## 1 Response to Reviewer #1

- 2 "It is slightly dissatisfying that only 16 number classes were used; there is no class for the number 3."
- We reported only 16 number classes to match the experiments of Nasr et al.'s work [22]. We DID the hypothesis tests
- for all 30 number classes (from 1 to 30) and the findings are consistent with those of 16 number classes.
- 5 "It would make the work more impactful if Nu-Net could be trained on a more realistic dataset."
- 6 Using binary abstract number-depicting images is the tradition of numerosity studies in cognitive sciences. We trained
- 7 and tested with more realistic images and the accuracy is worse than abstract images. The paper focuses on the basic
- 8 science problem not engineering applications. Nevertheless, if CNN fails to generalize on simplistic examples, let
- 9 alone far more varied practical cases.

## 10 Response to Reviewer #2

- 11 "Number sense is a cognitive ability, not a property of individual neurons."
- 12 We appreciate this reviewer's argument for the possibility of a distributed coding scheme for the number sense.
- Numerosity cognition may well be a holistic mechanism. Like this reviewer we had the same urge to challenge the
- methodology and results of numerosity studies in neuroscience [21][22], but refrained from debunking directly the
- works published in top journals. Thanks to your insight and support, we will make this point in the final version.
- 16 "The motivation for analyzing only the last convolutional layer. Why would numerosity not appear in earlier layers?"
- Empirical studies show that deeper layers in CNN encode higher level concepts than shallower layers. Front CNN
- layers extract low level features (e.g., corners, edges, textures, etc.) Semantics tends to emerge from deep layers.
- Numerosity, as an abstract cognitive concept, should be exhibited by very deep layers. This is why we and previous
- 20 authors only examined the last convolutional layer. But for the sake of thoroughness we will check all layers and
- 21 discuss the results in the final version.
- 22 "The motivation for using classification rather than regression is not not well justified."
- We followed the well accepted belief that subitizing is a raw perception not resulting from deliberate calculation. In
- fact, we also tested regression formulation, the results hardly changed.
- 25 "No effect sizes are reported for number selectivity."
- The average  $\eta^2$  for the numerosity effects of all number-selective units decreases from 0.25 to 0.08, when the sample
- size increases from 5 to 100. We will add the effect sizes in the final version, as suggested.
- <sup>28</sup> "Figure 3 and Figure 8 ... labels and titles are much too small". Thanks, will improve as suggested.

## Response to Reviewer #3

29

- 30 "I would have liked to have seen results from radically different numerosity images ..."
- 31 We did train and test on numerosity images of much greater variations, and found the inference accuracy and ro-
- bustness of subitizing decrease. We didn't include these results to keep our experiments in the same setting as in the
- previous numerosity studies. We will add discussions on more varied sample images in the final version as suggested.
- "unclear what you mean by 'binary visual representations of numbers' " Black and white images depicting numbers.
- 35 "completely unreasonable to suppose that the architecture of CNNs ... support some sort of numerosity estimation?"
- 36 We guess here you doubted if CNNs can learn subitizing beyond i.i.d. inference. Indeed, Zhang's work shows
- empirically that CNNs have the ability to generalize beyond the training images in the identity-mapping task, even
- trained on a single example. Why shoudn't it be possible for CNNs to succeed in the task of subitizing.
- $_{39}$  "Authors claim that Nu-Net performs subitizing, yet the small numbers (1, 2, 4) the 85% estimation interval is 1."
- Thanks for pointing out the error. For subitizing the 85% estimation interval length is 0, NOT 1, i.e.,  $\delta$  and  $\epsilon$  are both
- 41 0 when x < 5. Likewise, the height of all bars in Fig.7 should be reduced by 1. Nu-Net makes no errors in subitizing
- more than 85% of times; off by 1 errors can occur but with less than 15% chance. We will fix the errors and clarify.

## 43 Response to Reviewer #4

- 44 "A followup paper showing the claims do not hold is only of limited interest, even accompanied with good analysis."
- 45 In terms of neuroscience, our negative results are fascinating and have far reaching implications by exposing a pitfall
- 46 of a standard methodology in published studies of biological neurons; that is, identify number selective neurons via
- 47 ANOVA. As pointed out by reviewer 2, it is "imperative" to publish these findings, because our critique necessitates
- 48 reexaminations and calls for new understandings of numerosity, which is of importance in both AI and neuroscience.
- 49 We'd like to stress that this work is more than just negating previous well-accepted results; it also offers an interesting
- 50 constructive result. We did show CNNs can learn subitizing with good accuracy and robustness, although the general
- 51 numerosity problem turns out much harder. Our partially positive finding points to an intriguing computational parallel
- to the innate capability of subitizing of humans and primates.