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Abstract

Adversarial training is a popular method to give neural nets robustness against
adversarial perturbations. In practice adversarial training leads to low robust
training loss. However, a rigorous explanation for why this happens under natural
conditions is still missing. Recently a convergence theory for standard (non-
adversarial) training was developed by various groups for very over-parametrized
nets. It is unclear how to extend these results to adversarial training because of
the min-max objective. Recently, a first step towards this direction was made
by [14] using tools from online learning, but they require the width of the net and
the running time to be exponential in input dimension d, and they consider an
activation function that is not used in practice. Our work proves convergence to low
robust training loss for polynomial width and running time, instead of exponential,
under natural assumptions and with ReLU activation. Key element of our proof is
showing that ReLU networks near initialization can approximate the step function,
which may be of independent interest.

1 Introduction

Deep neural networks trained by gradient based methods tend to change their answer (incorrectly)
after small adversarial perturbations in inputs [25]. Much effort has been spent to make deep nets
resistant to such perturbations but adversarial training with a natural min-max objective [20] stands
out as one of the most effective approaches according to [9, 7].

One interpretation of the min-max formulation is a certain two-player game between a neural network
learner and an adversary who is allowed to perturb the input within certain constraints. In each round,
the adversary generates new adversarial examples against the current network, on which the learner
takes a gradient step to decrease its prediction loss in response (see Algorithm 1).

It is empirically observed that, when the neural network is initialized randomly, this training algorithm
is efficient and computes a reasonably sized neural net that is robust on (at least) the training exam-
ples [20]. We’re interested in theoretical understanding of this phenomenon: Why does adversarial
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training efficiently find a feasibly sized neural net to fit training data robustly? In recent years, a
convergence theory has been developed for non-adversarial training: it explains the ability of gradient
descent to achieve small training loss, provided the neural nets are fairly over-parametrized. But it is
quite unclear whether similar analysis can be applied to adversarial training setting where the inputs
are perturbed. Furthermore, while the algorithm is reminiscent of well-studied no-regret dynamics
for finding equilibria in two-player zero-sum convex/concave games [17], here the game value is
training loss, and hence non-convex. Thus it is unclear if training leads to small robust training loss.

A study of such issues was initiated in [14]. For two-layer nets with quadratic ReLU activation2 they
were able to show that if input is in Rd then training can achieve robust loss at most ε provided the
net’s width is (1/ε)Ω(d) (the number of required iterations is also that large)3. This is very extreme
over-parametrization, and this curse of dimensionality is inherent to their argument. They left as an
open problem the possibility to improve the width requirement, which is the theme of our paper.

Our contributions: Under a standard and natural assumption that training data are well-separated
with respect to the magnitude of the adversarial perturbations (also verified for popular datasets in
Figure 1) we show the following:

• That there exists a two-layer ReLU neural network with width poly (d, n/ε) near Gaussian random
initialization that achieves ε robust training loss.

• That starting from Gaussian random initialization, standard adversarial training (Algorithm 1)
converges to such a network in poly (d, n/ε) iterations.

• New result in approximation theory, specifically the existence of a good approximation to the
step function by a polynomially wide two-layer ReLU network with weights close to the standard
gaussian initialization. Such approximation result may be of further use in the emerging theory of
over-parameterized nets.

Paper structure. This paper is organized as follows. In section 2, we give an overview of the
related works. In section 3, we present our notation, the adversarial training algorithm, the separability
condition and we argue why the training examples being well-separated is a natural assumption. In
section 4, we formally state our main result and in section 5 we give an overview of its proof. In
section 6 we elaborate more on the core part of the proof, which is the existence of a net close to
initialization that robustly fits the training data.

2 Related Works

Adversarial examples and defense. The seminal paper [25] discovered the existence of adversarial
examples. Since its discovery, numerous defense methods have been proposed to make neural nets
robust to perturbations constrained in a ball with respect to a certain norm (e.g. `2, `∞). These
methods span an extremely wide spectrum including certification [22, 26], input transformation [8,
15], randomization [27], adversarial training [20], etc. Recent studies on evaluating the effectiveness
of the aforementioned defenses by [9, 7] reveals that adversarial training dominates the others. One
empirical observation made in [20] is that adversarial training can always make wide nets achieve
small robust training loss.

Convergence via over-parameterization. Recently, there has been a tremendous progress in
understanding the "small training loss" phenomenon in standard (non-adversarial) training [19,
11, 4, 3, 10, 6, 5, 24, 28, 21]. A convergence theory has been developed to show that, when
randomly initialized, gradient descent and stochastic gradient descent converge to small training loss
in polynomially many iterations when the network has polynomial width in terms of the number of
training examples. These papers studied over-paramterized neural networks in the neural tangent
kernel (NTK) regime [18].

Convergence of adversarial training. There is a growing interest in analyzing convergence prop-
erties of adversarial training. [14] made a first attempt towards extending the aforementioned results in

2This is the activation function (ReLU(x))2.
3These bounds appear in Corollary C.1 in their paper.
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standard training to adversarial training. Like previous works on the convergence of (non-adversasrial)
gradient descent for over-parameterized neural networks, this work also considered the NTK regime.
First of all, they prove that adversarial training with an artificial projection step always finds a
multi-layer ReLU net that is ε-optimal within the neighborhood near initialization, but the optimal
robust loss could be large. Secondly, for two-layer quadratic ReLU net, they managed to prove
that small adversarial loss will be achieved, but crucially the required width and running time are
(1/ε)Ω(d). Their argument suffers the curse of dimensionality, because it relies on the universality
of the induced Reproducing Kernel Hilbert Space followed by a random feature approximation. In
contrast, we take a closer look on how to approximate a robust classifier with ReLU networks near
their initialization using techniques from polynomial approximation and manage to overcome this
problem. In addition, our convergence analysis applies to ReLU activated nets without additional
projection steps.

Polynomial approximation. A key technique in our proof is a polynomial approximation to the
step function on interval [−1,−η] ∪ [η, 1] which has been an important subject [1, 13, 12]. For
ε-uniform approximation, [13] constructed a polynomial with degree Θ̃ (1/η2) and further proved
the existence of a Θ̃ (1/η)-degree polynomial4 but without algorithmic construction, which was done
by [1]. Interestingly, a nearly matching lower bound on the degree had been shown by [12] much
prior to these constructions.

3 Preliminaries

3.1 Notations

For a vector x, we use ‖x‖p to denote its `p norm, and we are mostly concerned with p = 1, 2, or∞
in this paper. For a matrix W ∈ Rd×m, we use W> to denote the transpose of W , we use ‖W‖F ,
‖W‖1 and ‖W‖ to denote its Frobenius norm, entry-wise `1 norm, and spectral norm respectively.
We define ‖W‖2,∞ = maxj∈[d] ‖Wj‖2, and ‖W‖2,1 =

∑d
j=1 ‖Wj‖2, where Wj is the j-th column

ofW , for each j ∈ [m]. We useN (µ,Σ) to denote Gaussian distribution with mean µ and covariance
Σ. We denote by σ(·) the ReLU function σ(z) = max{z, 0} and by 1{E} the indicator function for
an event E.

3.2 Two-layer ReLU network

We consider a two-layer ReLU activated neural network with m neurons in the hidden layer:

f(x) =

m∑
r=1

arσ (〈Wr, x〉+ br) (1)

whereW = (W1, . . . ,Wm) ∈ Rd×m is the hidden weight matrix, b = (b1, . . . , bm) ∈ Rm is the bias
vector, and a = (a1, . . . , am) ∈ Rm is the output weight vector. We use F to denote this function
class. During adversarial training, we only update W and keep a and b at initialization values. For
this reason, we write the network as fW (x).

We have n training data S = {(x1, y1), . . . , (xn, yn)} ⊆ Rd × R. We make some standard assump-
tions about the training set. Without loss of generality, we assume that for all i ∈ [n], ‖xi‖2 = 1
and the last coordinate xi,d = 1/2 5. For this reason, we define the set X := {x ∈ Rd : ‖x‖2 =
1, xd = 1/2}. We also assume for simplicity that for all i ∈ [n], |yi| ≤ 1. The initialization of
a,W, b is a(0),W (0), b(0): the entries of W (0) and b(0) are iid random Gaussians from N (0, 1

m ), and
the entries of a(0) are iid with distribution unif

({
− 1
m1/3 ,+

1
m1/3

})
. 6

4Θ̃(·) excludes logarithmic factors.
51/2 can be padded to the last coordinate, ‖xi‖2 = 1 can always be ensured from ‖xi‖2 ≤ 1 by padding√

1− ‖x‖22. Our analysis can still hold without padding by including bias terms in the hidden layer.
6In NTK literature, a0r are distributed as N(0, ε2) (or unif({−ε,+ε})), for a small ε. Here, we need

ε = m−c, for some constant c that can take a range of values. The c that optimizes our bounds is c = 1/3.
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3.3 Adversary and robust loss

To evaluate the neural nets, we consider a loss function of the following type.
Definition 3.1 (Lipschitz convex regression loss). A loss function ` : R×R→ R is a Lipschitz convex
regression loss if it satisfies the following properties: convex in the first argument, non-negative,
1−Lipshcitz and for all y ∈ R, `(y, y) = 0.

We remark the choice of loss is for simplicity of technical presentation, following the convention in
previous works [14, 2].

For a vector z ∈ Rd and ρ > 0, let B2(z, ρ) := {x ∈ Rd : ‖x − z‖2 ≤ ρ} ∩ X . Note that in the
paper we only consider `2 perturbations for theoretical simplicity. Now we define the adversarial
model studied in this paper.
Definition 3.2 (ρ-Bounded adversary). An adversary A : X × R×F → X is ρ-bounded for ρ > 0
if they satisfy A(x, y, f) ∈ B2(x, ρ) We use A∗ to denote the worst-case ρ-bounded adversary for
loss function `, which is defined as A∗(x, y, f) := argmaxx̃∈B2(x,ρ) `(f(x̃), y) With a slight abuse
of notation, we use A(S, f) := {(A(xi, yi, f), yi)}ni=1 to denote the adversarial dataset generated
by A against a given neural net f .

We now define the robust loss of f in terms of its prediction loss on the examples generated by an
adversary.
Definition 3.3 (Training loss and its robust version). Given a training set S of n examples, the
standard training loss of a neural net f is defined as L(f, S) := 1

n

∑n
i=1 ` (f(xi), yi). Against a

ρ-bounded adversary A, we define the robust training loss w.r.t. A as LA(f) := L(f,A(S, f)) =
1
n

∑n
i=1 ` (f(A(xi, yi, f)), yi). Furthermore, we define analogously the worst-case robust training

loss as LA∗(f) := L(f,A∗(S, f)) = 1
n

∑n
i=1 maxx̃i∈B2(xi,ρ) ` (f(x̃i), yi)

3.4 Well-separated training sets

Training set being well-separated is a standard assumption in over-parametrization literature. Here
we require a slightly stronger notion since we are dealing with adversarial perturbations.
Definition 3.4 (γ-separability). We say a training set S is γ-separable with respect to a ρ-bounded
adversary, if for all i 6= j ∈ [n], ‖xi − xj‖2 ≥ δ and γ ≤ δ(δ − 2ρ).

Our results imply that the required width is polynomial for Ω(1)-separable training sets. To see why
this is a reasonable assumption, δ ≈

√
3/2 if x’s are drawn from the uniform distribution on X and

d is large, while ρ is usually at most 1/20 in practice [15]. In Figure 1 we show that on CIFAR-10,
other than probably a very small fraction of examples, all the others do not have too small minimum
distance from any example.7

Algorithm 1 Adversarial training

Input: Training set {(x1, y1), . . . , (xn, yn)}, Ad-
versary A, learning rate η, initialization
a(0),W (0), b(0).
for t = 0 to T − 1 do
S(t) := ∅
for i = 1 to n do
x̃

(t)
i = A(xi, yi, fW (t))

S(t) = S(t) ∪ (x̃
(t)
i , yi)

end for
W (t+1) = W (t) − η · ∇WL(fW (t) , S(t)).

end for
Output: {W (t)}Tt=1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1: Distribution of δi’s of randomly sampled
500 points in CIFAR-10 training set, where δi is
the smallest `2 distance between data point xi and
any other point in the training set.

7One can always exclude this small fraction from the training set and then suffer this fraction at the final
robust 0-1 loss.
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3.5 Adversarial training algorithm

The adversarial training of a neural net fW against an adversary A can be captured as the following
intertwining dynamics. In the inner loop, the adversary generates adversarial examples against the
current neural net. In the outer loop, a gradient descent step is taken on the neural net’s parameter to
decrease its prediction loss on the fresh adversarial examples.

Remark. The gradient computation ∇WL(fW (t) , S(t)) is undertaken pretending as if S(t) was
independent from W (t), i.e., without differentiating through A.

4 Main Result

We now formally present our main theorem.
Theorem 4.1. Suppose that the training set S is γ-separable, for some γ > 0. Then, for all ε ∈ (0, 1),
there exist

M0 = poly

(
d,
(n
ε

)1/γ
)

and R = poly

((n
ε

)1/γ
)

such that for every m ≥ M0, with probability at least 1 − exp
(
−Ω

(
m1/3

))
over the choice of

a(0),W (0), b(0), if we run adversarial training 1 with hyper-parameters T = Θ(ε−2R2) and η =

Θ(εm−1/3), then the output weights
(
W (t)

)T
t=1

satisfy mint∈[T ] LA (fW (t)) ≤ ε

5 Proof Overview

Pseudo-network The key property used in all recent papers that analyze gradient descent for
over-parameterized neural nets is that if a network fW (x) =

∑m
r=1 a

(0)
r σ

(
〈Wr, x〉+ b

(0)
r

)
is very

over-parameterized and its weights are close to initialization, then it is well-approximated by its
corresponding pseudo-network:

gW (x) =

m∑
r=1

a(0)
r 〈Wr −W (0)

r , x〉1
{
〈W (0)

r , x〉+ b(0)
r ≥ 0

}
However, the approximation result used for standard training is insufficient for our purposes, because
here we deal with adversarial perturbations and in order to argue that during adversarial training the
network behaves essentially as a pseudo-network, we need an approximation guarantee that holds
uniformly over all X . More specifically, in these works, it is proven that for any fixed input x, with
probability at least 1 − e− poly(logm), for W close to the initialization, |fW (x) − gW (x)| is small.
But, with this probability bound, in order to argue that supx∈X |fW (x)− gW (x)| is small via ε-net
arguments, one needs m ≥ exp(Ω(d)). In this work, we show that the guarantee for fixed x actually
holds with much higher probability: 1− exp(−Ω(m1/3)). The fact that this approximation fails with
exponentially small probability, enables us to take a union bound over a very fine-grained 1

poly(m) -net
of X , and even though it has cardinality exp(O(d logm)), the width m we need to control the overall
probability is still polynomial in d. The final step is to bound the stability of f and g under small
perturbations, even though g is not Lipschitz continuous.

Theorem 5.1. Let R ≥ 1. For all m ≥ poly(d), with probability at least 1 − exp(−Ω(m1/3))
over the choice of a(0),W (0), b(0), for all W ∈ Rd×m such that ‖W − W (0)‖2,∞ ≤ R

m2/3 ,

supx∈X |fW (x)− gW (x)| ≤ O
(

R2

m1/6

)
.

We give the proof of Theorem 5.1 at the Appendix 10.1.

Online convex optimization view The adversarial training algorithm fits the framework
of online gradient descent (OGD): at each step t, (1) the adversary chooses the loss
function Lt(W ) = L

(
fW (t) , S(t)

)
, (2) the learner incurs the cost Lt(W (t)) and updates

W (t+1) = W (t) − η∇WLt(W (t)). Online gradient descent comes with regret guarantees, when the
loss functions are convex [16], but in our case they are not. However, it can be shown that during
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adversarial training, the weights stay near initialization, which implies that the net behaves like a
pseudo-net. Moreover, pseudo-net is linear in W and so the regret guarantee holds, up to a small
approximation error. Notably, the regret is with respect to the best net in hindsight, that is also close
to initialization.

Theorem 5.2. For all ε ∈ (0, 1), R ≥ 1, there exists an M = poly
(
n,R, 1

ε

)
, such that for every

m ≥ M , with probability at least 1 − exp
(
−Ω

(
m1/3

))
over the choice of a(0),W (0), b(0), if we

run Algorithm 1 with hyper-parameters T = Θ(ε−2R2) and η = Θ(εm−1/3), then for every W ∗

such that ‖W ∗ −W (0)‖2,∞ ≤ R
m2/3 , the output weights

(
W (t)

)T
t=1

satisfy 1
T

∑T
t=1 LA (fW (t)) ≤

LA∗ (fW∗) + ε

Note that while in the LHS of the guarantee we have the robust losses w.r.t. A, in the RHS we have
the worst-case robust loss. We give the proof of Theorem 5.2 at the Appendix 10.2.

The connection with OCO was first made in [14]. However, they prove the above result for the case
of quadratic ReLU activation. For the classical ReLU, they need to enforce the closeness to the
initialization during training via a projection step, that is not used in practice.

Existence of robust network near initialization What is left to do to prove Theorem 4.1 is to
show the existence of a network fW∗ that is close to initialization and the worst-case robust loss
LA∗(fW∗) is small. [14] required m to be at least

(
1
ε

)Ω(d)
to prove this statement. Our main result

is the proof of existence of such network with width at most poly
(
d,
(
n
ε

)1/γ)
. Formally, for a

ρ-bounded adversary and γ-separable training set, we have the following theorem.

Theorem 5.3. For all ε ∈ (0, 1), there exists

M0 = poly

(
d,
(n
ε

)1/γ
)

and R = poly

((n
ε

)1/γ
)

such that for every m ≥ M0, with probability at least 1 − exp
(
−Ω

(
m1/3

))
over the choice of

a(0),W (0), b(0), there exists W ∗ ∈ Rd×m such that ‖W ∗ −W (0)‖2,∞ ≤ R
m2/3 and LA∗ (fW∗) ≤ ε.

The proof of Theorem 5.3 has the following three steps, and we provide a sketch of the implementation
of these three steps in section 6.

• We show that there is a function f∗ : X → R that has "low complexity" and for all datapoints
(xi, yi) and perturbed inputs x̃i ∈ B2(xi, r), f∗(x̃i) ≈ yi. More specifically, this function will
have the form f∗(x) =

∑n
i=1 yiq(〈xi, x〉) where q is a low-degree polynomial approximating

a step function that is 1 for 〈xi, x〉 ≈ 1 and 0 otherwise. The existence of such a low-degree
polynomial is proven using tools from approximation theory that appear in [23, 13].

• We show that since f∗ has "low complexity", there exists a pseudo-network gW∗ that is close to
initialization, has polynomial width (for γ = Ω(1)), and gW∗ ≈ f∗.

• We use Theorem 5.1 to show that for the real network fW∗ we have fW∗ ≈ gW∗ .

6 Proof of Theorem 5.3

We first provide the definition of a complexity measure for polynomials, following [2]. Note that the
definitions of that paper also have an input parameter R. In this work, we set that R to be 1.

Definition 6.1. Let c > 1 denote a sufficiently large constant. For any degree-k univariate polynomial
φ(z) =

∑k
j=0 αjz

j , and parameter ε1 > 0, we define the following two measures of complexity

C(φ, ε1) :=

k∑
j=0

cj · (1 + (
√

ln(1/ε1)/j)j) · |αj |, C(φ) := c ·
k∑
j=0

(j + 1)1.75|αj |
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6.1 Robust fitting with polynomials

In this section we show that the fact that the points xi in the training set have pairwise `2 distance
at least δ and 1/δ is not too large implies that there is a function f∗ that has "low complexity"
and robustly fits the training set: ∀i ∈ [n], x̃i ∈ B2(xi, ρ), f∗(x̃i) ≈ yi. Formally, we prove the
following lemma.

Lemma 6.2. Let D = 24
γ ln

(
48nε

)
. There exists a polynomial q : R → R with degree at

most D, size of coefficients at most O(γ−126D), such that for all j ∈ [n] and x̃j ∈ B2(xj , ρ),
|
∑n
i=1 yi · q(〈xi, x̃j〉)− yi| ≤

ε
3 .

Given the polynomial q of the lemma, we will write f∗(x) :=
∑n
i=1 yi · q(〈xi, x〉). To prove Lemma

6.2, we first show how to approximate the step function via a polynomial. More specifically, the plan
is this polynomial to take as input the inner product of two unit vectors u, v and its output to be close
to 1, if ‖u− v‖2 ≤ ρ, and 0, if ‖u− v‖2 ≥ δ − ρ.

Note that since these are unit vectors, ‖u − v‖2 ≤ ρ is equivalent to 〈u, v〉 ≥ 1 − ρ2/2, and
‖u− v‖2 ≥ δ − ρ is equivalent to 〈u, v〉 ≤ 1− (δ − ρ)2/2. We prove the following claim.

Claim 6.3. Let ε1 ∈ (0, 1) and D = 24
γ ln

(
16
ε1

)
. Then, there exists a univariate polynomial qε1(z)

with degree at most D and size of coefficients at most O(γ−126D), such that (1) ∀z ∈ [1− ρ2/2, 1],
|qε1(z)− 1| ≤ ε1, and (2) ∀z ∈ [−1, 1− (δ − ρ)2/2), |qε1(z)| ≤ ε1.

Proof. For α ∈ [−1, 1], we define

stepα(z) =


0, if − 1 ≤ z < α

1/2, if z = α

1, if α < z ≤ 1

, and sgn(z) =


−1, if − 1 ≤ z < 0

0, if z = 0

1, if 0 < z ≤ 1

Note that stepα(z) = 1
2 (sgn(z − α) + 1). We need a polynomial approximation result of the sgn

function, from [13].

Lemma 6.4 (Lemma 5.5 from [13]). Let ε1, η ∈ (0, 1) and D = 3
η ln 2

ηε1
. Then, there exists

a univariate polynomial pε1(z) =
∑k
j=0 αjz

j with degree k ≤ D and |αj | ≤ 24D, that is an ε1-
approximation of the sgn function in [−1, 1]\(−η, η), meaning that (1) ∀z ∈ [η, 1], |pε1(z)−1| ≤ ε1,
and (2) ∀z ∈ [−1,−η], |pε1(z) + 1| ≤ ε1.

[13] describe how to construct the above polynomial and bound its degree, but do not present a
bound on its coefficients. We prove Lemma 6.4 in Appendix 10.4. We can now approximate the step
function by the polynomial

qε1(z) =
pε1(2(z − α)) + 1

2
. (2)

Because of the lemma and the connection between the sgn and the stepα functions, we get that
∀z ∈ [−2 + α, 2 + α] \ [α− 2η, α+ 2η], |qε1(z)− stepα(z)| ≤ ε1/2.
Observe that qε1 also has degree k and if A = maxj{|αj |}, then the coefficient of zj in qε1 has size
at most 2k−1A

∑k
i=j

(
i
j

)
|α|i−j + 1/2 ≤ 22k−1A

1−α + 1/2 ≤ 26D−1

1−α + 1/2 . Setting η = δ(δ− 2ρ)/8 ≤
γ/8 and α = 1− ρ2

2 − 2η finishes the proof.

To finish the proof of Lemma 6.2, let q be the polynomial that we get from Claim 6.3, by setting
ε1 = ε/(3n). Let f∗(x) =

∑n
i=1 yiq(〈xi, x〉). For all i, j ∈ [n], i 6= j and x̃i ∈ B2(xi, ρ), we have

‖xj − x̃i‖2 ≥ δ − ρ. Thus, from Claim 6.3 we have |q(〈xj , x̃i〉)|, |q(〈xi, x̃i〉)− 1| ≤ ε/(3n).

|f∗(x̃i)− yi| ≤ |yi||1− q(〈xi, x̃i〉)|+
∑
j 6=i

|yj ||q(〈xj , x̃i〉)| ≤ ε/(3n) + (n− 1)ε/(3n) ≤ ε/3

7



6.2 Pseudo-Network Approximates f∗

We prove that we can use a pseudo-network with width poly
(
d,
(
n
ε

)1/γ)
to approximate f∗, uni-

formly over X .

Lemma 6.5. For all ε ∈ (0, 1), there exist M = poly
(
d,
(
n
ε

)1/γ)
and R = poly

((
n
ε

)1/γ)
such

that form ≥M , with probability at least 1−exp
(
−Ω

(√
m/n

))
over the choice of a(0),W (0), b(0),

there exists there exists a W ∗ ∈ Rd×m such that ‖W ∗ −W (0)‖2,∞ ≤ R
m2/3 and supx∈X |gW∗(x)−

f∗(x)| ≤ ε/3.

[2] prove a similar but weaker guarantee, by approximating f∗ using a pseudo-network, in expectation.
In other words, they show that for some data distribution D, Ex∼D [|gW∗(x)− f∗(x)|] is small, for
some pseudo-network gW∗ close to initialization. As we mentioned previously, dealing with the
average case is not enough and we need a uniform approximation guarantee, since we account for
adversarial perturbations of the inputs.

We give here a proof sketch for Lemma 6.5 and the full proof at the Appendix 10.5. We use a technical
result from [2]. Suppose that for a given unit vector w∗ ∈ Rd and a univariate polynomial φ, we
want to approximate the function of a unit vector x given by φ(〈w∗, x〉), via a linear combination of
random ReLU features. Intuitively, their result says that if φ has low complexity, then the weights of
this linear combination can be small.
Lemma 6.6 (Lemma 6.2 from [2]). For every univariate polynomial φ : R → R, for every ε2 ∈
(0, 1/C(φ)), there exists a function h : R2 → [−C(φ, ε2),C(φ, ε2)] such that for all w∗, x ∈
Rd with ‖w∗‖2 = ‖x‖2 = 1, we have

∣∣∣Eu∼N (0,Id),β∼N (0,1) [1{〈u, x〉+ β ≥ 0} h(〈w∗, u〉, β)] −

φ(〈w∗, x〉)
∣∣∣ ≤ ε2.

The above lemma implies f∗ can be approximated by an "infinite" pseudo-network. We use concen-
tration bounds to argue that there exists a pseudo-network gW∗ with width poly

(
d,
(
n
ε

)1/γ)
, such

that for any fixed input x ∈ X , with probability at least 1 − exp(−Ω(
√
m/n)), gW∗(x) ≈ f∗(x).

We conclude the argument via a union bound over a 1
poly(m) -net of X and a perturbation analysis for

g, similarly to the proof of Theorem 5.1.

6.3 Putting it all together

We will use Lemmas 6.2, 6.5 and Theorem 5.1 to prove Theorem 5.3. From Lemma 6.2 we get f∗.
From Lemma 6.5 we get the M , R and W ∗ and combining with Theorem 5.1, we have that as long as
m ≥ max{poly(d),M}, with probability at least p := 1− exp(−Ω(

√
m/n))− exp(−Ω(m1/3)),

there exists a W ∗ ∈ Rd×m such that ‖W ∗ −W (0)‖2,∞ ≤ R
m2/3 and for all x ∈ X , |gW∗(x) −

f∗(x)| ≤ ε/3 and |fW∗(x)− gW∗(x)| ≤ O
(

R2

m1/6

)
. Thus, for all i ∈ [n], x̃i ∈ B(xi, ρ),

`(fW∗(x̃i), yi) ≤ |fW∗(x̃i)− yi| ≤ |f∗(x̃i)− yi|+ |gW∗(x̃i)− f∗(x̃i)|+ |fW∗(x̃i)− gW∗(x̃i)|

≤ 2ε

3
+O

(
R2

m1/6

)
≤ ε

since m ≥ poly
(
d,
(
n
ε

)1/γ)
, for a large enough polynomial. Thus, we have that LA∗(f∗) ≤ ε. As

for the bound on the probability of success p, since m ≥ n3 (for large enough polynomial in the
lower bound for m), we get p ≥ 1− exp(−Ω(−m1/3)).

7 Conclusion and discussion

We have shown that under a natural separability assumption on the training data, adversarial training
on polynomially wide two-layer ReLU networks always converges in polynomial time to small robust
training loss, significantly improving previous results. This may serve as an explanation for small

8



loss achieved by adversarial training in practice. Central in our proof is an explicit construction of a
robust net near initialization, utilizing ideas from polynomial approximation.

As a future direction, it would be nice to improve the current exponential in 1/γ width requirement
to polynomial. Ideally, the width requirement would fall back to poly(1/γ) as in standard (non-
adversarial) training setting when the perturbation radius ρ approaches zero, which is missing in
our construction. We believe it may require a better understanding of the expressivity of over-
parameterized nets. Furthermore, a natural next step is to extend our results to multi-layer ReLU
networks.

8 Broader Impact

This does not present any foreseeable societal consequence.
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