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Abstract

Batch reinforcement learning (RL) is important to apply RL algorithms to many
high stakes tasks. Doing batch RL in a way that yields a reliable new policy in
large domains is challenging: a new decision policy may visit states and actions
outside the support of the batch data, and function approximation and optimization
with limited samples can further increase the potential of learning policies with
overly optimistic estimates of their future performance. Some recent approaches
to address these concerns have shown promise, but can still be overly optimistic
in their expected outcomes. Theoretical work that provides strong guarantees on
the performance of the output policy relies on a strong concentrability assumption,
which makes it unsuitable for cases where the ratio between state-action distribu-
tions of behavior policy and some candidate policies is large. This is because, in
the traditional analysis, the error bound scales up with this ratio. We show that
using pessimistic value estimates in the low-data regions in Bellman optimality
and evaluation back-up can yield more adaptive and stronger guarantees when
the concentrability assumption does not hold. In certain settings, they can find
the approximately best policy within the state-action space explored by the batch
data, without requiring a priori assumptions of concentrability. We highlight the
necessity of our pessimistic update and the limitations of previous algorithms and
analyses by illustrative MDP examples and demonstrate an empirical comparison of
our algorithm and other state-of-the-art batch RL baselines in standard benchmarks.

1 Introduction

A key question in Reinforcement Learning is about learning good policies from off policy batch data
in large or infinite state spaces. This problem is not only relevant to the batch setting; many online
RL algorithms use a growing batch of data such as a replay buffer [24} [28]]. Thus understanding
and advancing batch RL can help unlock the potential of large datasets and may improve online RL
algorithms. In this paper, we focus on the algorithm families based on Approximate Policy Iteration
(API) and Approximate Value Iteration (AVI), which form the prototype of many model-free online
and offline RL algorithms. In large state spaces, function approximation is also critical to handle state
generalization. However, the deadly triad [35] of off-policy learning, function approximation and
bootstrapping poses a challenge for model-free batch RL. One particular issue is that the max in the
Bellman operator may pick actions in (s, a) pairs with limited but rewarding samples, which can lead
to overly optimistic value function estimates and under-performing policies [26].
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This issue has been studied from an algorithmic and empirical perspective in many ways. Different
heuristic approaches [12, 21, [17] have been proposed and shown to be effective to relieve this
weakness empirically. However the theoretical analysis of these methods is limited to tabular problem
settings, and the practical algorithms also differ substantially from their theoretical prototypes.

Other literature focuses primarily on approaches that have strong theoretical guarantees. Some
work considers safe batch policy improvement: only deploying new policies if with high confidence
they improve over prior policies. However, such work either assumes that the policy class can be
enumerated [38], which is infeasible in a number of important cases; or uses regularization with a
behavior policy [37] as a heuristic, which can disallow significantly different but better policies. On
the other hand, there are a number of formal analyses of API and AVI algorithms in batch settings with
large or infinite state and policy spaces [29,130,3,131}18,15,140]. These results make strong assumptions
about the distribution of the batch data, known as the concentrability condition. Concentrability
ensures that the ratio between the induced state-action distribution of any non-stationary policy and
the state-action distribution in the batch data is upper bounded by a constant, called the concentrability
coefficient. This is a strong assumption and hard to verify in practice since the space of policies
and their induced state-action distributions is huge. For example, in healthcare datasets about past
physician choices and patient outcomes, decisions with a poor prognosis may be very rare or absent
for a number of patient conditions. This results in a large concentration coefficient, and hence existing
performance bounds [29} 30} 5} 3] end up being prohibitively large. This issue occurs even if good
policies (such as another physician’s decision-making policy) are well supported by the dataset.

In the on-policy setting, various relaxations of the concentrability assumption have been studied. For
example, some methods [[15} (16} [1]] obtain guarantees scaling in the largest density ratio between
the optimal policy and an initial state distribution, which is a significantly milder assumption than
concentrability [34}1]]. Unfortunately, leveraging a similar assumption is not straightforward in the
fully offline batch RL setting, where an erroneous estimate of a policy’s quality in a part of the state
space not supported by data would never be identified through subsequent online data collection.

Our contributions. Given these considerations, an appealing goal is to ensure that we can output the
best possible policy which is well supported by our dataset in terms of its state-action distribution.
We achieve this goal by leveraging the idea of pessimism in face of uncertainty. Rather than assuming
concentrability on the entire policy space, we algorithmically choose to focus on policies that satisfy
a bounded density ratio assumption akin to the on-policy policy gradient methods, and successfully
compete with such policies. Our methods are guaranteed to converge to the approximately best
decision policy in this set, and our error bound scales with a parameter that defines this policy set
and controls the amount of pessimism. If the behavior data provides sufficient coverage of states
and actions visited under an optimal policy, then our algorithms output a near-optimal policy. In the
physician example and many real-world scenarios, good policies are often well-supported by the
behavior distribution even when the concentrability assumption fails.

Many recent state-of-the-art batch RL algorithms [[12} 21} [17] do not provide such guarantees and
can struggle, as we show shortly with an illustrative example. Our methods use pessimistic value
estimates for state-action pairs with insufficient data in the Bellman operators. The key insight is
that prior works also add pessimism but only based on the conditional action distribution; we instead
select among actions which have good coverage according to the marginalized support of states and
actions under the behavior dataset, and enforce pessimistic value estimates otherwise. Our policy
iteration algorithm provides the desired “doing the best with what we’ve got” guarantee, and we
provide a slightly weaker result for a value iteration method.

We then validate a practical implementation of our algorithm in a discrete task and some continuous
control benchmarks. It achieves better and more robust performance with how exploratory the data
distribution is, compared with baseline algorithms. This work makes a concrete step forward on
providing guarantees on the quality of batch RL with function approximation.

2 Problem Setting

Let M =< S, A, P, R,~, p > be a Markov Decision Process (MDP), where S, A, P, R, 7, p are
the state space, action space, dynamics model, reward model, discount factor and distribution over
initial states, respectively. A policy 7 : S — A(.A) is a conditional distribution over actions given
state. To simplify the exposition, our derivations will assume that A is discrete — the algorithm can
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Figure 1: Challenging MDPs for prior approaches. In both MDPs, the episode starts from sg and ends
after a fixed horizon, 2 or 10 respectively. The optimal policy is to reach the green state. Transition
probabilities are labeled as p on edges or are deterministic. p is the conditional probability of action
given state when generating the data. The reward distribution is labeled on the edges unless it is 0.

be generalized to continuous A straightforwardly and demonstrated in Section[6.2] A policy 7 and
MDP M together induce a joint distribution over trajectories: s, ag, 7o, $1, @1, - - . » Where sg ~ p(+),
ap ~ w(sp),rn ~ R(sp,ap), sh+1 ~ P(sp,ap). The expected discounted sum of rewards of a
policy 7 given an initial state s is V™ (s) = E [Y_;2, "7, and Q" (s, a) further conditions on
the first action being a. We assume for all possible 7, Q™ (s,a) € [0, Vinax].- We define v™ to be
the expectation of V™ (s) under initial state distribution. We are given a dataset D with n samples
drawn i.i.d. from a behavior distribution p over S x A, and overload notation to denote the marginal
distribution over states by ju(s) = >, 4 i4(s, a). Approximate value and policy iteration (AVI/API)
style algorithms fit a -function over state, action space: f : S X A — [0, Vihax]. Define the Bellman
optimality/evaluation operators T and T™ as:

(Tf)(s,a) :=r(s,a) + YEg max f(s',a")| and (T™ f)(s,a) :=71(s,a) + YEg Eqn f(s',a).

Define 7 and 7™ by replacing expectations with sample averages. Then AVI iterates fr11 < T S

API performs policy evaluation by iterating f; 1 < T fi until convergence to get fi41 followed
by a greedy update to a deterministic policy: mx41(s) = argmax, frr1(s,a).

3 Challenges for Existing Algorithms

Value-function based batch RL typically uses AVI- or API-style algorithms described above. A
standard assumption used in theoretical analysis for API and AVI is the concentrability assump-
tion [29, 30} 5] that posits: for any distribution v that is reachable for some non-stationary policy,
lv(s,a)/p(s,a)|lec < C. Note that even if C' might be small for many high value and optimal
policies in a domain, there may exist some policies which force C' to be exponentially large (in the
number of actions and/or effective horizon). Consider a two-arm bandit where the good arm has a
large probability under behavior policy. Intuitively it should be easy to find a good policy supported
by the behavior data but there exist some policies which are neither good nor supported, and the
theoretical results requires setting an upper bound C' for admitting policies choosing the bad arm.

Nevertheless, the standard concentrability assumption has been employed in many prior works on
API [22,129] and AVI [30, 31} 10} 15]]. We also observe that without algorithmic changes, the poorly
supported, low-value policies have high variance estimates in the example scenario above, and can
indeed be returned by AVI/API erroneously, suggesting that the assumption is not superfluous, but
rather correctly captures the behavior of these methods. As further evidence, these algorithms often
diverge [33|[14], potentially due to the uncontrolled extrapolations caused by both the failure of this
assumption and function approximation. Such empirical observations have helped motivate several
recent AVI (e.g. [12117]) and API (e.g. [21]) works that improve stability and performance.

One attempt in this direction follows an intuition of constraining the backups of ()-values from certain
state action pairs, and yields significant empirical improvement in several batch RL tasks. BCQL
algorithm [12] only bootstraps value estimates from actions with conditional probabilities above a
threshold under the behavior policyﬂ BEAR algorithm [17] uses distribution-constrained backups as
its prototype for theoretical analysis which, in the tabular setting, is essentially same as BCQL using
non-zero threshold. However, we find that these algorithms have failure modes even in simple MDPs
shown in Figure[I} due to the fact that the constraint in their algorithm is on p(a|s) which cannot

'For detailed discussions on the unreasonableness of concentrability, please see [[5] 341 1.
*In their tabular algorithm BCQL the threshold is zero, but we extend it to non-zero which is also more
consistent with their deep RL variant BCQ.
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Figure 2: Frequency of converging to 7* (Success Rate) for different variants of approximated
value iteration: AVI, API, BCQL [12] (with different thresholds), SPIBB [21], our algorithms (PPI,
PQI). Tabular algorithm of BEAR [17] is same as BCQL with non-zero threshold. Frequencies are
computed from 100 runs, and the change of frequencies over sample size is shown across X -axis.
Error bars are standard deviation. We use a MLE estimate as i and b = 10/sample size.

model the whole uncertainty in the state-action space and backups. Specifically, BCQL and BEAR
perform bootstrapping based on just the action probability, even if the state in question itself is less
exploredﬂ Figure [1b[shows an example where a sequence of large action probabilities can result
in an exponentially small marginalized state visitation. This causes BCQL and BEAR to bootstrap
values from infrequent states in the data, leading to bad performance as shown in Figure [2b}

SPIBB [21] follows the behavior policy in less explored state-action pairs while attempting improve-
ment everywhere else, assuming they know the behavior policy. Thus it is robust to this failure mode
when the behavior policy is known. In this paper, we do not make this assumption as it is unknown
in many settings (e.g., physicians’ decision making policy in a medical dataset). Consequently,
following the estimated behavior policy from rare transitions is dangerous as our estimates can also be
unreliable there. This can yield poor performance as shown in Figure[2al In that plot, rare events start
to appear as sample size increases and baseline algorithms begin to bootstrap unsafe values. Hence
Wwe see poor success rate as we get more behavior data. As samples size get very large all algorithms
eventually see enough data to correct this effect. Next we describe the design and underlying theory
for our new algorithms that successfully perform in these challenging MDPs (see Figure[2).

4 Pessimistic Policy Iteration and () Iteration Algorithms

Our aim is to create algorithms that are guaranteed to find an approximately optimal policy over all
policies that only visit states and actions with sufficient visitation under . In order to present the
algorithms, we introduce some useful notation and present the classical fitted @ iteration (FQI) [36]]
and fitted policy iteration (FPI) [3] algorithms which are the function approximation counterparts
of AVI and API respectively. For the FPI algorithm, let IT C (S — A(.A)) be a policy class. Let
F C (8 x A — [0, Vinax]) be a @ function class in both FQI and FPI. We assume IT and F are both
finite but can be very large (error bounds will depend on log(|F||II|)). For any function g we define
shorthand ||g||,,, to denote (E s 4)~,, 9(s, @)?)*/P. FQI updates fj . = arg min gz [|f = T fell3,,
and returns the greedy policy with respect to the final fj upon termination. FPI instead iterates
fix1 = argmingcz || f — T fi]|3,, until convergence to get fi 1 followed by the greedy policy
update to get 7,11. When a restricted policy set I1 is specified so that the greedy policy improvement
is not possible, weighted classification is used to update the policy in some prior works [9]. Since
both AVI and API suffer from bootstrapping errors in less visited regions of the MDP even in the
tabular setting, FQI and FPI approaches have the same drawback.

We now show how to design more robust algorithms by constraining the Bellman update to be only
over state action pairs that are sufficiently covered by p. Implementing such a constraint requires
access to the density function p, over an extremely large or infinite space. Given we have samples of
this distribution, several density estimation techniques [25,[27] can be used to estimate y in practice,
and here we assume we have a density function i which is an approximate estimate of y. In the
analysis section we will specify how our error bounds scale with the accuracy of ji. Given ji and a

3This corresponds to a small f(¢) in Theorem 4.2 of Kumar et al. [I7]], hence in line with their theory.



Algorithm 1 Pessimistic Policy Iteration (PPI) Algorithm 2 Pessimistic () Iteration (PQI)

1: Input: D, F, 11, i1, b 1: Input: D, F, i1, b

2: Output: 7r 2: Output: 7p

3: fort =0to 1T — 1do 3: fort =0to 1T — 1do

4: for k = 0to K do 4: fryr<—argminge » Lp(f; fi)

5: Jekr1<argming = Lp(f, frr; Te) 5: Tep1(s)—argmax,c 4 (o fiii(s,a)
6: end for 6: end for

7: T argmax o Ep[Ex [Co fixi1]]

8: end for

threshold b (as algorithm input) we define a filter function over the state-action space S x A:

C(s,a;i1,b) =1 (f(s,a) > b). (1)

For simplicity we write {(s, a; i, b) as ((s,a) and define ¢ o f(s,a) := ((s,a)f(s,a). We now
introduce our Pessimistic Policy Iteration (PPI) algorithm (Algorithm [I)), a minor modification to
vanilla FPI that constrains the Bellman backups and policy improvement step to have sufficient
support on the provided data, and enforces pessimistic value estimates elsewhere. The key is to
change the policy evaluation operator and only evaluate next step policy value over supported (s, a)
pairs, and constrain policy improvement to only optimize over supported (s, a) pairs defined by (.
We define the (-constrained Bellman evaluation operator ’7'5r as, forany f: S x A — R,

(TEf)(s,0) = 7(s,0) + Vs 3 qreq [m(a'|s")Co f(s', )] )

This reduces updates that may be over-optimistic estimates in (s’, a’)’s that are not adequately covered
by u by using the most pessimistic estimate of 0 from such pairs. There is an important difference
with SPIBB [21]], which still backs up f values (but by estimated behavior probabilities) from such
rarely visited state-action pairs: given limited data, this can lead to erroneous decisions (c.f. Fig.[2).

Given a batch dataset, we follow the common batch RL choice of least-squares residual minimiza-
tion [29] and define empirical loss of f given f’ (from last iteration) and policy =

Lo(fi fim) :=Ep (f(s,0) = — 7 Spean(@]s)Co f/(s,a).

In the policy improvement step (line[7of Algorithm([I)), to ensure that the resulting policy has sufficient
support, our algorithm applies the filter to the computed state-action values before performing
maximization, like classification-based API [9]. We maximize using the dataset D (Ep is a sample
average) and within the policy class II, which may not include all deterministic policies.

Analogous to PPI, we introduce Pessimistic ) Iteration (PQI) (Algorithm [2)) which similarly applies
pessimistic estimates in the the Bellman backups where the support from data is insufficient. Define
7T¢ to be a (-constrained Bellman optimality operator: for any f : S x A — R,

(Tcf)(s,a) :=r(s,a) + yEy [maxy o f(s', a)] . 3)

Similarly, we define the empirical loss of f given another function f’ as:

Lo(f; ) :=Ep (f(s,a) —r —ymaxgealo f/(s,a))°.

We also alter the final policy output step to only select among actions which lie in the support set
(line[5] of Algorithm [2). In Figure 2] we show that our PQI and PPI can both successfully return the
optimal policy when the data distribution covers the optimal policy in two illustrative examples where
prior approaches struggle. The threshold b is the only hyper-parameter needed for our algorithms,
which trades off the risk of extrapolation with the potential benefits of Bellman backups from more
state-action pairs seen in the batch of data. We discuss how practitioners can set b in Section [6}

5 Analysis

We now provide performance bounds on the policy output by PPI: the PQI result is similar. Complete
proofs for both are in the appendix. We start with some definitions and assumptions. Given , let nf (s)
be the marginal distribution of s, under 7, that is, 07 (s) := Pr[s, = s|n], n7(s,a) = 0} (s)7(a|s),
and " (s,a) = (1 — ) > pe o 7"nF (s, a). We make the following assumptions:

Assumption 1 (Bounded densities). For any non-stationary policy m and h > 0, nj (s,a) < U.



Assumption 2 (Density estimation error). With probability at least 1 — 6, |0 — pu||7v < €.
Assumption 3 (Completeness under 7). Vr € I, max e minge r llg — TCﬁfH%,u <er.

Assumption 4 (IT Completeness). Vf € F, minycr |Ex [( o f(s,a)] —max, (o f(s,a)|1,, < em

Assumptions [3|and ] are common but adapted to our ¢ —filtered operators, implying that the function
class chosen is approximately complete with respect to our operator and that policy class can
approximately recover the greedy policy. Assumptions|I]and [2]are novel. Assumption [2]bounds the
accuracy of estimating the state—action behavior density function from limited data: 1/+/n errors are
standard using maximum likelihood estimation for instance [42]], and the size of this error appears in
the bounds. Finally Assumption [I]that the probability/density of any marginal state distribution is
bounded is not very restrictive)’| For example, this assumption holds when the density function of
transitions p(-|s, a) and the initial state distribution are both bounded. This is always true for discrete
spaces, and also holds for many distributions in continuous spaces including Gaussian distributions.

The dataset may not have sufficient samples of state—action pairs likely under the optimal policy
in order to reliably and confidently return the optimal policy. Instead we hope and will show that
our methods will return a policy that is close to the best policy which has sufficient support in the
provided dataset. More formally, given a ( filter over state—action pairs, we define a set of policies:

Definition 1 ((-constrained policy set ). Let II&! be the set of policies S — A(A) such that
Pr(¢(s,a) = 0|m) < ec. That is, Eg g [1 ({(s,a) = 0)] < ec.

€¢ bounds the probability under a policy of escaping to state-actions with insufficient data during an
episode. Hac” adapts its size w.r.t. the filter { which is a function of the hyper-parameter b, and H‘é”
does not need to be contained in II. We now lower bound the value of the policy returned by PPI by
the value of any 7 € H‘é” up to a small error, which implies a small error w.r.t. the policy with the
highest value in H‘é” . For ease of notation, we will denote C' = U/b in our results and analysis, being

clear that C' is not assumed (as in concentrability) and is simply a function of the hyper-parameter b.

Theorem 1 (Comparison with best covered policy). When Assumptions|[I|and 2| hold, given an MDP
M, a dataset D = {(s,a,r,s")} withn samples drawn i.i.d. from p X R X P, and a Q-function class
F and a policy class 11 satisfying Assumptions([3|and[4) 7, from Algorithm/[|satisfies that w. p. at
least 1 — 36,

= = C/V2. In(|F||II| /6) 8C/er + 6CVimaxey  2Cen + 375 Winax  Vinaxec
,Uﬂ" _ vﬂ't S O max ! _|_ + a + 3 ,
e < (1-7)*vn (1—-9)° (1-7)? 1—7

for any policy 7 € H((‘J” and anyt > K. C = U/b. K is the number of policy evaluation iterations
(inner loop) and t is the number of policy improvement steps.

Proof sketch. The key is to characterize the filtration effect of the conservative Bellman operators in
terms of the resulting value function estimates. As an analysis tool, we construct an auxiliary MDP
M’ by adding one additional action a,ps in each state, leading to a zero reward absorbing state Sqps.
For a subset of policies in M’, the fixed point of our conservative operator TC" is Q™ in M’. For
that subset, we also have a bounded density ratio, thus we can provide the error bound in M’. For
any (-constrained policy, we show that it can be mapped to that subset of policies in M’ without a
substantial loss of value, and then we finish the proof to yield a bound in M. [J

We make a few remarks about the comparison between this result and prior related results below:

Remark 1 (Comparison with prior API/AVI bounds). Our results match the fast rate error bound
of API/AVI [7,132 5, 122] in their dependence on n. A better coefficient on € r can be achieved by
refining the analysis and we show this version for ease of presentation. The dependency on horizon
also matches the standard API analysis and is O(1/(1 — 7)?3). The dependency on U/b is same as
the dependency on concentrability coefficient for vanilla API analysis, but our guarantee adapts given
a hyper-parameter choice instead of imposing a worst case bound over all policies.

Remark 2 (Comparison with the theory in Kumar et al. [17]). Unlike Theorem 4.2 of Kumar et
al. [17], there is no uncontrolled f(¢)-like term. We avoid that term by being more pessimistic in
our updates and by constraining the comparator class H‘é’”. The term f(¢) is not controlled by the

*We need this assumption only because we filter based on ji instead of 5™ /1 during policy improvement.



algorithm, because a bounded overlap in the conditional action distribution given state can potentially
result in an exponentially (in horizon) small overlap in state-action joint distribution. This follows
almost the same reasoning as the fact that concentrability coefficient can be exponential in horizon
[S]. Hence, their algorithm and analysis combined with our comparator class H“C” does not recover
our guarantees (see also discussion of BEAR in Section[3)). This is also verified conceptually by our
illustrative example (b) in Figure [T

When the policy set II&! contains at least one high-value policy, Theorem 1| provides a strong
guarantee. While this does not always hold, we now provide two illustrative corollaries. One when
the optimal policy lies in HaC” and another on safe policy improvement when p itself lies in the set.
More generally, in many situations where a concentrability-based analysis might offer nearly vacuous
guarantees, we expect our theory to degrade more gracefully with the quality of the collected data.

Corollary 1 (¢ covers an optimal policy). If there exists an optimal policy 7 in M such that
Pr(u(s,a) < 2b|7*) < e. Then under the conditions in Theorem I} T, returned by Algorithm ]|
satisfies that with probability at least 1 — 36, vy > vi; — A, where A is the right hand side of
Theorem([I|and ¢¢ in A is € + Ce,,.

When the completeness assumptions holds without error and WK —1 < ¢, the error bound reduces to

ot 2 iy — O (CVI(FMI/3)/n + Cey + €) Vina/ (1 = 7)?

This is similarly tight as prior analysis assuming concentrability [19, 4]. When comparing to on-
policy policy optimization [[15}[34} [2} [13]], the constant C' is akin to the density ratio with respect to
an optimal policy in those works, though we pay an additional price on the size of densities. The
terms regarding value function completeness can be avoided by Monte-carlo estimation in on-policy
settings and there is no need for density estimation to regularize value bootstrapping either.

For PQYI, the error bound takes a similar form. However the general PQI bound of Corollary | has an
additional Bellman residual term related to 7¢ and 7*. This term arises since in value iteration, the
fixed point of 7: may no longer be the value function of the optimal policy under support, and it may
not be any policy’s value function.

Note that if we can find a b and €; such that u € IIZ! given sufficient data, then Theorem
immediately yields a policy improvement guarantee too, analogous to the tabular guarantees known
for BCQL, SPIBB and other safe policy improvement guarantees. Here, we provide the safe policy
improvement guarantees in tabular settings. The details of proof are in Appendix

Corollary 2 (Safe policy improvement — discrete state space). For finite state action spaces and
b < limin, under the same assumptions as Theorem there exist function sets F and 11 (specified in
the proof) such that 7y from Algorithm|[I|satisfies that with probability at least 1 — 36,

-~ ~ Vmax S S KVmax
vm%@(b( <| 1A, |IA>+7 )

1—7y)\ n n (1—7)?

This corollary is comparable with the safe policy improvement result in [21] in its S, A dependence.
Note that their hyper-parameter N, is analogous to bn in our result. Our dependency on 1 — v
is worse, as our algorithm is not designed for the tabular setting, and matches prior results in the
function approximation setting as remarked after Theorem I

To summarize, our analysis makes two main contributions. First, compared to prior work which
provides guarantees of the performance relative to the optimal policy under concentrability, we
provide similar bounds by only requiring that an optimal policy, instead of every policy, is well
supported by u. Second, when an optimal policy is not well supported, our algorithms are guaranteed
to output a policy whose performance is near optimal in the supported policy class.

6 Experimental Results

The key innovation in our algorithm uses an estimated ( to filter backups from unsound state-action
pairs. In Section [3| we showed how prior approaches without this can fail in some illustrative
examples. We now experiment in two standard domains — Cartpole and Mujoco, that utilize very
different (-estimation procedures. We show several experiments where the data collected ranges



from being inadequate for batch RL to complete coverage (where even unsafe batch RL algorithms
can succeed). Our algorithms return policies better than any baseline batch RL algorithm across the
entire spectrum of datasets. Our algorithms need the hyperparameter b to trade off conservatism of a
large b (where the algorithm stays at its initialization in the limit) and unfounded optimism of b = 0
(classical FQI/FPI). In discrete spaces, we can set b = ng/n where ng is our prior for the number
of samples we need for reliable distribution estimates and n is the total sample size. In continuous
spaces, we can set the threshold to be a percentile of i, so as to filter out updates from rare outliers
in the dataset. We can also run post-hoc diagnostics on the choice of b by computing the average
of ((s,m(s)) for the resulting policy 7 over the batch dataset. If this quantity is too small, we can
conclude that ( filters out too many Bellman backups and hence rerun the procedure with a lower b.

6.1 PQI in discrete spaces

We first compare PQI with AVI, BCQL [[12], SPIBB [21]] and behavior cloning (BC) in CartPole-vO0,
with a discrete state space by binning each state dimension resulting in 10% states. AVI uses a vanilla
Bellman operator to update the () function in each iteration. For BCQL, we fit a modified operator in
their Eq (10), changing the constraint ji(a|s) > 0 to allow a threshold b > 0. For SPIBB, we learn
the () function by fitting the operator in their Eq (9) (SPIBB-DQN objective). Both SPIBB and PQI
require /i(s, a) to construct the modified operator, but use different notions for being conservative.
For all algorithms, /i(s, a) and fi(a|s) are constructed using empirical counts.

Performance across epsilon Epsilon=0.3 Epsilon=0.6
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Figure 3: CartPole-v0. Left: convergent policy value across different (e-greedy) behavior policies.
Middle and Right: learning curves when € = 0.3,0.6. We allow non-zero threshold for BCQL to
subsume the tabular algorithm of BEAR [17]. Shaded regions show standard deviations over 10 runs.

We collect n = 10* transitions from an epsilon-greedy policy w.r.t a near-optimal Q function. We
report the final policy value from different algorithms for epsilon from 0.1 to 0.9 in Figure 3 (left),
and learning curves for ¢ = 0.3, 0.6 in Figure [3| (middle, right). The results are averaged over 10
random seeds. Notice that BCQL, SPIBB, and our algorithm need a threshold of p(s, a) or p(als) as
hyper-parameter. We show the results with the best threshold (in a set) of u(s, a) for PQI and SPIBB
and best threshold of i (a|s) for BCQL. We searched over a larger set of threshold for baselines than
our algorithm: {5e-4, le-3, 5e-3 } for PQI, {1e-4, 5e-4, 1e-3, 5e-3, le-2} for SPIBB and {0, 0.05,
0.1, 0.2} for BCQL. Our algorithm picks larger b for smaller e which matches the intuition of more
conservatism when the batch dataset is not sufficiently diverse. The results show that our algorithm
achieves good performance among all different € values, and is always better than or close to both
behavior cloning and vanilla FQI unlike other baselines.

6.2 PQL in continuous spaces

The core argument for PQI is that (-filtration should focus on state-action [i(s, a) distributions rather
than fi(a|s). To test this argument in a more complex domain, we introduce Pessimistic Q Learning
(PQL) for continuous action spaces which incorporates our (-filtration on top of the BCQ architecture
[12]]. PQL (like BCQ) employs an actor in continuous action space and a variational auto-encoder
(VAE) to approximate u(als). We use an additional VAE to fit the marginal state distribution in
the dataset. Since the BCQ architecture already prevents backup from (s, a) with small x(a|s), we
construct an additional filter function {(s) on state space by ((s) = 1(ELBO(s) > P») where
ELBO(s) is the evidence lower bound from VAE, and P, is the ond percentile of ELBO values of s
in the whole batch. Thus the major difference between PQL and BCQ is that PQL applies additional
filtration ¢(s’) to the update from s’ in Eq (13) in [12]. Additionally, PQL is a @) learning algorithm
instead of actor-critic algorithm. That means in each backup step, we sample a batch of a’ from the
VAE approximating y(a|s) then compute max of next Q values.



Task Name | SAC  BC BCQ BEARf|| PQL

halfcheetah-medium | -4.3 36.1 40.7 38.6 || 38.4
hopper-medium 0.8 29.0 545 476 | 75.2
walker2d-medium 0.9 6.6 53.1 33.2 || 68.1

Table 1: The final policy after SO0K training steps in 3 D4RL tasks. The values are normalized with
respect to the random policy (0) and expert policy (100). The results of our algorithm is averaged
over 5 random seeds and the results of other algorithm are from D4RL evaluations.

We compare PQL with several state-of-the-art batch RL algorithms as well as several baselines, in a
subset of tasks in the D4RL batch RL benchmark [[11] (halfcheetah-medium, hopper-medium, and
walker2d-medium). The data is collected by rolling out a partially trained policy using SAC for IM
steps in the corresponding MuJoCo environment. Results are given in Table[I] It shows that our
algorithm is close to prior methods in the half-cheetah domain and better in the other two. As a
proof-of-concept experiment, we highlight here the importance of conservative constraints on the
state distribution, not only in theory but also for more practical deep RL algorithms.

7 Related Work

Research in batch RL focuses on deriving the best possible policy from the available data [20].
For practical settings that necessitate using function approximators, fitted value iteration [6, [33]]
and fitted policy iteration [19] provide an empirical foundation that has spawned many successful
modern deep RL algorithms. Many prior works provide error bounds as a function of the violation of
realizability and completeness assumptions such as [40]. In the online RL setting, concentrability
can be side-stepped [41] but can still pose a significant challenge (e.g., the hardness of exploration
in [3]). A commonly-used equivalent form of the concentrability assumption is on the discounted
summation of ratios between the product of probabilities over state actions under any policy, to the
data generating distribution [3, 23]]. Our goal is to relax such assumptions to make the resulting
algorithms more practically useful.

Several heuristics [[14} 133, [12] show that algorithmic modifications help alleviate the extrapolation
error or maximization bias empirically. This paper provides a simple modification that has strong
theoretical guarantees even with function approximation. In contrast, the theoretical results of BEAR
[17] (Theorem 4.1 and 4.2) rely on a finite state space, while the algorithm analyzed in the proof
is actually the same as BCQL with a non-zero threshold whose weakness is shown in Sections 3]
and [6.1] Error bound in Theorem 4.1 of [17]] has an additional non-diminishing term «/(II), while
non-diminishing terms in our Theorem 1 are the same as in standard analysis. Another recent work
[2]] highlights that sufficiently large and diverse datasets can lead to good batch RL results but we
focus on the other side of the coin: a robust update rule even if we do not have a good dataset.

8 Discussion & Conclusion

We study a key assumption for analysis in batch value-based RL, concentrability, and provide policy
iteration and @ iteration algorithms with minor modifications that can be agnostic to this assumption.
We remark that the other non-standard assumption about bounded density can be relaxed if we could
construct the ( filter by thresholding density ratios directly, but this results in a different filter for each
policy encountered during the algorithm’s operation. Being able to threshold density ratios will also
allow us to assert that y € H‘é” always, yielding imitation and policy improvement guarantees. We
anticipate future work that develops batch RL algorithms that exploit this insight. This work can also
provide some intuition for designing practical deep RL algorithms by leveraging pessimism based
on the marginalized state-action distribution. Several state-of-the-art methods [17,[18] in batch RL
also leverage the pessimism based on the conditional action distribution, which is composable with
our proposal for state-action pessimism. Towards design more practical algorithms, estimating state
action visitation distributions is an active research area (e.g. [39]) and our algorithmic framework is
composable with better estimators of (s, a) or other uncertainty meansurements.

5The performance of BEAR is from [[I1]] that is reported before the submission. There is an improved version
of BEAR code with higher performance recently.



9 Broader Impact

Our improvements to batch RL may improve sample efficiency of online RL and safety of off-
policy RL enough to consider them in some real-world applications. However we caution that more
work is needed (e.g., in closely related areas of off-policy evaluation OPE, confidence estimation,
interpretability etc.) before these methods can be reliably deployed in practice. We anticipate future
work in batch RL and OPE that addresses these shortcomings.
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