma(e) is inserted into So; (2) Pre(ma(e), S2) U {e} € T (due to Lemma 1).

Let 7 be the threshold set by the algorithm when 73 (e) is inserted into S3. So we must have
d(ma(e)) > 7. Moreover, we must have f(e | Pre(ma(e), S2)) < (14 ¢€)7. To see this, let us
assume f(e | Pre(ma(e), S2)) > (14 €)7 by way of contradiction. If 7 = 7,44, then we get
f(e) > f(e | Pre(ma(e),S2)) > (1 + €)Tmax, which contradicts f(e) < Tyaz. If T < Tiaz, then
consider the moment that e is checked by the TwinGreedyFast algorithm when the threshold is
7' = (14 ¢)7. Let Sy ,+ be the set of elements in S at that moment. Then we have f(e | So ./) > 7'
due to Sz, C Pre(ma(e), S2) and submodularity of f(-). Moreover, we must have S . U {e} € T
due to Pre(my(e), So) U{e} € T and the hereditary property of independence systems. Consequently,
e should have be added by the algorithm when the threshold is 7/, which contradicts the fact stated
above that e has not been added into S; at the moment that 75 (e) is inserted into Sy (under the
threshold 7). According to the above reasoning, we get

FOT 182) < Y fle]S2) < Y fle| Pre(ma(e), S2) < (1+¢€) Y d(m(e))  (28)

e€O ecO ecOy

which completes the proof. ]

Lemma 9 For the TwinGreedyFast algorithm, we have

(03|51 1+6 Zéﬂl 3 04‘52 1+6 2671'2 (29)

ecO3 e€Oy

Proof of Lemma 9:  'We only prove the first inequality, as the second one can be proved in the same
way. Consider any e € Os. According to Lemma 1, we have Pre(m;(e), S1) U{e} € Z, i.e., e can be
added into S; without violating the feasibility of Z when 71 (e) is added into S;. By similar reasoning
with that in Lemma 8, we can get f(e | Pre(mi(e),51)) < (1 + €)d(m(e)), because otherwise e

must have been added into S in an earlier stage of the TwinGreedyFast algorithm (under a larger
threshold) before 7 (e) is added into S7, but this contradicts e ¢ S; U So. Therefore, we get

f(O5] 51) < Z fle]Sy) < Z f(e | Pre(mi(e), S1)) < (1+¢€) Z d(m(e)), (30)

ecO3 e€O03 e€03

which completes the proof. |



A.5 Proof of Theorem 2

Proof: In Theorem 3 of Appendix B, we will prove the performance bounds of TwinGreedyFast
under a p-set system constraint. The proof of Theorem 3 can also be used to prove Theorem 2, simply
by setting p = 1. |

Appendix B: Extensions for a p-Set System Constraint

When the independence system (N, Z) input to the TwinGreedyFast algorithm is a p-set system,

it returns a solution S* achieving 2p1+2 — € approximation ratio. To prove this, we can define O,

o7, O;, 05, O3, Oy, Pre(e, S;) and 6(e) in exact same way as Definition 1, and then propose
Lemma 10, which relaxes Lemma 1 to allow that the preimage by 71 (-) or 72 (-) of any element in
S1 U .S, contains at most p elements. The proof of Lemma 10 is similar to that of Lemma 1. For the
sake of completeness and clarity, We provide the full proof of Lemma 10 in the following:

Lemma 10 There exist a function m; : O] UO7 U Oy U O3 +— Sy such that:
1. Forany e € OF UO] UO; UOs, we have Pre(my(e), S1) U {e} € T.
2. Foreache € OF UO7, we have 71 (e) = e.

3. Letm'(y) = {e € 0T UOT UO; UOs : mi(e) = y} for any y € Sy. Then we have
|1 ()| < pforanyy € Si.

Similarly, there exists a function wo : O7 UOF UO, UQy + Sy such that Pre(ma(e), So)U{e} € T
for each e € O] UOF UO; U Oy and m(e) = e for each e € OF U Oy and |15 (y)| < p for
eachy € Ss.

Proof of Lemma 10:  We only prove the existence of 7 (-), as the existence of m5(-) can be
proved in the same way. Suppose that the elements in Sy are {u, - -+ ,us} (listed according to the
order that they are added into S;). We use an argument inspired by [15] to construct 7y (-). Let
L, = O UO] UO; UO3. We execute the following iterations from j = s to j = 0. At the beginning
of the j-th iteration, we compute a set A; = { € L;\{ui, - ,uj—1} : {wr, - ,uj_1,2} € T}
If |A;| < p, then we set set D; = Aj;if |A;| > pand u; € OF UO; (so u; € Aj), then we pick
a subset D; C A; satisfying |[D;| = p and u; € Dy; if |4;| > p and u; ¢ OF U O7, then we
pick a subset D; C A; satisfying | D;| = p. After that, we set 7 (e) = u; for each e € D; and set
Lj_1 = L;\Dj, and then enter the (j — 1)-th iteration.

From the above process, it can be easily seen that Condition 1-3 in the lemma are satisfied. So we
only need to prove that each e € O U O] U O; U Os is mapped to an element in S;, which is
equivalent to prove Ly = () as each e € L\ L is mapped to an element in S; according to the
above process. In the following, we will prove Ly = ) by induction, i.e., proving | L;| < pj for all
0<j<s.

When j = s, consider the set M = S; U O; U Os. Clearly, each element e € Oj satisfies
S1 U{e} ¢ T according to the definition of O3. Besides, we must have S; U {z} ¢ T for each
x € O, because otherwise there exists e € O satisfying S; U {e} € Z, and hence we get
Pre(e, S1) U{e} € T due to Pre(e, S1) C S; and the hereditary property of independence systems;
contradicting e € O . Therefore, we know that S is a base of M. As O UO; UO; UO3 € T
and Of UO7 UO; UO3 C M, we get |Ls| = |Of UOT UO; UO;3| < p|S;| = ps according to
the definition of p-set system.

Now suppose that |L;| < pj for certain j < s. If |A;| > p, then we have |D;| = p and

hence |L;_1| = |Lj| —p < p(j —1). If |[A;] < p, then we know that there does not exist
x € Lj_1\{u1, -+ ,uj_1} such that {us,--- ,uj_1} U{z} € T due to the above process for con-
structing 71 (). Now consider the set M’ = {uq,--- ,uj_1} U L;_1, we know that {uy, - ,u;_1}

is a base of M’ and L;_; € Z, which implies |[L;_;| < p(j — 1) according to the definition of p-set
system.



The above reasoning proves |Lj| < pj forall 0 < j < s by induction, so we get Ly = () and hence
the lemma follows. O

With Lemma 10, Lemma 3 still holds under a p-set system constraint, as the proof of Lemma 3 only
uses the hereditary property of independence systems and does not require that the functions 71 (-)
and mo(-) are injective. Therefore, we can still use Lemma 3 to prove the performance bounds of
TwinGreedyFast under a p-set system constraint, as shown in Theorem 3. Note that the proof of
Theorem 3 can also be used to prove Theorem 2, simply by setting p = 1.

Theorem 3 When the independence system (N, ) input to TwinGreedyFast is a p-set system, the
TwinGreedyFast algorithm returns a solution S™* with — € approximation ratio, under time

complexity of O(2 log £).

1
2p+2

Proof of Theorem 3:  We first consider the special case that S; or S5 is empty, and show that
TwinGreedyFast achieves 1 — e approximation ratio under this case. Without loss of generality, we
assume Sy is empty. By similar reasoning with the proof of Theorem 1 (Appendix A.3), we get
f(S1]10) > f(ON Sy | 0). Besides, for each e € O\ S, we must have f(e | 0) < Ty (Where
Tmin 18 the smallest threshold tested by the algorithm), because otherwise e should be added into S5
by the TwinGreedyFast algorithm. By the submodularity of f(-), we have

f(0) = (0) FONS [0)+ FO\Sy [0) < f(Si[0)+ > fle]D)

860\51

FS110) 47 Toin < F(S1 | 0) 47 =222 < £(S1 | 0) + £ (O),

IN

IN

which proves that S has a 1 — € approximation ratio. In the sequel, we consider the case that S7 # ()
and Sy # . Let O5 = O\(S1 U S2UO3) and Og = O\ (S U S2 U O4). By submodularity, we have

FOUS)) = f(S1) < F(OF | S1) + f(O5 | S1) + f(O3 | S1) + f(Os ] S1)  (31)
f(OUSy) = f(S2) < f(OF | S2) + f(Or | S2) + f(O4 | S2) + f(Os | S2)  (32)

Using Lemma 3, we get

(O3 | S1) 4+ f(O3 | S1) + f(Os3 | 51) + f(OF | S2) + f(O1 | S2) + f(O4 | S2)

< g Y dmE)+ Y d(m(e)
e€0 U0 UO; e€0; U0 U0,
< (1t Imtel-de)+ ) 772—1(@)-5(@]
e€S1 e€Sa
< (I+ep|) e +Z(5(e)]
ecS1 ecSa
< (L+plf(S1) + f(S2)], (33)

where the third inequality is due to Lemma 10. Besides, according to the definition of O5, we must
have f(e | S1) < Tpin for each e € Os, where 7, is the smallest threshold tested by the algorithm,
because otherwise e should be added into S as S; U {e} € Z. Similarly, we get f(e | S2) < Timin
for each e € Og. Therefore, we have

FO5]$) < Y fle]8) <7 S 7- = < e f(0) (34)
e€O0s5

(05 152) € 3 fle] $2) S 7 Tin S 70 M <€ £(O) (35)
e€O0g

As f(-) is a non-negative submodular function and S; N Sy = @), we have

f(O) < f(O)+ fF(OUSLUS:) < fF(OUS))+ f(OUSy) (36)



By summing up Eqn. (31)-(36) and simplifying, we get
fO) < [T+ @+ pl[f(S1) + f(S2)] + 2¢- f(O)
< (2p4+2+42pe)f(S*) +2¢- f(O)

So we have f(S*) > 51525 f(0) > (5545 — €)f(O). Note that the TwinGreedyFast algorithm

has at most O(log, . £) iterations with O(n) time complexity in each iteration. Therefore, the total

€

time complexity is O(2 log ~), which completes the proof. O

Appendix C: Supplementary Materials on Experiments

C.1 Social Network Monitoring

It can be easily verified that the social network monitoring problem considered in Section 5 is a
non-monotone submodular maximization problem subject to a partition matroid constraint. We
provide additional experimental results on Barabasi-Albert (BA) random graphs, as shown in Fig. 3.
In Fig. 3, we generate a BA graph with 10,000 nodes and my = m = 100, and set b = 5 for
Fig. 3(a)-(b) and set h = 10 for Fig. 3(c)-(d), respectively. The other settings in Fig. 3 are the same
with those for ER random graph in Section 5. It can be seen that the experimental results in Fig. 3
are qualitatively similar to those on the ER random graph, and TwinGreedyFast still runs more than
an order of magnitude faster than the other three algorithms. Besides, it is observed from Fig. 3
that TwinGreedyFast and TwinGreedy perform closely to Fantom and slightly outperform RRG and
SampleGreedy on utility, while it is also possible that TwinGreedyFast/TwinGreedy can outperform
Fantom on utility in some cases.

1.2

I RRG

10k SampleGreedy

TwinGreedyFast o
|

B

=
o
S

TwinGreedy

08¢ Fantom

=¥= TwinGreedy
== Fantom
=4=_RRG

== SampleGreedy
== TwinGreedyFast 0.4}

v

/

;/.’.’H—.—-H—'——' sl /
rre B

K

€7

{ Y

1 1 1 1 1 1 1 1 00 |
50 100 150 200 250 300 350 400 450 500 50 100

k k
(a) BA, Number of Queries (h=5) (b) BA, Utility (h=5)

22

0.6

Utility

Number of Queries
=
o
>

v.5:020,

=

o
o

-,

R
Al LTSS
i i

4
i 7 7 74
Il ST ————

i, ]
ATl LT LSSSS—-————
Al T TGS —————
B B )

S S ASN]

[o.0:0:0.9.0:0.0:0,

EXr2D

NSy

o

N

o

o

m A uuunuu .
o

w

o

o

P uuuninnnuuu i g

[V
o
N
o
o
N
o
w
o
o

108

351 RRG

|
SampleGreedy
K TwinGreedyFast

TwinGreedy
Fantom

9
t
3
<P
>4
>4
L &

3.0

2.5

107 jm——e"

22

RRRRXRIIA

2.0

Al TS S
0.9.
Fa Il T -

Utility

=%¥—= TwinGreedy == SampleGreedy
== Fantom == TwinGreedyFast
== RRG 1.0

0099000,

15

Number of Queries

P

106 =

————___L8_aLG_az8—i 0.5

LIl LSS

AT
i 7
Al TS
i .
Al LTSS
i

b.o.0.0.0.0.0.0.0.0.0.00,

(s o o oseeessssssssssssssss)
1 O o NSy
oo reseesessesssssesssss.

O R O]

300 350 400 450 500 550 600 650 700 750 0.0 3

k k
(c) BA, Number of Queries (h=10) (d) BA, Utility (h=10)

o
w
[V
o
& F
o
o
o
%
o
o
o
ok
o
o

650

~
o
o
~
u
o

Figure 3: Experimental results for social network monitoring on Barabasi-Albert (BA) random graph

In Table 2, we study how the utility of TwinGreedyFast can be affected by the parameter e. The
experimental results in Table 2 reveal that, the utility of TwinGreedyFast slightly increases when



Table 2: The utility of TwinGreedyFast (x10°) vs. the parameter ¢ (BA, h = 5)

€ k=50 100 150 200 250 300 350 400 450 500

0.2 0.145 0.281 0410 0.529 0.637 0.744 0.836 0.925 1.004 1.078
0.15 0.149 0289 0.415 0.535 0.643 0.747 0.841 0.929 1.008 1.082
0.1 0.154 0291 0418 0.538 0.648 0.751 0.846 0933 1.013 1.085
0.05 0.154 0293 0.421 0.540 0.651 0.753 0.848 0.935 1.015 1.087
0.02 0.155 0294 0422 0541 0.652 0.754 0.849 0.936 1.015 1.087
0.01 0.155 0294 0422 0.541 0.652 0.754 0.849 0.936 1.015 1.087
0.005 0.155 0.294 0422 0541 0.652 0.754 0.849 0.936 1.015 1.088

e decreases, and almost does not change when ¢ is sufficiently small (e.g., € < 0.02). Therefore,
we would not suffer a great loss on utility by setting ¢ to a relatively large number in (0, 1) for
TwinGreedyFast.

C.2 Multi-Product Viral Marketing

We first prove that the multi-product viral marketing application considered in Section 5 is an instance
of the problem of non-monotone submodular maximization subject to a matroid constraint. Recall
that we need to select k seed nodes from a social network G = (V, E') to promote m products, and
each node u € V can be selected as a seed for at most one product. These requirements can be
modeled as a matroid constraint, as proved in the following lemma:

Lemma 11 Define the ground set N =V x [m]and T = {X C N : |[X| < kAVu €V :
| X NN,| < 1}, where N, = {(u,i) : i € [m]} for any w € V. Then (N, T) is a matroid.

Proof of Lemma 11: 1t is evident that (A, Z) is an independence system. Next, we prove that it
satisfies the exchange property. For any X € Z and Y € 7 satisfying | X| < |Y|, there must exist
certain v € V such that |[Y NN, | > | X NN, | (i.e., |Y N N,| = 1 and | X NN,| = 0), because
otherwise we have | X| =3 _ |[X NN, >3 oy [Y NN,| = |Y]; contradicting [ X| < [Y]. As
|X| < |Y] < k, we can add the element in Y N A, into X without violating the feasibility of Z,
which proves that (N, Z) satisfies the exchange property of matroids. |

Next, we prove that the objective function in multi-product viral marketing is a submodular function
defined on 2V:

Lemma 12 Forany S C N and S # ), define

)= fiS)+|B=Y_ D e (37)
€[m]

1€[m] i€[m] vES;

where S; = {u | (u,i) € S} and f;(-) is a non-negative submodular function defined on 2V (i.e., an
irj\];luence spread function). We also define f(0) = 0. Then f(-) is a submodular function defined on
2V,

Proof of Lemma 12:  Forany S G T C N and any = = (u,i) € N\T, we must have u ¢ S; and
u¢ T ;. Soweget f(x | T) = filu|T;)—c(u). If S # 0, then we have f(x | S) = fi(u | S;)—c(u)
and hence f(z | T) < f(z | S) due to S; C T; and the submodularity of f;(-). If S = @, then we
alsohave f(z | S) = fi(u) + B —c(u) > fi(u | T;) — c(u) = f(x | T'), which completes the proof.
(]

As we set B = m3y_ .y c(u), the objective function f(-) is also non-negative. Note that f;(A)
denotes the total expected number of nodes in V' that can be activated by A (YA C V') under the
celebrated Independent Cascade (IC) Model [34]. As evaluating f;(A) for any given A C V under
the IC model is an NP-hard problem, we use the estimation method proposed in [7] to estimate f;(A),
based on the concept of “Reverse Reachable Set” (RR-set). For completeness, we introduce this
estimation method in the following:



Given a directed social network G = (V, E) with each edge (u,v) associated with a probability
Pu,v, @ random RR-set R under the IC model is generated by: (1) remove each edge (u,v) € E
independently with probability 1 — p,, ,, and reverse (u,v)’s direction if it is not removed; (2) sample
v € V uniformly at random and set R as the set of nodes reachable from v in the graph generated by
the first step. Given a set Z of random RR-sets, any ¢ € [m] and any A C V, we define

fit)y=>_. IVl min{L,|AN R}/ Z| (38)

According to [7], f;(A) is an unbiased estimation of f;(A), and f;(-) is also a non-negative monotone
submodular function defined on 2V. Therefore, in our experiments, we generate a set Z of one
million random RR-sets and use f;() to replace f;() in the objective function shown in Eqn. (37),
which keeps f(+) as a non-negative submodular function defined on 2N,



