
Simplify and Robustify Negative Sampling for
Implicit Collaborative Filtering

Jingtao Ding1∗ Yuhan Quan1 Quanming Yao1,2 Yong Li1 Depeng Jin1

1Department of Electronic Engineering, Tsinghua University,
24Paradigm Inc.

A Comparison Between Different Approaches

A.1 General Machine Learning Approaches

Learning an implicit CF model from the positive-only data is also related to Positive-Unlabeled (PU)
learning and learning from noisy labels, as the rest unobserved instances are unlabeled and noisy.
Motivated by these general machine learning approaches, this paper formulates the negative sampling
problem as efficient learning from unlabeled data with the presence of noisy labels, and pays more
attention on those true negative instances hidden inside the massive unlabeled data. The following
table and review on literatures discuss the differences between different approaches that can be
adapted for this problem.

Approaches Learning from
Positive-Unlabeled Data Learning from Noisy Labels Negative Sampling

Positive/Negative
Class Prior

known or estimated from
data [14, 31] unknown unknown

Assumption on
Unlabeled Data

positive or negative labels
[15, 23]

negative labels with noise
[22, 32]

unobserved
[27, 30, 34]

Handling
Uncertainty of
Unlabeled Data

minimizing the empirical
risk estimator [13, 23]

manually designing [2, 25]
or automated learning the

instance weight [22, 32, 36]

sampling unobserved
instances as negative

labels [27, 30, 34]

Learning from Positive-Unlabeled Data. Since implicit feedback data contain positive instances
only, the implicit CF problem is also related to learning from positive-unlabeled (PU) data. PU
learning formulates the problem as a binary classification, accounting for the fact that both positive
and negative labels exist in the unlabeled data [13, 15, 23]. However, it normally requires an accurate
estimation of the class-prior, which is challenging in real-world data [14, 31]. Moreover, a direct
optimization on the whole unlabeled data is generally inefficient, especially for implicit CF, where an
efficient training approach supporting large-scale data is necessary [23, 35]. In our proposed solution,
above issues are avoided by efficiently sampling negative instances from the unlabeled data and,
motivated by the idea of PU learning, we carefully distinguish those true negative instances from
others.

Learning from Noisy Labels. By regarding unobserved instances as a combination of true negative
labels and noisy labels, another choice is adapting the implicit CF into learning from noisy labels.
Typical learning approaches include curriculum learning [2], self-pace learning [25] and instance
re-weighting [22, 32, 36]. The first two approaches prefer easier instances during training process
so as to improve robustness, while these easy instances may be ineffective for learning a CF model.
Without prior information about the noisy labels, instance re-weighting approach learns the weight

∗The first three authors have equal contributions.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

of each instance with bi-level optimization on training and validation data [22, 32, 36]. However,
the size of unlabeled data in implicit CF can approach to nearly a product of user count and item
count, making above non-sampling approach become unaffordable in terms of learning efficiency.
Therefore, this work focuses on negative sampling and aims to handle noisy labels correctly at the
same time.

A.2 Specific Negative Sampling Approaches

Negative sampling approaches have also been widely adopted in other domains of embedding
learning for text, graph, etc. Motivated by these works that tend to leverage a simple model for
capturing negative sampling distribution, we design a memory-based model that simply maintains the
promising candidates with large scores. More importantly, we propose to robustify negative sampling
by emphasizing high-variance samples, which is novel in both CF and other domains. The following
table and review on literatures discuss the differences between different approaches.

Domain Text Graph Knowledge Graph Collaborative Filtering

Learning
Objective

semantic word
relationships node proximities

fact composed of
head/tail entity and

relation

user preferences among
items

Vanilla
Sampling
Strategy

frequency-based
[27]

degree-based
[30, 37]

uniform [4],
bernoulli [41]

uniform [34],
popularity-based [10, 42]

Improving
Sample
Quality

GAN [5]
self-paced
learning,

GAN [16]

score-based [47],
GAN [5, 7]

score-based [33, 46],
GAN [12, 29]

Leveraging
Skewness in
Distribution

favouring frequent
words [27]

favouring
high-degree

nodes [30, 37] or
positive-alike

nodes [43]

favouring
large-scored

instances [47]
none

Handling
False

Negative
none none none avoiding the hardest

instances [44]

Negative Sampling in Other Domains. Negative sampling approaches are widely used in many
tasks like word embedding [27], graph embedding [6] and knowledge graph embedding [39]. In
terms of capturing the distribution of negative instances, these applications generally requires a rather
simple model. For example, Word2Vec [27] sets the negative sampling distribution proportional
to the 3/4 power of word frequency, which favours those frequent words. Later works on graph
embedding [30, 37] readily keep this skewed distribution by adapting it to the node degree. Similarly
in knowledge graph, it has been observed that negative instances with large scores are important but
rare and focusing on this partial set makes the model much simpler [47]. Another recent work on
negative sampling of graph representation learning proposes that the negative sampling distribution
should be positively but sub-linearly correlated to their positive sampling distribution [43]. However,
in terms of avoiding false negative instances, none of them have tackled this problem by designing
a robust sampling approach. Since the implicit CF is a different problem where the reliability of
sampled negative instances is much harder to guarantee, we propose to reduce this risk by emphasizing
high variance samples. Meanwhile, motivated by above examples in other domains, we also leverage
a simple model to efficiently capture the distribution of negative instances which are of high-quality.

B Implementation Details

B.1 Running Environment

The experiments are conducted on a single Linux server with AMD Ryzen Threadripper
2990WX@3.0GHz, 128G RAM and 4 NVIDIA GeForce RTX 2080TI-11GB. Our proposed SRNS
is implemented in Tensorflow 1.14 and Python 3.7.

2

B.2 Baselines

We compare the SRNS with following state-of-the-art approaches: (1) Uniform [34], which uniformly
selects negative samples from the unlabeled data. (2) NNCF [10], which uses a negative sampling
distribution proportional to the 3/4 power of item popularity. A hyper-parameter s is the number of
positive samples per item. b is the number of negative samples per positive sample. (3) AOBPR [33],
which improves uniform strategy by adaptively oversampling hard instances. A hyper-parameter
λ controls the skewness of distribution ∝ exp(−rk(j|u)/λ). (4) IRGAN [38], which uses an
adversarial sampler by conducting a minimax game between the recommender and the sampler. A
hyper-parameter τ is the temperature in sampling distribution (Eq. (10) in [38]). (5) RNS-AS [12],
which leverages adversarial sampling to generate hard negative samples. A hyper-parameter Ns is
size of candidate set for sampling and τ is the temperature. (6) AdvIR [29], which exploits both
adversarial sampling and training (i.e., adding perturbation) to generate better negative samples. Ns

and τ are defined similarly as above. ε controls the perturbation size. (7) ENMF [9], as a baseline,
we also compare with an non-sampling approach that regards all the unlabeled data as negative labels
and carefully assigns instance weights. A hyper-parameter c controls above weight for a negative
instance.

B.3 Detail of MLP based r

The MLP based scoring function r(pu,qi,β) [20] takes the concatenation of pu and qi, i.e., z0 =
[pu; qi] ∈ R2F , as the input. Then there are H hidden layers, and the lth layer is defined as

zl = sigmoid(Wlzl−1 + bl), (1)

where Wl ∈ Rdl×dl−1 and bl ∈ Rdl denote the weight matrix and bias vector in this layer. Specif-
ically, d0 = 2F and we set dl = 1

2dl−1. The last layer outputs the prediction score rui, defined
as

rui = W>H+1zH + bH+1, (2)

where WH+1 ∈ RdH and bH+1 ∈ R. The learnable parameters β in this MLP based r are
{Wi,bi}(i = 1, ...,H + 1).

B.4 Hyper-parameter Tuning

Our SRNS’s hyper-parameters can be divided into three parts: (1) sampling related part, including
memory size S1, expansion size S2, temperature τ , variance-based criterion weight α, warm-start
epoch number T0. (2) r related part, including embedding dimension F and hidden layer number H .
(3) optimization related part, including learning rate lr and L2 regularization reg.

In synthetic noise experiments, since we do not explicitly split a validation set on synthetic data,
we draw two different train/test splits. The hyper-parameters are searched in the first round and
afterwards are kept constant in another round. Note that the false negative instances (F) in there two
rounds are also independent with each other, as they are simulated by random sampling from the
corresponding test set. We run each synthetic data experiment 400 epochs without early stopping and
repeat five times. The scoring function r is GMF [20]. The memory size S1/S2 are fixed as 20/20.
The temperature τ is 1. Adam optimizer with β1 = 0.9, β2 = 0.999 is used and the mini-batch size
is set to 1024. The lazy-update epoch number E = 1. The rest hyper-parameters are tuned according
to average NDCG@3 in the last 50 training epochs. Specifically, first we use grid search to find the
best group of non-sampling related hyper-parameters, i.e., (F, lr, reg), using the vanilla Uniform
method [34] as the negative sampling strategy. Then we fix (F, lr, reg) and search the rest sampling
related hyper-parameters, i.e., (α, T0), under different settings of noisy supervision (σ). See Table 4
for detailed information.

In real data experiments, we conduct the standard procedure to split train/validation/test set. We
run 400 epochs and terminate training if validation performance does not improve for 100 epochs,
which has also been repeated five times. Both GMF and MLP (defined in Appendix B.3) are tested.
Adam optimizer with β1 = 0.9, β2 = 0.999 is used and the mini-batch size is set to 1024. The
lazy-update epoch number E = 1. The embedding dimension F is set as 32 (ML-1m), 16 (Pinterest)
and 8 (Ecom), respectively. We further show similar results with different F ∈ {8, 16, 32, 64}
in Appendix C.4. The rest hyper-parameters are tuned according to the best NDCG@1 on the
validation set. Specifically, first we use grid search to find the best group of non-sampling related

3

Table 4: SRNS’s hyper-parameter exploration in synthetic noise experiments (Section 4.2)

Hyper-parameter Tuning Range Opt. (Ecom-toy) Opt. (ML100k)

lr [5, 10, 50]× 10−4 0.001 0.001
reg [0, 1, 10]× 10−3 0.0 0.001
F [8, 16, 32] 32 8
α [5.0, 10.0, 20.0, 50.0] - -
T0 [50, 100] - -

hyper-parameters, i.e., (lr, reg), using the vanilla Uniform method [34] as the negative sampling
strategy (For MLP based r we also search H). Then we fix them and search the rest sampling related
hyper-parameters, i.e., (τ, α, T0, S1, S2/S1). To ease the tuning process, we first fix α and T0 as
0 (difficulty-only sampling), then search the best (τ, S1, S2/S1). After that we fix them and search
the best group of (α, T0) (variance-based sampling). Also, we repeat above step by changing memory
size S1 to its next or previous value. For example, if current best S1 is 16, we further test 8 and 32.
Note that we do not search sampling related hyper-parameters when using MLP based r, by directly
using those for GMF. See Table 5 for detailed information.

Table 5: SRNS’s hyper-parameter exploration in real data experiments (Section 4.3)

Para. Tuning Range Opt. (Ecom) Opt. (ML1m) Opt. (Pinterest)

SRNS
GMF

lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0
τ [0.5, 1.0, 2.0, 10.0] 2.0 10.0 10.0
α [0.1, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0] 0.0 5.0 5.0
T0 [25, 50, 100] 25 50 50
S1 [2, 4, 8, 16, 32] 8 8 16

S2/S1 [1, 2, 4, 8] 2 8 4

SRNS
MLP

lr [5, 10, 50]× 10−4 0.001 0.001 -
reg [0, 1, 10, 100]× 10−4 0.001 0.01 -
H [0, 1, 2, 3] 3 3 -

As for the baselines listed in Appendix B.2, except Uniform [34] that have been tuned as above,
others have also been carefully tuned according to their validation NDCG@1. For IRGAN, RNS-AS
and AdvIR using GAN-based structure, we use a pretrained model (i.e., trained under Uniform) to
initialize. See Table 6 for detailed information.

B.5 Evaluation Metrics

As defined in Section 4.1, our used metrics, i.e., Recall and NDCG, can provide a comprehensive
evaluation of model performance. The former measures whether the ground truth item is presented on
the ranked list, while the latter measures the performance at a finer granularity by accounting for the
position of hit. The two datasets (ML-100k and Ecom-toy) used in synthetic noise experiments are
rather small, with the item count |I| between 1000∼2000, while the rest three in real data experiments
are much larger, with the highest value as 59290 (Ecom). Thus in real data experiments, we follow
a common strategy [20, 24] to fix the list length |Su| as 100, by randomly sampling 100 − |Gu|
non-interacted items, because ranking the whole item set for each user is too time-consuming during
evaluation. When reporting NDCG@k and Recall@k, we choose a rather small value of truncated
length k ∈ {1, 3}, because of following two reasons: (1) In real applications of implicit CF like
recommender systems, users tend to browse the items at first few positions of a list, making the
accuracy of rest recommended items less important. (2) In real data experiments we fix the length of
a ranked list as 100, thus choosing a large k may make this task too easy.

B.6 Variance Computation

To calculate the prediction variance std[Ppos(k|u, i)] (Eq. (4)) of each candidate instance (u, k) stored
in the memoryMu, we directly use the prediction results from previous iterations, without any extra

4

Table 6: Baselines’ hyper-parameter exploration in real data experiments (Section 4.3)

Method Para. Tuning Range Opt. (Ecom) Opt. (ML1m) Opt. (Pinterest)

Uniform lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0

NNCF

lr [5, 10, 50, 100]× 10−4 0.001 0.001 0.001
reg [0, 1, 10, 100]× 10−4 0.0 0.0 0.0
b [32, 64, 128, 256, 512, 1024, 2048] 32 2048 2048
s [1, 2, 4] 2 2 2

ENMF
lr [5, 10, 50, 100]× 10−4 0.01 0.01 0.005
reg [0, 1, 10, 100]× 10−4 0.001 0.0001 0.0
c [0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7] 0.1 0.3 0.01

AOBPR
lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.001 0.01 0.0
λ [5, 10, 20, 50, 100, 200, 500, 1000, 2000] 10 1000 2000

IRGAN
lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.001 0.001 0.001
τ [0.5, 1.0, 2.0] 2.0 1.0 1.0

RNS-AS

lr [5, 10, 50, 100]× 10−4 0.001 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.0 0.001 0.01
τ [0.5, 1.0, 2.0, 10.0] 1.0 0.5 0.5
Ns [10, 20, 30, 40] 10 10 10

AdvIR

lr [5, 10, 50, 100]× 10−4 0.0005 0.0005 0.0005
reg [0, 1, 10, 100]× 10−4 0.0 0.0001 0.001
ε [1, 10, 100]× 10−2 0.01 0.01 0.01
τ [0.5, 1.0, 2.0, 10.0] 1.0 1.0 1.0
Ns [10, 20, 30, 40] 10 10 10

forward or backward passes in the r. In our experiments, we determine the uncertainty only based on
the latest 5 epochs (Eq. (5)). In our implementation, we consider the prediction probability in the
latest few epochs, which is due to following two reasons: (1) prediction history near the beginning
period of training process is not stable for all kinds of negative instances, and thus can be excluded
from the computation. (2) this implementation makes the overhead constant (O(1)) for each sampling
operation.

In real data experiments where the datasets are much larger, it is time-consuming to compute the
prediction probability (Ppos) for all user-item pairs (|U| · |I|) at each epoch. Thus we prune the item
space for each user’s memory update process, so as to avoid logging Ppos for all items. Specifically,
for u at tth training epoch, the newly extended candidates in M̄u can only be randomly sampled from
an item set, denoted as var_setu, which has already been generated at (t− 5)th epoch. At the mean
time, for v ∈ var_setu, we log Ppos(v|u, i) values at the subsequent 5 epochs. Therefore, among u’s
memoryMu, besides the original items that have been maintained from previous epochs, the newly
added items also have the Ppos history in the latest 5 epochs, which supports the variance computation
above. In terms of the time complexity for tracking above scores, it is about O(|var_setu||U|T)
without backward computation, which should be with the same magnitude as required in sampling,
i.e., O(|R|(S1 + S2)T/E) for one epoch. As for the memory cost, the extra space with a complexity
of O(|U||var_setu|) is used for storing prediction scores, which is affordable in our experiments on
a single-machine. Note that var_setu is also generated by random sampling from u’s non-interacted
items, and its size is larger than memory size S1, but much smaller than item count |I|. Currently we
do not consider |var_setu| as a hyper-parameters for tuning, and choose a default value instead, i.e.,
3000 (ML-1m) and 600 (Pinterest, Ecom), respectively. We can further tune it to achieve the balance
between accuracy and scalability. Moreover, the size of var_setu can be reduced in a larger dataset.
Previous work in recommender system has observed that the candidate space for negative sampling
can be largely reduced by assigning each user a different set of candidates before the training [11].
For a larger dataset containing more users and items, it may be much sparser and the size of var_setu
can also be reduced.

5

C Experiment Details

C.1 Dataset Description

We choose following four raw datasets and build five datasets for performance evaluation.

• Movielens (ML)-100k2. This is a widely used movie-rating dataset containing 100,000
ratings on movies from 1 to 5. We follow the common preprocessing to convert it into
implicit feedback data, regarding those high-rated records (4 ∼ 5) as positive labels [29, 38].

• Movielens (ML)-1m3. Similarly to ML-100k, this large dataset contains 1,000,000 ratings.
After similar converting procedure, we filter out users with less than 5 records.

• Pinterest4. This implicit feedback dataset is constructed by [17] for a task of image
recommendation, and has been used for evaluating the implicit CF task [20].

• Ecommerce (Ecom). This implicit feedback dataset is a subset of users’ item-click records
in a real-word E-commerce website between 2017/06 and 2017/07. For data preprocessing,
we filter out users/items with less than 4 records, so as to overcome the problem of high
sparsity. After that, we further obtain a toy dataset, denoted as Ecom-toy, by retaining top
1,000 users and 2,000 items sorted by number of records.

C.2 Details of Figure 1

The experiment is conducted on ML-100k dataset, using the same train/test split as synthetic noise
experiments. We use GMF as the r and Uniform [34] as the negative sampling strategy. By flipping
labels of groundtruth records in the test set, we are able to obtain a set of false negative instances (FN)
that are in fact positive labeled but unobserved during the negative sampling process. Besides
uniformly sampling negative instances (UN) to update the model, we simultaneously obtain a series
of hard negative instances (HN) with different difficulty D. In following analysis, we adopt a
simple yet effective strategy to control D of a obtained HN: 1) uniformly sample D candidates from
{(u, j)|j /∈ Ru}; 2) select the negative instance with the highest value of ruj . When D gets higher,
HN becomes much harder. UN is the same as HN with D = 1.

As in Figure 1(a), we have a closer look at the negative instances’ distribution in terms of their positive-
label probabilities Ppos that are proportional to the prediction scores. This is motivated by [47] that
has observed a skewed distribution of negative instances when learning knowledge graph embeddings.
Specifically, (a) is the distribution of negative instances {(u, j)|u ∈ U , j /∈ Ru} at 5 timestamps. We
measure the complementary cumulative distribution function (CCDF) F (x) = P (Ppos ≥ x) to show
the proportion of negative instances that satisfy Ppos ≥ x. Since hard negative instances generally
have large Ppos, we compare them with those false negative instances w.r.t. Ppos (Figure 1(b)).
We use the median value (p50) to represent each set. Then in Figure 1(c), we further analyze the
possibility of using Ppos to discriminate above two sets of negative instances. Specifically, under
different hard negative sampling strategies, we calculate the label error ratio in each mini-batch,
i.e., LER = (# of false negative samples)/(# of all selected negative samples). Unlike others, false
negative instances follow the similar distribution as those positive instances in training data. Thus
the model can ideally become more and more confident about predicting them as positive instances,
and the corresponding variance of Ppos is low. Finally, to validate this, we compare Ppos’s variance
between different types of negative instances in Figure 1(d). The normalized variance is measured by
the ratio between standard deviation and mean value.

C.3 Synthetic Noise Experiments

To control the impact of false negative instances on the sampling process, we manually inject noisy
labels by slightly modifying each user’s memory M that stores S1 candidate negative instances.
Specifically, for user u, there is always an instance inMu that is randomly sampled from u’s false
negative set Fu, and this instance is also dynamically updated together withMu. As for the rest
S1 − 1 candidates inMu, they cannot be selected from Fu. To control the noise ratio, we vary

2https://grouplens.org/datasets/movielens/100k
3https://grouplens.org/datasets/movielens/1m
4https://pinterest.com

6

(a) σ = 0, ML-100k (b) σ = 0.2, ML-100k (c) σ = 0.6, ML-100k (d) σ = 0.8, ML-100k

(e) σ = 0, Ecom-toy (f) σ = 0.3, Ecom-toy (g) σ = 0.7, Ecom-toy (h) σ = 1, Ecom-toy

Figure 5: Detailed results of Figure 3: Test NDCG vs. number of epochs on two datasets, with the
error bar for STD highlighted as a shade.

Table 7: Detailed investigation of “warm-start” on ML-100k, σ = 1.0 (Figure 3(a)).

T0/α 5 10 20 50

Flat 0 0.3703±0.0033 0.3811±0.0048 0.3876±0.0054 0.4004±0.0112

Increased 50 0.3734±0.0045 0.3931±0.0097 0.3924±0.0050 0.3965±0.0099
100 0.3725±0.0111 0.3850±0.0075 0.4062±0.0073 0.3844±0.0078

Decreased 50 0.3631±0.0066 0.3677±0.0049 0.3700±0.0064 0.3623±0.0108
100 0.3620±0.0063 0.3650±0.0039 0.3710±0.0062 0.3719±0.0055

the size of false negative set by randomly sampling σ × 100 (%) from Fu (σ ∈ [0, 1]). Note that
σ = 0 indicates an “ideal” case whereMu is not influenced by Fu. In these experiments, we fix the
memory size S1 as 20.

Note that in the “ideal” case with no explicit noise, SRNS still largely outperforms in Ecom-toy
dataset, which is also reasonable given the fact that F cannot ideally cover all the false negative
instances hidden in unlabeled data.

In each figure of Figure 5, the blue curve represents the result of difficulty-only sampling strategy,
while the grey curve and orange curve both represent those of the SRNS, with the difference on
whether to linearly increase weight αt during training process. It can be clearly observed that the
“warm-start” setting of αt performs better than a fixed-value setting, as the former better leverages
prediction variance after false negative instances become stable. More detailed investigation on
different settings of αt are shown in following two tables.

Table 8: Detailed investigation of “warm-start” on Ecom-toy, σ = 0.5 (Figure 3(b)).

T0/α 5 10 20 50

Flat 0 0.2449±0.0052 0.2557±0.010 0.2525±0.0063 0.2343±0.0019

Increased 50 0.2574±0.0051 0.2702±0.0048 0.2515±0.0053 0.2329±0.0090
100 0.2464±0.0051 0.2581±0.0072 0.2636±0.0091 0.2267±0.0092

Decreased 50 0.2037±0.0064 0.2351±0.0081 0.2367±0.0091 0.2365±0.0110
100 0.2120±0.0029 0.2351±0.0062 0.2348±0.0051 0.2513±0.0053

7

(a) F , N@1, Pinterest (b) F , N@3, Pinterest (c) F , R@3, Pinterest

(d) F , N@1, Ecom (e) F , N@3, Ecom (f) F , R@3, Ecom

Figure 6: Varying embedding dimension F : Test NDCG/Recall of Uniform and SRNS approaches,
using different embedding size F , on Pinterest and Ecom, respectively.

C.4 Real Data Experiments

C.4.1 Performance on different embedding size

Figure 6 shows test NDCG of Uniform and SRNS approaches using different embedding size F . The
scoring function r is GMF. Again we can observe consistent improvement of SRNS over Uniform
when F ∈ {8, 16, 32, 64}. Although increasing F should have improved performance, we observe
instead that F = 16 performs the best on Pinterest dataset, which conforms to a previous work (Figure
4 in [20]).

C.4.2 Supplementary results on different evaluation metrics

We list the rest results (k = 5/10) in the following Table 9. It can be observed that the proposed
SRNS still outperforms various baselines.

Table 9: Performance comparison w.r.t. longer recommendation list length k.

Method Movielens-1m Pinterest
N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10

ENMF 0.3507 0.4030 0.5066 0.6682 0.4777 0.5370 0.6824 0.8643
Uniform 0.3348 0.3932 0.4884 0.6689 0.4750 0.5323 0.6766 0.8524
NNCF 0.1835 0.2302 0.2840 0.4297 0.4309 0.4925 0.6218 0.8114

AOBPR 0.3428 0.4005 0.5002 0.6780 0.4790 0.5375 0.6837 0.8631
IRGAN 0.3372 0.3957 0.4912 0.6714 0.4750 0.5327 0.6758 0.8528
RNS-AS 0.3443 0.3993 0.4992 0.6684 0.4839 0.5390 0.6832 0.8523
AdvIR 0.3445 0.3973 0.5018 0.6644 0.4843 0.5393 0.6839 0.8527

SRNS 0.3527 0.4093 0.5025 0.6712 0.4971 0.5505 0.6894 0.8531
0.57% 1.56% -0.81% -1.00% 2.64% 2.08% 0.80% -1.30%

Figure 7 shows supplementary results, w.r.t. NDCG@3 and Recall@3, of Figure 4(d)-(f), which are
similar to those findings w.r.t. NDCG@1.

C.4.3 Supplementary results on different experimental settings

Note that the literatures have two major experimental settings when transforming explicit feedbacks
into implicit ones, i.e., using only 4/5 star ratings as positive or using all ratings as positive, while
our paper adopts the first one when handling Movielens dataset. Here we also provide results for
the second setting on Movielens dataset. According to Table 10, both SRNS and RNS-AS achieve

8

(a) S1, N@3, ML-1m (b) S1, R@3, ML-1m (c) S1, N@3, Pinterest

(d) S1,R@3, Pinterest (e) S1, N@3, Ecom (f) S1, R@3, Ecom

Figure 7: Detailed results of Figure 4(e) and (f): Test NDCG@3/Recall@3 vs. SRNS’s memory size
S1, using different sampling strategies on three datasets.

the best performance, while the latter only adopts the difficulty-only strategy for sampling negatives.
Therefore, the noise of false negative instances has less impact under this setting. However, our
proposed SRNS is flexible enough to include difficulty-only strategy as a special case.

Table 10: Performance comparison of using all ratings as positive on Movislens-1m

Method Movielens-1m
N@1 N@3 N@5 R@3 R@5

ENMF 0.1891 0.3028 0.3538 0.3866 0.5108
Uniform 0.1762 0.2875 0.3375 0.3705 0.4924
NNCF 0.1086 0.1805 0.2217 0.2339 0.3346

AOBPR 0.1800 0.2904 0.3402 0.3727 0.4935
IRGAN 0.1745 0.2870 0.3357 0.3712 0.4894
RNS-AS 0.1927 0.3075 0.3547 0.3922 0.5070
AdvIR 0.1901 0.3013 0.3531 0.3843 0.5101

SRNS 0.1927 0.3077 0.3542 0.3922 0.5055
0.00% 0.07% -0.14% 0.00% -1.04%

9

