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Abstract

Clustering is an important topic in algorithms, and has a number of applications in
machine learning, computer vision, statistics, and several other research disciplines.
Traditional objectives of graph clustering are to find clusters with low conductance.
Not only are these objectives just applicable for undirected graphs, they are also
incapable to take the relationships between clusters into account, which could be
crucial for many applications. To overcome these downsides, we study directed
graphs (digraphs) whose clusters exhibit further “structural” information amongst
each other. Based on the Hermitian matrix representation of digraphs, we present
a nearly-linear time algorithm for digraph clustering, and further show that our
proposed algorithm can be implemented in sublinear time under reasonable as-
sumptions. The significance of our theoretical work is demonstrated by extensive
experimental results on the UN Comtrade Dataset: the output clustering of our
algorithm exhibits not only how the clusters (sets of countries) relate to each other
with respect to their import and export records, but also how these clusters evolve
over time, in accordance with known facts in international trade.

1 Introduction

Clustering is one of the most fundamental problems in algorithms and has applications in many
research fields including machine learning, network analysis, and statistics. Data can often be
represented by a graph (e.g., users in a social network, servers in a communication network), and this
makes graph clustering a natural choice to analyse these datasets. Over the past three decades, most
studies on undirected graph clustering have focused on the task of partitioning with respect to the
edge densities, i.e., vertices form a cluster if they are better connected to each other than to the rest
of the graph. The well-known normalised cut value [25] and graph conductance [20] capture these
classical definitions of clusters, and have become the objective functions of most undirected graph
clustering algorithms.

While the design of these algorithms has received a lot of research attention from both theoretical
and applied research areas, these algorithms are usually unable to uncover higher-order structural
information among clusters in directed graphs (digraphs). For example, let us look at the international
oil trade network [29], which employs digraphs to represent how mineral fuels and oils are imported
and exported between countries. Although this highly connected digraph presents little cluster
structure with respect to a typical objective function of undirected graph clustering, from an economic
point of view this digraph clearly exhibits a structure of clusters: there is a cluster of countries mainly
exporting oil, a cluster mainly importing oil, and several clusters in the middle of this trade chain.
All these clusters are characterised by the imbalance of the edge directions between clusters, and
further present a clear ordering reflecting the overall trade pattern. This type of structure is not only
found in trade data, but also in many other types of data such as migration data and infectious disease
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spreading data. We view these types of patterns as a higher-order structure among the clusters and,
in our point of view, this structural information could be as important as the individual clusters
themselves.

Our contribution. In this work we study clustering algorithms for digraphs whose cluster structure
is defined with respect to the imbalance of edge densities as well as the edge directions between the
clusters. Formally, for any set of vertices S0, . . . , Sk−1 that forms a partition of the vertex set V (G)

of a digraph G, we define the flow ratio of {Sj}k−1
j=0 by

k−1∑
j=1

w(Sj , Sj−1)

vol(Sj) + vol(Sj−1)
,

where w(S, T ) ,
∑

(u,v)∈E
u∈S,v∈T

w(u, v) is the cut value from S ⊂ V to T ⊂ V and vol(S) is the sum

of degrees of the vertices in S. We say that {Sj}k−1
j=0 forms an optimal partition if this {Sj}k−1

j=0
maximises the flow ratio over all possible partitions. By introducing a complex-valued representation
of the graph Laplacian matrix LG, we show that this optimal partition {Sj}k−1

j=0 is well embedded
into the bottom eigenspace of LG. To further exploit this novel and intriguing connection, we
show that an approximate partition with bounded approximation guarantee can be computed in time
nearly-linear in the number of edges of the input graph. In the settings for which the degrees of the
vertices are known in advance, we also present a sub-linear time implementation of the algorithm.
The significance of our work is further demonstrated by experimental results on several synthetic
and real-world datasets. In particular, on the UN Comtrade dataset our clustering results are well
supported by the literature from other research fields. At the technical level, our analysis could
be viewed as a hybrid between the proof of the Cheeger inequality [6] and the analysis of spectral
clustering for undirected graphs [23], as well as a sequence of recent work on fast constructions of
graph sparsification (e.g., [26]). We believe our analysis for the new Hermitian Laplacian LG could
inspire future research on studying the clusters’ higher-order structure using spectral methods.

Related work. There is a rich literature on spectral algorithms for graph clustering. For undirected
graph clustering, the works most related to ours are [23, 25, 30]. For digraph clustering, [24]
proposes to perform spectral clustering on the symmetrised matrix A = MᵀM + MMᵀ of the
input graph’s adjacency matrix M ; [9] initiates the studies of spectral clustering on complex-valued
Hermitian matrix representations of digraphs, however their theoretical analysis only holds for
digraphs generated from the stochastic block model. Our work is also linked to analysing higher-order
structures of clusters in undirected graphs [4, 5, 31], and community detection in digraphs [7, 21].
The main takeaway is that there is no previous work which analyses digraph spectral clustering
algorithms to uncover the higher-order structure of clusters in a general digraph.

2 Preliminaries

Throughout the paper, we always assume that G = (V,E,w) is a digraph with n vertices, m edges,
and weight function w : V × V → R>0. We write u  v if there is an edge from u to v in the
graph. For any vertex u, the in-degree and out-degree of u are defined as din

u ,
∑
v:v u w(v, u) and

dout
u ,

∑
v:u v w(u, v), respectively. We further define the total degree of u by du , din

u + dout
u , and

define vol(S) ,
∑
u∈S du for any S ⊆ V . For any set of vertices S and T , the symmetric difference

between S and T is defined by S 4 T , (S \ T ) ∪ (T \ S).

Given any digraph G as input, we use M ∈ Rn×n to denote the adjacency matrix of G, where
Mu,v = w(u, v) if there is an edge u v, and Mu,v = 0 otherwise. We use A ∈ Cn×n to represent
the Hermitian adjacency matrix ofG, whereAu,v = Av,u = w(u, v) ·ωd2πke if u v, andAu,v = 0
otherwise. Here, ωd2πke is the d2πke-th root of unity, and x is the conjugate of x. The normalised
Laplacian matrix of G is defined by LG , I −D−1/2AD−1/2, where the degree matrix D ∈ Rn×n
is defined by Du,u = du, and Du,v = 0 for any u 6= v. We sometimes drop the subscript G if the
underlying graph is clear from the context.

For any Hermitian matrix A ∈ Cn×n and non-zero vector x ∈ Cn, the Rayleigh quotientR(A, x) is
defined asR(A, x) , x∗Ax/x∗x, where x∗ is the complex conjugate transpose of x ∈ Cn. For any
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Hermitian matrix B ∈ Cn×n, let λ1(B) 6 . . . 6 λn(B) be the eigenvalues of B with corresponding
eigenvectors f1, . . . , fn, where fj ∈ Cn for any 1 6 j 6 n.

3 Encoding the flow-structure into LG’s bottom eigenspace

Now we study the structure of clusters with respect to their flow imbalance, and their relation to the bot-
tom eigenspace of the normalised Hermitian Laplacian matrix. For any set of vertices S0, . . . , Sk−1,
we say that S0, . . . , Sk−1 form a k-way partition of V (G), if it holds that

⋃
06j6k−1 Sj = V (G)

and Sj ∩ S` = ∅ for any j 6= `. As discussed in Section 1, the primary focus of the paper is to study
digraphs in which there are significant connections from Sj to Sj−1 for any 1 6 j 6 k − 1. To
formalise this, we introduce the notion of flow ratio of {Sj}k−1

j=0 , which is defined by

ΦG (S0, . . . , Sk−1) ,
k−1∑
j=1

w(Sj , Sj−1)

vol(Sj) + vol(Sj−1)
. (1)

We call this k-way partition {Sj} an optimal clustering if the flow ratio given by {Sj} achieves the
maximum defined by

θk(G) , max
S0,...,Sk−1

∪Si=V,Sj∩S`=∅

ΦG (S0, . . . , Sk−1) . (2)

Notice that, for any two consecutive clusters Sj and Sj−1, the value w(Sj , Sj−1) ·
(vol(Sj) + vol(Sj−1))

−1 evaluates the ratio of the total edge weight in the cut (Sj , Sj−1) to the total
weight of the edges with endpoints in Sj or Sj−1; moreover, only k − 1 out of 2 ·

(
k
2

)
different cuts

among S0, . . . , Sk−1 contribute to ΦG(S0, . . . , Sk−1) according to (1). We remark that, although the
definition of ΦG(S0, . . . , Sk−1) shares some similarity with the normalised cut value for undirected
graph clustering [25], in our setting an optimal clustering is the one that maximises the flow ratio.
This is in a sharp contrast to most objective functions for undirected graph clustering, whose aim is to
find clusters of low conductance2. In addition, it is not difficult to show that this problem is NP-hard
since, when k = 2, our problem is exactly the MAX DICUT problem studied in [15].

To study the relationship between the flow structure among S0, . . . , Sk−1 and the eigen-structure of
the normalised Laplacian matrix of the graph, we define for every optimal cluster Sj (0 6 j 6 k− 1)

an indicator vector χj ∈ Cn by χj(u) ,
(
wd2π·ke

)j
if u ∈ Sj and χj(u) = 0 otherwise. We further

define the normalised indicator vector of χj by

χ̂j ,
D1/2χj
‖D1/2χj‖

,

and set

y ,
1√
k

k−1∑
j=0

χ̂j . (3)

We highlight that, due to the use of complex numbers, a single vector y is sufficient to encode the
structure of k clusters: this is quite different from the case of undirected graphs, where k mutually
perpendicular vectors are needed in order to study the eigen-structure of graph Laplacian and the
cluster structure [20, 23, 30]. In addition, by the use of roots of unity in (3), different clusters are
separated from each other by angles, indicating that the use of a single eigenvector could be sufficient
to approximately recover k clusters. Our result on the relationship between λ1(LG) and θk(G) is
summarised as follows:
Lemma 3.1. Let G = (V,E,w) be a weighted digraph with normalised Hermitian Laplacian
LG ∈ Cn×n. Then, it holds that λ1(LG) 6 1− 4

k ·θk(G). Moreover, θk(G) = k/4 if G is a bipartite
digraph with all the edges having the same direction, and θk(G) < k/4 otherwise.

2It is important to notice that, among 2 ·
(
k
2

)
cuts formed by pairwise different clusters, only (k − 1) cut

values contribute to our objective function. If one takes all of the 2 ·
(
k
2

)
cut values into account, the objective

function would involve 2 ·
(
k
2

)
terms. However, even if most of the 2 ·

(
k
2

)
terms are much smaller than the

ones along the flow, their sum could still be dominant, leaving little information on the structure of clusters.
Therefore, we should only take (k − 1) cut values into account when the clusters present a flow structure.
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Notice that the bipartite graph G with θk(G) = k/4 is a trivial case for our problem; hence, without
lose of generality we assume θk(G) < k/4 in the following analysis. To study how the distribution
of eigenvalues influences the cluster structure, similar to the case of undirected graphs we introduce
the parameter γ defined by

γk(G) ,
λ2

1− (4/k) · θk(G)
.

Our next theorem shows that the structure of clusters in G and the eigenvector corresponding to
λ1(LG) can be approximated by each other with approximation ratio inversely proportional to γk(G).

Theorem 3.2. The following statements hold: (1) there is some α ∈ C such that the vector f̃1 = αf1

satisfies ‖y − f̃1‖2 6 1/γk(G); (2) there is some β ∈ C such that the vector ỹ = βy satisfies
‖f1 − ỹ‖2 6 1/ (γk(G)− 1).

4 Algorithm

In this section we discuss the algorithmic contribution of the paper. In Section 4.1 we will describe
the main algorithm, and its efficient implementation based on nearly-linear time Laplacian solvers;
we will further present a sub-linear time implementation of our algorithm, assuming the degrees of
the vertices are known in advance. The main technical ideas used in analysing the algorithms will be
discussed in Section 4.2.

4.1 Algorithm Description

Main algorithm. We have seen from Section 3 that the structure of clusters is approximately
encoded in the bottom eigenvector of LG. To exploit this fact, we propose to embed the vertices
of G into R2 based on the bottom eigenvector of LG, and apply k-means on the embedded points.
Our algorithm, which we call SimpleHerm, only consists of a few lines of code and is described as
follows: (1) compute the bottom eigenvector f1 ∈ Cn of the normalised Hermitian Laplacian matrix
LG of G; (2) compute the embedding {F (v)}v∈V [G], where F (v) , 1√

dv
· f1(v) for any vertex v;

(3) apply k-means on the embedded points {F (v)}v∈V [G].

We remark that, although the entries of LG are complex-valued, some variant of the graph Laplacian
solvers could still be applied for our setting. For most practical instances, we have k = O(logc n)
for some constant c, in which regime our proposed algorithm runs in nearly-linear time3. We refer a
reader to [22] on technical discussion on the algorithm of approximating f1 in nearly-linear time.

Speeding-up the runtime of the algorithm. Since Ω(m) time is needed for any algorithm to read
an entire graph, the runtime of our proposed algorithm is optimal up to a poly-logarithmic factor.
However we will show that, when the vertices’ degrees are available in advance, the following
sub-linear time algorithm could be applied before the execution of the main algorithm, and this will
result in the algorithm’s total runtime to be sub-linear in m.

More formally, our proposed sub-linear time implementation is to construct a sparse subgraph H of
the original input graph G, and run the main algorithm on H instead. The algorithm for obtaining
graphH works as follows: every vertex u in the graphG checks each of its outgoing edges e = (u, v),
and samples each outgoing edge with probability

pu(u, v) , min
{
w(u, v) · α · log n

λ2 · dout
u

, 1

}
;

in the same time, every vertex v checks each of its incoming edges e = (u, v) with probability

pv(u, v) , min
{
w(u, v) · α · log n

λ2 · din
v

, 1

}
,

where α ∈ R>0 is some constant which can be determined experimentally. As the algorithm
goes through each vertex, it maintains all the sampled edges in a set F . Once all the edges have

3Given any graph G with n vertices and m edges as input, we say an algorithm runs in nearly-linear time if
the algorithm’s runtime is O(m · logc n) for some constant c.
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been checked, the algorithm returns a weighted graph H = (V, F,wH), where each sampled edge
e = (u, v) has a new weight defined by wH(u, v) = w(u, v)/pe. Here, pe is the probability that
e is sampled by one of its endpoints and, for any e = (u, v), we can write pe as pe = pu(u, v) +
pv(u, v)− pu(u, v)pv(u, v).

4.2 Analysis

Analysis of the main algorithm. Now we analyse the proposed algorithm, and prove that running
k-means on {F (v)}v∈V [G] is sufficient to obtain a meaningful clustering with bounded approximation
guarantee. We assume that the output of a k-means algorithm is A0, . . . , Ak−1. We define the cost
function of the output clustering A0, . . . , Ak−1 by

COST(A0, . . . , Ak−1) , min
c0,...,ck−1∈C

k−1∑
j=0

∑
u∈Aj

du‖F (u)− cj‖2,

and define the optimal clustering by

∆2
k , min

partition A0,...Ak−1

COST(A0, . . . , Ak−1).

Although computing the optimal clustering for k-means is NP-hard, we will show that the cost value
for the optimal clustering can be upper bounded with respect to γk(G). To achieve this, we define k
points p(0), . . . , p(k−1) in C, where p(j) is defined by

p(j) =
β√
k
·

(ωd2π·ke)
j√

vol(Sj)
, 0 6 j 6 k − 1. (4)

We could view these p(0), . . . , p(k−1) as approximate centers of the k clusters, which are separated
from each other through different powers of ωd2π·ke.

Our first lemma shows that the total distance between the embedded points from every Sj and their
respective centers p(j) can be upper bounded, which is summarised as follows:

Lemma 4.1. It holds that
∑k−1
j=0

∑
u∈Sj

du ·
∥∥F (u)− p(j)

∥∥2
6 (γk(G)− 1)−1.

Since the cost value of the optimal clustering is the minimum over all possible partitions of the
embedded points, by Lemma 4.1 we have that ∆2

k 6 (γk(G)− 1)−1. We assume that the k-means
algorithm used here achieves an approximation ratio of APT. Therefore, the output A0, . . . , Ak−1 of
this k-means algorithm satisfies COST(A0, . . . , Ak−1) 6 APT

/
(γk(G)− 1).

Secondly, we show that the norm of the approximate centre of each cluster is inversely proportional
to the volume of each cluster. This implies that larger clusters are closer to the origin, while smaller
clusters are further away from the origin.

Lemma 4.2. It holds for any 0 6 j 6 k − 1 that
∥∥p(j)

∥∥2
= ‖β‖2 · (k · vol(Sj))

−1.

Thirdly, we prove that the distance between different approximate centres p(j) and p(`) is inversely
proportional to the volume of the smaller cluster, which implies that the embedded points of the
vertices from a smaller cluster are far from the embedded points from other clusters. This key fact
explains why our algorithm is able to approximately recover the structure of all the clusters.

Lemma 4.3. It holds for any 0 6 j 6= ` 6 k − 1 that
∥∥p(j) − p(`)

∥∥2
> ‖β‖2

3k3·min{vol(Sj),vol(S`)} .

Combining these three lemmas with some combinatorial analysis, we prove that the symmetric
difference between every returned cluster by the algorithm and its corresponding cluster in the
optimal partition can be upper bounded, since otherwise the cost value of the returned clusters would
contradict Lemma 4.1.
Theorem 4.4. Let G = (V,E) be a digraph, and S0, . . . , Sk−1 be a k-way partition of V [G]
that maximises the flow ratio ΦG(S0, . . . , Sk−1). Then, there is an algorithm that returns a k-
way partition A0, . . . , Ak−1 of V [G]. Moreover, by assuming Aj corresponds to Sj in the optimal
partition, it holds that vol(Aj4Sj) 6 εvol(Sj) for some ε = 48k3 ·(1+APT)

/
(γk(G)− 1) 6 1/2.
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We remark that the analysis of our algorithm is similar with the work of [23]. However, the analysis
in [23] relies on k indicator vectors of k clusters, each of which is in a different dimension of Rn;
this implies that k eigenvectors are needed in order to find a good k-way partition. In our case, all the
embedded points are in R2, and the embedded points from different clusters are mainly separated by
angles; this makes our analysis slightly more involved than [23].

Analysis for the speeding-up subroutine. We further analyse the speeding-up subroutine de-
scribed in Section 4.1. Our analysis is very similar with [27], and the approximation guarantee of our
speeding-up subroutine is as follows:

Theorem 4.5. Given a digraph G = (V,E) as input, the speeding-up subroutine computes a
subgraph H = (V, F ) of G with O((1/λ2) · n log n) edges. Moreover, with high probability, the
computed sparse graph H satisfies that θk(H) = Ω(θk(G)), and λ2(LH) = Ω(λ2(LG)).

5 Experiments

In this section we present the experimental results of our proposed algorithm SimpleHerm on both
synthetic and real-world datasets, and compare its performance against the previous state-of-the-
art. All our experiments are conducted with an ASUS ZenBook Pro UX501VW with an Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz with 12GB of RAM.

We will compare SimpleHerm against the DD-SYM algorithm [24] and the Herm-RW algorithm [9].
Given the adjacency matrix M ∈ Rn×n as input, the DD-SYM algorithm computes the matrix
A = MᵀM +MMᵀ, and uses the top k eigenvectors of a random walk matrix D−1A to construct
an embedding for k-means clustering. The Herm-RW algorithm uses the imaginary unit i to represent
directed edges and applies the top dk/2e eigenvectors of a random walk matrix to construct an
embedding for k-means. Notice that both of the DD-SYM and Herm-RW algorithms involve the use
of multiple eigenvectors, and DD-SYM requires computing matrix multiplications, which makes it
computationally more expensive than ours.

5.1 Results on Synthetic Datasets

We first perform experiments on graphs generated from the Directed Stochastic Block Model (DSBM)
which is introduced in [9]. We introduce a path structure into the DSBM, and compare the performance
of our algorithm against the others. Specifically, for given parameters k, n, p, q, η, a graph randomly
chosen from the DSBM is constructed as follows: the overall graph consists of k clusters S0, . . . , Sk−1

of the same size, each of which can be initially viewed as a G(n, p) random graph. We connect edges
with endpoints in different clusters with probability q, and connect edges with endpoints within the
same cluster with probability p. In addition, for any edge (u, v) where u ∈ Sj and v ∈ Sj+1, we set
the edge direction as u v with probability η, and set the edge direction as v  u with probability
1 − η. For all other pairs of clusters which do not lie along the path, we set their edge directions
randomly. The directions of edges inside a cluster are assigned randomly.

As graphs generated from the DSBM have a well-defined ground truth clustering, we apply the
Adjusted Rand Index (ARI) [14] to measure the performance of different algorithms. We further set
p = q, since this is one of the hardest regimes for studying the DSBM. In particular, when p = q,
the edge density plays no role in characterising the structure of clusters, and the edges are entirely
defined with respect to the edge directions.

We set n = 1000, and k = 4. We set the value of p to be between 0.5 and 0.8, and the value of η to
be between 0.5 and 0.7. As shown in Figure 1, our proposed SimpleHerm clearly outperforms the
Herm-RW and the DD-SYM algorithms.

Next, we study the case of n = 2000 and k = 8, but the structure of clusters presents a more
significant path topology. Specifically, we assume that any pair of vertices within each cluster are
connected with probability p ∈ (0.05, 0.1); moreover, all the edges crossing different clusters are
along the cuts (Sj , Sj+1) for some 0 6 j 6 k − 2. By setting η ∈ (0.65, 1), our results are reported
in Figure 2. From these results, it is easy to see that, when the underlying graph presents a clear flow
structure, our algorithm performs significantly better than both the Herm-RW and DD-SYM algorithms,
for which multiple eigenvectors are needed.
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Figure 1: n = 1000 and k = 4. Average ARIs over 5 runs of different algorithms, with respect to different
values of p and η.
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Figure 2: n = 2000 and k = 8. Average ARIs over 5 runs of different algorithms, with respect to different
values of p and η.

5.2 Results on the UN Comtrade Dataset

We compare our proposed algorithm against the previous state-of-the-art on the UN Comtrade
Dataset [29]. This dataset consists of the import-export tradeflow data of 97 specific commodities
across N = 246 countries and territories over the period 1964 – 2018. The total size of the data in
zipped files is 99.8GB, where every csv file for a single year contained around 20,000,000 lines.

Pre-processing. As the pre-processing step, for any fixed commodity c and any fixed year, we
construct a directed graph as follows: the constructed graph has N = 246 vertices, which correspond
to 246 countries and territories listed in the dataset. For any two vertices j and `, there is a directed
edge from j to ` if the export of commodity c from country j to ` is greater than the export from `
to j, and the weight of that edge is set to be the absolute value of the difference in trade, i.e., the
net trade value between ` and j. Notice that our construction ensures that all the edge weights are
non-negative, and there is at most one directed edge between any pair of vertices.

Result on the International Oil Trade Industry. We first study the international trade for mineral
fuels, oils, and oil distillation product in the dataset. The primary reason for us to study the
international oil trade is due to the fact that crude oil is one of the highest traded commodities
worldwide [2], and plays a significant role in geopolitics (e.g., 2003 Iraq War). Many references
in international trade and policy making (e.g., [3, 10, 11]) allow us to interpret the results of our
proposed algorithm.

Following previous studies on the same dataset from complex networks’ perspectives [13, 32], we
set k = 4. Our algorithm’s output around the period of 2006–2009 is visualised in Figure 3. We
choose to highlight the results between 2006 and 2009, since 2008 sees the largest post World Ward
II oil shock after the economic crisis [18]. As discussed earlier, our algorithm’s output is naturally
associated with an ordering of the clusters that optimises the value of Φ, and this ordering is reflected
in our visualisation as well. Notice that such ordering corresponds to the chain of oil trade, and
indicates the clusters of main export countries and import countries for oil trade.

From Figure 3, we see that the output of our algorithm from 2006 to 2008 is pretty stable, and this is in
sharp contrast to the drastic change between 2008 and 2009, caused by the economic crisis. Moreover,
many European countries move across different clusters from 2008 to 2009. The visualisation results
of the other algorithms are less significant than ours.

We further show that this dynamic change of clusters provides a reasonable reflection of international
economics. Specifically, we compute the clustering results of our SimpleHerm algorithm on the same
dataset from 2002 to 2017, and compare it with the output of the DD-SYM algorithm. For every two
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Figure 3: The clustering result for international trade from 2006 to 2009, where k = 4. Red countries form
start of the trade chain, and yellow countries the end of the trade chain. Countries coloured white have no data.
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Figure 4: Comparison of the symmetric difference of the returned clusters between two consecutive years.

consecutive years, we map every cluster to its “optimal” correspondence (i.e., the one that minimises
the symmetric difference between the two). We further compute the total symmetric difference
between the clustering results for every two consecutive years, and our results are visualised in
Figure 4. As shown in the figure, our algorithm has notable changes in clustering during 2004/2005
and 2008/2009 respectively. The peak around 2004/2005 might be a delayed change as a consequence
of the Venezuelan oil strike and the Iraq war of 2003. Both the events led to the decrease in oil
barrel production by 5.4 million barrels per day [16]. The peak around 2008/2009 is of course due to
the economic crisis. These peaks correspond to the same periods of cluster instability found in the
complex network analysis literature [1, 33], further signifying our result4. Compared to our algorithm,
the clustering result of the DD-SYM algorithm is less stable over time.

Result on the International Wood Trade. We also study the international wood trade net-
work (IWTN). This network looks at the trade of wood and articles of wood. Although the IWTN is
less studied than the International Oil Trade Industry in the literature, it is nonetheless the reflection
of an important and traditional industry and deserves detailed analysis. Wood trade is dependent on
a number of factors, such as the amount of forest a country has left, whether countries are trying
to reintroduce forests, and whether countries are deforesting a lot for agriculture (e.g., Amazon
rainforest in Brazil) [17].

4We didn’t plot the result between 2016 and 2017, since the symmetric difference for the DD-SYM algorithm
is 107 and the symmetric difference for the SimpleHerm algorithm is 17. We believe this is an anomaly for
DD-SYM, and plotting this result in the same figure would make it difficult to compare other years’ results.
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Figure 5: Change in clustering of SimpleHerm of the IWTN from 2006 to 2009 with k = 4. Clusters are
labelled according to their position in the ordering that maximises the flow ratio between the 4 clusters. Red
countries form start of the trade chain, and yellow countries the end of the trade chain. Countries coloured in
white have no data.

Figure 5 visualises the clusters from 2006 to 2009. As we can see, the structure of clusters are
stable in early years, and the first cluster contains countries with large forests such as Canada, Brazil,
Russia, Germany, and China. However, there is a significant change of the cluster structure from 2008
to 2009, and countries in Eastern Europe, the Middle East and Central Asia move across different
clusters.

5.3 Result on the Data Science for COVID-19 Dataset

The Data Science for COVID-19 Dataset (DS4C) [19] contains information about 3519 South Korean
citizens infected with COVID-19. Here, digraphs are essential to represent how the virus is transmitted
among the individuals, and the clusters with high ratio of out-going edges represent the communities
worst hit by the virus. We first identify the largest connected component of the infection graph, which
consists of 67 vertices and 66 edges, and run our algorithm on the largest connected component. By
setting k = 4, our algorithm manages to identify a super-spreader as a single cluster, and the path of
infection between groups of people along which most infections lie.

6 Broader Impact

The primary focus of our work is efficient clustering algorithms for digraphs, whose clusters are
defined with respect to the edge directions between different clusters. We believe that our work could
have long-term social impact. For instance, when modelling the transmission of COVID-19 among
individuals through a digraph, the cluster (group of people) with the highest ratio of out-going edges
represents the most infectious community. This type of information could aid local containment
policy. With the development of many tracing Apps for COVID-19 and a significant amount of
infection data available in the near future, our studied algorithm could potentially be applied in this
context. In addition, as shown by our experimental results on the UN Comtrade Dataset, our work
could be employed to analyse many practical data for which most traditional clustering algorithms do
not suffice.
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