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Abstract

Optimal Transport (OT) distances are now routinely used as loss functions in ML
tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily discrete)
probability distributions remains an open problem. This paper introduces a new
online estimator of entropy-regularized OT distances between two such arbitrary
distributions. It uses streams of samples from both distributions to iteratively enrich
a non-parametric representation of the transportation plan. Compared to the classic
Sinkhorn algorithm, our method leverages new samples at each iteration, which
enables a consistent estimation of the true regularized OT distance. We provide a
theoretical analysis of the convergence of the online Sinkhorn algorithm, showing
a nearly-O( 1

n ) asymptotic sample complexity for the iterate sequence. We validate
our method on synthetic 1-d to 10-d data and on real 3-d shape data.

Optimal transport (OT) distances are fundamental in statistical learning, both as a tool for analyzing
the convergence of various algorithms (Canas and Rosasco, 2012; Dalalyan and Karagulyan, 2019),
and as a data-dependent term for tasks as diverse as supervised learning (Frogner et al., 2015),
unsupervised generative modeling (Arjovsky et al., 2017) or domain adaptation (Courty et al., 2016).
OT lifts a distance over data points living in a spaceX into a distance on the spaceP(X ) of probability
distributions over the space X . This distance has many favorable geometrical properties. In particular
it allows one to compare distributions having disjoint supports. Computing OT distances is usually
performed by sampling once from the input distributions and solving a discrete linear program (LP),
due to Kantorovich (1942). This approach is numerically costly and statistically inefficient (Weed
and Bach, 2019). Furthermore, the optimisation problem depends on a fixed sampling of points from
the data. It is therefore not adapted to machine learning settings where data is resampled continuously
(e.g. in GANs), or accessed in an online manner. In this paper, we develop an efficient online method
able to estimate OT distances between continuous distributions. It uses a stream of data to refine an
approximate OT solution, adapting the regularized OT approach to an online setting.

To alleviate both the computational and statistical burdens of OT, it is common to regularize the
Kantorovich LP. The most successful approach in this direction is to use an entropic barrier penalty.
When dealing with discrete distributions, this yields a problem that can be solved numerically using
Sinkhorn-Knopp’s matrix balancing algorithm (Sinkhorn, 1964; Sinkhorn and Knopp, 1967). This
approach was pushed forward for ML applications by Cuturi (2013). Sinkhorn distances are smooth
and amenable to GPU computations, which make them suitable as a loss function in model training
(Frogner et al., 2015; Mensch et al., 2019). The Sinkhorn algorithm operates in two distinct phases:
draw samples from the distributions and evaluate a pairwise distance matrix in the first phase; balance
this matrix using Sinkhorn-Knopp iterations in the second phase.

This two-step approach does not estimate the true regularized OT distance, and cannot handle samples
provided as a stream, e.g. renewed at each training iteration of an outer algorithm. A cheap fix is
to use Sinkhorn over mini-batches (see for instance Genevay, Peyré, et al. (2018) for an application
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to generative modelling). Yet this introduces a strong estimation bias, especially in high dimension
—see Fatras et al. (2019) for a mathematical analysis. In contrast, we use streams of mini-batches to
progressively enrich a consistent representation of the transport plan.

Contributions. Our paper proposes a new take on estimating optimal transport distances between
continuous distributions. We make the following contributions:

• We introduce an online variant of the Sinkhorn algorithm, that relies on streams of samples
to enrich a non-parametric functional representation of the dual regularized OT solution.

• We establish the almost sure convergence of online Sinkhorn and derive asymptotic conver-
gence rates (Proposition 3 and 4). We provide convergence results for variants.

• We demonstrate the performance of online Sinkhorn for estimating OT distances between
continuous distributions and for accelerating the early phase of discrete Sinkhorn iterations.

Notations. We denote C(X ) [C+(X )] the set of [strictly positive] continuous functions over a
metric space X ,M+(X ) and P(X ) the set of positive and probability measures on X , respectively.

1 Related work

Sinkhorn properties. The Sinkhorn algorithm computes ε-accurate approximations of OT in
O(n2/ε3) operations for n samples (Altschuler et al., 2017) (in contrast with the O(n3) complexity
of exact OT Goldberg and Tarjan, 1989). Moreover, Sinkhorn distances suffer less from the curse of
dimensionality (Genevay, Chizat, et al., 2019), since the average error using n samples decays like
O(ε−d/2/

√
n) in dimension d, in contrast with the slowO(1/n1/d) error decay of OT (Dudley, 1969;

Weed and Bach, 2019). Sinkhorn distances can further be sharpened by entropic debiasing (Feydy
et al., 2019). Our work is orthogonal, as we focus on estimating distances between continuous
distributions.

Continuous optimal transport. Extending OT computations to arbitrary distributions (possibly
having continuous densities) without relying on a fixed a priori sampling is an emerging topic of
interest. A special case is the semi-discrete setting, where one of the two distributions is discrete.
Without regularization, over an Euclidean space, this can be solved efficiently using the computation of
Voronoi-like diagrams (Mérigot, 2011). This idea can be extended to entropic-regularized OT (Cuturi
and Peyré, 2018), and can also be coupled with stochastic optimization methods (Genevay, Cuturi, et
al., 2016) to tackle high=dimensional problems (see Staib et al., 2017 for an extension to Wasserstein
barycenters). When dealing with arbitrary continuous densities, that are accessed through a stream of
random samples, the challenge is to approximate the (continuous) dual variables of the regularized
Kantorovich LP using parametric or non-parametric classes of functions. For application to generative
model fitting, one can use deep networks, which leads to an alternative formulation of Generative
Adversarial Networks (GANs) (Arjovsky et al., 2017) (see also Seguy et al. (2018) for an extension
to the estimation of transportation maps). There is however no theoretical guarantees for this type
of dual approximations, due to the non-convexity of the resulting optimization problem. To our
knowledge, the only mathematically rigorous algorithm represents potentials in reproducing Hilbert
space (Genevay, Cuturi, et al., 2016). This approach is generic and does not leverage the specific
structure of the OT problem, so that in practice its convergence is slow. We show in Section §5.1 that
online Sinkhorn finds better potential estimates than SGD on RKHS representations.

Stochastic approximation (SA). Our approach may be seen as SA (Robbins and Monro, 1951)
for finding the roots of an operator in a non-Hilbertian functional space. Alber et al., 2012 studies SA
for solving fixed-points that are contractant in Hilbert spaces. Online Sinkhorn convergence relies on
the contractivity of a certain operator in a non-Hilbertian metric, and requires a specific analysis. As
both are SA instances, the online Sinkhorn algorithm resembles stochastic EM (Celeux and Diebolt,
1992), though it cannot be interpreted as such.

2 Background: optimal transport distances

We first recall the definition of optimal transport distances between arbitrary distributions (i.e. not
necessarily discrete), then review how these are estimated using a finite number of samples.
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2.1 Optimal transport distances and algorithms

Wasserstein distances. We consider a complete metric space (X , d) (assumed to be compact
for simplicity), equipped with a continuous cost function (x, y) ∈ X 2 → C(x, y) ∈ R for any
(x, y) ∈ X 2 (assumed to be symmetric also for simplicity). Optimal transport lifts this ground
cost into a cost between probability distributions over the space X . The Wasserstein cost between
two probability distributions (α, β) ∈ P(X )2 is defined as the minimal cost required to move each
element of mass of α to each element of mass of β. It rewrites as the solution of a linear problem
(LP) over the set of transportation plans (which are probability distribution π over X × X ):

WC,0(α, β) , min
π∈P(X 2)

{〈C, π〉 : π1 = α, π2 = β} ,

where we denote 〈C, π〉 ,
∫
C(x, y)dπ(x, y). Here, π1 =

∫
y∈X dπ(·, y) and π2 =

∫
x∈X dπ(x, ·)

are the first and second marginals of the transportation plan π. We refer to Santambrogio, 2015 for a
review on OT.

Entropic regularization and Sinkhorn algorithm. The solutions of (1) can be approximated by
a strictly convex optimisation problem, where an entropic term is added to the linear objective to
force strict convexity. The so-called Sinkhorn cost is then

WC,ε(α, β) , min
π∈P(X×X )
π1=α,π2=β

〈C, π〉+ εKL(π|α⊗ β), (1)

where the Kulback-Leibler divergence is defined as KL(π|α⊗ β) ,
∫

log( dπ
dαdβ )dπ (which is thus

equal to the mutual information of π). WC,ε approximates WC,0(α, β) up to an ε log(ε) error
(Genevay, Chizat, et al., 2019). In the following, we set ε to 1 without loss of generality, as
WC,ε = εWC/ε,1, and simply writeW . (1) admits a dual form, which is a maximization problem
over the space of continuous functions:

Fα,β(f, g) , max
(f,g)∈C(X )2

〈f, α〉+ 〈g, β〉 − 〈ef⊕g−C , α⊗ β〉+ 1, (2)

where 〈f, α〉 ,
∫
f(x)dα(x) and (f ⊕ g − C)(x, y) , f(x) + g(y) − C(x, y). Problem (2) can

be solved by closed-form alternated maximization, which corresponds to Sinkhorn’s algorithm. At
iteration t, the updates are simply

ft+1(·) = Tβ(gt), gt+1(·) = Tα(ft+1),

Tµ(h) , − log

∫
y∈X

exp(h(y)− C(·, y))dµ(y). (3)

The operation h 7→ Tµ(h) maps a continuous function to another continuous function, and is a
smooth approximation of the celebrated C-transform of OT (Santambrogio, 2015). We thus refer to it
as a soft C-transform. Note that we consider simultaneous updates of ft and gt in this paper, as it
simplifies our analysis. The notation ft(·) emphasizes the fact that ft and gt are functions.

It can be shown that (ft)t and (gt)t converge in (C(X ), ‖·‖var) to a solution (f?, g?) of (2), where
‖f‖var , maxx f(x)−minx f(x) is the so-called variation norm. Functions endowed with this norm
are only considered up to an additive constant. Global convergence is due to the strict contraction of
the operators Tβ(·) and Tα(·) in the space (C(X ), ‖·‖var) (Lemmens and Nussbaum, 2012).

2.2 Estimating OT distances with realizations

When the input distributions are discrete (or equivalently when X is a finite set), i.e. α = 1
n

∑n
i=1 δxi

and β = 1
n

∑n
i=1 δyi , the function ft and gt need only to be evaluated on (xi)t and (yi)i, which

allows a proper implementation. The iterations (3) then correspond to the Sinkhorn and Knopp (1967)
algorithm over the inverse scaling vectors ut , (e−ft(xi))

n

i=1,vt , (e−gt(yi))
n

i=1:

ut+1 = K
1

nvt
and vt+1 = K>

1

nut
(4)

where K = (e−C(xi,yi))ni,j=1 ∈ Rn×n, and inversion is made pointwise. The Sinkhorn algorithm
for OT thus operates in two phases: first, the kernel matrix K is computed, with a cost in O(n2d),
where d is the dimension of X ; then each iteration (4) costs O(n2). The online Sinkhorn algorithm
that we propose mixes these two phases to accelerate convergence (see results in §5.2).
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Consistency and bias. The OT distanceWC,0(α, β) and its regularized versionWC,ε(α, β) can
be approximated by the (computable) distance between discrete realizations α̂ = 1

n

∑
i δxi , β̂ =

1
n

∑
i δyi , where (xi)i and (yi)i are i.i.d samples from α and β. Consistency holds, asW(α̂n, β̂n)→

W(α, β). Although this is a reassuring result, the sample complexity of transport in high dimensions
with low regularization remains high (see §1).

The estimation ofW(α, β) may be improved using several i.i.d sets of samples (α̂t)t and (β̂t)t. Those
should be of reasonable size to fit in memory and may for example come from a temporal stream.
Genevay, Peyré, et al., 2018 use a Monte-Carlo estimate Ŵ(α, β) = 1

T

∑T
t=1W(α̂t, β̂t). However,

this yields a biased estimation as the distanceW(α, β) and the optimal potentials f? = f?(α, β)

differ from their expectation under sampling Eα̂∼α,β̂∼β [W(α̂, β̂)] and Eα̂∼α,β̂∼β [f?(α̂, β̂)]. In
contrast, online Sinkhorn consistently estimates the true potential functions (up to a constant) and the
Sinkhorn cost.

3 OT distances from sample streams

We now introduce an online adaptation of the Sinkhorn algorithm. We construct functional estimators
of f?, g? and W(α, β) using successive discrete distributions of samples (α̂t)t and (β̂t)t, where
α̂t , 1

n

∑nt+1

i=nt+1 δxi , with n0 , 0 and nt+1 , nt + n. The size of the mini-batch n may potentially
depends on t. (α̂t)t and (β̂t)t may be seen as mini-batches of size n within a training procedure.

3.1 Online Sinkhorn iterations

The optimization trajectory (ft, gt)t of the continuous Sinkhorn algorithm given by (3) is untractable
as it cannot be represented in memory. The exp-potentials ut , exp(−ft) and vt , exp(−gt) are in-
deed infinitesimal mixtures of kernel functions κy(·) , exp(−C(·, y)) and κx(·) , exp(−C(x, ·)).

We propose to construct finite-memory consistent estimates of ut and vt using principles from
stochastic approximation (SA) Robbins and Monro, 1951. We cast the regularized OT problem as
a root-finding problem of a function-valued operator F : C+(X ) × C+(X ) → C(X ) × C(X ), for
which we can obtained unbiased estimates. Optimal potentials are indeed exactly the roots of

F : (u, v)→
(
u(·)−

∫
y∈X

1

v(y)
κy(·)dβ(y), v(·)−

∫
x∈X

1

u(x)
κx(·)dα(x)

)
.

In particular, the simultaneous Sinkhorn updates rewrites as (ut+1, vt+1) = (ut, vt)−F(ut, vt) for
all t. Importantly, F can be evaluated without bias using two empirical measures α̂ and β̂, defining

F̂α̂,β̂(u, v) ,
(
u(·)− 1

n

n∑
i=1

1

v(yi)
κyi(·) v(·)− 1

n

n∑
i=1

1

u(xi)
κxi(·)

)
.

By construction, Eα̂∼α,β̂∼β [F̂α̂,β̂ ] = F , and the images of F̂ admit a representation in memory.

Randomized Sinkhorn. To make use of a stream of samples (α̂t, β̂t)t, we may simply replace F
with F̂ in the Sinkhorn updates. This amounts to use noisy soft C-transforms in (3), as we set

(ut+1, vt+1) , (ut, vt)− F̂α̂,β̂(ut, vt), i.e. (5)

f̂t+1 = Tβ̂t(ĝt), ĝt+1 = Tα̂t(f̂t+1).

f̂t and ĝt are defined in memory by (yi, ĝt−1(yi))i and (xi, f̂t−1(xi))i. Yet the variance of the
updates (5) does not decay through time, hence this randomized Sinkhorn algorithm does not
converge. However, we show in Proposition 1 that the Markov chain (f̂t, ĝt)t converges towards a
stationary distribution that is independent of the potentials f̂0 and ĝ0 used for initialization.

Online Sinkhorn. To ensure convergence of f̂t, ĝt towards some optimal pair of potentials (f?, g?),
one must take more cautious steps, in particular past iterates should not be discarded. We introduce

4



Algorithm 1 Online Sinkhorn
Input: Dist. α and β, learning weights (ηt)t, batch sizes (n(t))t Set pi = qi = 0 for i ∈ (0, n1]
for t = 0, . . . , T − 1 do

Sample (xi)(nt,nt+1] ∼ α, (yj)(nt,nt+1] ∼ β.
Evaluate (f̂t(xi))i=(nt,nt+1], (ĝt(yi))i=(nt,nt+1] using (qi,t, pi,t, xi, yi)i=(0,nt] in (7).
q(nt,nt+1],t+1← log ηt

n + (ĝt(yi))(nt,nt+1], p(nt,nt+1],t+1← log ηt
n + (f̂t(xi))(nt,nt+1].

q(0,nt],t+1 ← q(0,nt],t + log(1− ηt), p(0,nt],t+1 ← p(0,nt],t + log(1− ηt).
Returns: f̂T : (qi,T , yi)(0,nT ] and ĝT : (pi,T , xi)(0,nT ]

a learning rate ηt in Sinkhorn iterations, akin to the Robbins-Monro algorithm for finding roots of
vector-valued functions:

(ût+1, v̂t+1) , (1− ηt)(ût, v̂t)− ηtF̂α̂t,β̂t(ût, v̂t), i.e. (6)

e−f̂t+1 = (1− ηt)e−f̂t + ηte
−Tβ̂t (ĝt)

Each update adds new kernel functions to a non-parametric estimation of ut and vt. The estimates ût
and v̂t are defined by weights (pi,t, qi,t)i6nt and positions (xi, yi)i6nt ⊆ X

2:

e−f̂t(·) = ût(·) ,
nt∑
i=1

exp(qi,t − C(·, yi)), (7)

e−ĝt(·) = v̂t(·) ,
nt∑
i=1

exp(pi,t − C(xi, ·)).

The SA updates (6) yields simple vectorized updates for the weights (pi, qi)i, leading to Algorithm 1.
We perform the updates for qi and pi in log-space, for numerical stability reasons.

Complexity. Each iteration of online Sinkhorn has complexity O(nt n), due to the evaluation of
the distances C(xi, yi) for all (xi)(0,nt] and (yi)(nt,nt+1], and the soft C-transforms in (7). Online
Sinkhorn computes a distance matrix (C(xi, yj))i,j6nt on the fly, in parallel to updating f̂t and ĝt. In
total, its computation cost after drawing nt samples is O(n2

t ). Its memory cost is O(nt); it increases
with iterations, which is a requirement for consistent estimation. Randomized Sinkhorn with constant
batch-sizes n has a memory cost of O(n) and a single-iteration computational cost of O(n2).

3.2 Refinements

Estimating Sinkhorn distance. As we will see in §4, the iterations (6) only estimate potential
functions up to a constant. This is sufficient for minimizing a loss function involving a Sinkhorn
distance (e.g. for model training or barycenter estimation (Staib et al., 2017)), as backpropagating
through the Sinkhorn distance relies only on the gradients of the potentials ∇xf?(·),∇yg?(·) (e.g.
Cuturi and Peyré, 2018). With extra O(n2

t ) operations, (f̂t, ĝt) may be used to estimateW(α, β)
through a final soft C-transform:

Ŵt ,
1

2

(
〈ᾱt, ft + Tᾱt(ĝt)〉+〈β̄t, ĝt+Tᾱt(ft)〉

)
,

where ᾱt , 1
nt

∑nt
i=1 δxi and β̄t are formed of all previously observed samples.

Fully-corrective scheme. The potentials f̂t and ĝt may be improved by refitting the weights
(pi)(0,nt], (qj)(0,nt] based on all previously seen samples. For this, we update f̂t+1 = Tβ̄t(gt) and
ĝt+1 = Tᾱt(ft). This reweighted scheme (akin to the fully-corrective Frank-Wolfe scheme from
Lacoste-Julien and Jaggi, 2015) has a cost of O(n2

t ) per iteration. It requires to keep in memory
(or recompute on-the-fly) the whole distance matrix. Fully-corrective online Sinhorn enjoys similar
convergence properties as regular online Sinkhorn, and permits the use of non-increasing batch-
sizes—see §B.1. In practice, it can be used every k iterations, with k increasing with t. Combining
partial and full updates can accelerate the estimation of Sinkhorn distances (see §5.2).
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Finite samples. Finally, we note that our algorithm can handle both continuous or discrete distribu-
tions. When α and β are discrete distributions of size N , we can store p and q as fixed-size vectors of
size N , and update at each iterations a set of coordinates of size n < N . The resulting algorithm is a
subsampled Sinkhorn algorithm for histograms, which is detailed in §B.2, Algorithm 3. We show in
§5 that it is useful to accelerate the first phase of the Sinkhorn algorithm.

4 Convergence analysis

We show a stationary distribution convergence property for the randomized Sinkhorn algorithm, an
approximate convergence property for the online Sinkhorn algorithm with fixed batch-size and an
exact convergence result for online Sinkhorn with increasing batch sizes, with asymptotic convergence
rates. We make the following classical assumption on the cost regularity and compactness of α and β.
Assumption 1. The cost C : X × X → R is L-Lipschitz, and X is compact.

4.1 Randomized Sinkhorn

We first state a result concerning the randomized Sinkhorn algorithm (5), proved in §A.2.
Proposition 1. Under Assumption 1, the randomized Sinkhorn algorithm (5) yields a time-
homogeneous Markov chain (f̂t, ĝt)t which is (α̂s, β̂s)s6t measurable, and converges in law towards
a stationary distribution (f∞, g∞) ∈ P(C(X )2) independent of the initialization point (f0, g0).

This result follows from Diaconis and Freedman (1999) convergence theorem on iterated random
functions which are contracting on average. We use the fact that Tβ̂(·) and Tα̂(·) are uniformly

contracting, independently of the distributions α̂ and β̂, for the variational norm ‖ · ‖var. Using the
law of large number for Markov chains (Breiman, 1960), the (tractable) average 1

t

∑t
s=1 exp(−f̄s)

converges almost surely to E[e−f∞ ] ∈ C(X ). This expectation verifies the functional equations

E[e−f∞ ] =

∫
y

E[eg∞(y)−C(·,y)]dβ(y) E[e−g∞ ] =

∫
x

E[ef∞(x)−C(x,·)]dα(x)

These equations are close to the Sinkhorn fixed point equations, and get closer as ε increases, since
εE[exp(±f∞/ε)]→ E[±f∞] as ε→∞. Running the random Sinkhorn algorithm with averaging
fails to provide exactly the dual solution, but solves an approximate problem.

4.2 Online Sinkhorn

We make the following Robbins and Monro (1951) assumption on the weight sequence. We then state
an approximate convergence result for the online Sinkhorn algorithm with fixed batch-size n(t) = n.
Assumption 2. (ηt)t is such that

∑
ηt =∞ and

∑
η2
t <∞, 0 6 ηt 6 1 for all t > 0.

Proposition 2. Under Assumption 1 and 2, the online Sinkhorn algorithm (Algorithm 1) yields a
sequence (ft, gt) that reaches a ball centered around f?, g? for the variational norm ‖ · ‖var. Namely,
there exists T > 0, A > 0 such that for all t > T , almost surely

‖ft − f?‖var + ‖gt − g?‖var 6
A√
n
.

The proof is reported in §A.3. It is not possible to ensure the convergence of online Sinkhorn with
constant batch-size. This is a fundamental difference with other SA algorithms, e.g. SGD on strongly
convex objectives (see Moulines and Bach, 2011). This stems from the fact that the metric for which
Id− F is contracting is not a Hilbert norm. The constant A depends on L, the diameter of X and
the regularity of potentials f? and g?, but not on the dimension. It behaves like exp( 1

ε ) when ε→ 0.
Fortunately, we can show the almost sure convergence of the online Sinkhorn algorithm with slightly
increasing batch-size n(t) (that may grow arbitrarily slowly for ηt = 1

t ), as specified in the following
assumption.
Assumption 3. For all t > 0, n(t) = B

w2
t
∈ N and 0 6 ηt 6 1.

∑
wtηt <∞ and

∑
ηt =∞.

Proposition 3. Under Assumption 1 and 3, the online Sinkhorn algorithm converges almost surely:

‖f̂t − f?‖var + ‖ĝt − g?‖var → 0.
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Figure 1: Online Sinkhorn consistently estimate the true regularized OT potentials. Convergence
here is measured in term of distance with potentials evaluated on a "test" grid of size n = 104.
Online-Sinkhorn can estimate potentials faster than sampling then scaling the cost matrix.
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Figure 2: Online Sinhkorn finds the correct potentials over all space, unlike SGD over a RKHS
parametrization of the potentials. The plan is therefore correctly estimated everywhere.

The proof is reported in §A.4. It relies on a uniform law of large number for functions (Van der Vaart,
2000, chapter 19) and on the uniform contractivity of soft C-transform operator (e.g. Vialard, 2019,
Proposition 19). Consistency of the iterates is an original property—Genevay, Cuturi, et al., 2016
only show convergence of the OT value. Finally, using bounds from Moulines and Bach, 2011, we
derive asymptotic rates of convergence for online Sinkhorn (see §A.5), with respect to the number of
observed samples N . We write δN = ‖f̂t(N) − f?‖var + ‖ĝt(N) − g?‖var, where t(N) is the iteration
number for which nt > N samples have been observed.
Proposition 4. For all ι ∈ (0, 1), S > 0 and B ∈ N?, setting ηt = S

t1−ι , n(t) = dBt4ιe, there
exists D > 0 independant of N and N0 > 0 such that, for all N > N0, δN 6 D

N
1−ι
1+4ι

.

Online Sinkhorn thus provides estimators of potentials whose asymptotic sample complexity in
variational norm is arbitrarily close to O( 1

N ). To the best of our knowledge, this is an original
property. It also results in a distance estimator ŴN whose complexity is arbitrarily close to O( 1√

N
),

recovering existing asymptotic rates from Genevay, Chizat, et al., 2019, for any Lipschitz cost. We
derive non-asymptotic rates in §A.5 (see (19)), which make explicit the bias-variance trade-off when
choosing the step-sizes and batch-sizes. We also give the explicit form of D; it does not depend on
the dimension. For low ε, D is proportional to exp( 2

ε ); the bound is therefore vacuous for ε → 0.
Note that using growing batch-sizes amounts to increase the budget of a single iteration over time:
the overall computational complexity after seeing N samples is always O(N2).

5 Numerical experiments

The major purpose of online Sinkhorn (OS) is to handle OT between continuous distributions. We
first show that it is a valid alternative to applying Sinkhorn on a single realization of continuous
distributions, using examples of Gaussian mixtures of varying dimensions. We then illustrate that OS
is able to estimate precisely Kantorovich dual potentials, significantly improving the result obtained
using SGD with RKHS expansions (Genevay, Cuturi, et al., 2016). Finally, we show that OS is an
efficient warmup strategy to accelerate Sinkhorn for discrete problems on several real and synthetic
datasets.

5.1 Continuous potential estimation with online Sinkhorn

Data and quantitative evaluation. We measure the performance of our algorithm in a continuous
setting, where α and β are parametric distributions (Gaussian mixtures in 1D, 2D and 10D, with
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Figure 3: Online Sinkhorn allows to warmup Sinkhorn during the evaluation of the cost matrix, and to
speed discrete optimal transport. Table 1: Speed-ups provided by OS vs S to reach a 10−3 precision.

3, 3 and 5 modes, so that Cmax ∼ 1), from which we draw samples. In the absence of reference
potentials (f?, g?) (which cannot be computed in closed form), we compute “test” potentials (f?0 , g

?
0)

on realizations α̂0 and β̂0 of size 10000, using Sinkhorn. We then compare OS to Sinkhorn runs of
various size , trained on realizations N = (100, 1000, 10000) independent of the reference grid (to
avoid reducing the problem to a discrete problem between α̂0 and β̂0). To measure convergence, we
compute δt = ‖f̂t−f?0 ‖var+‖ĝt−g?0‖var, evaluated on the grid defined by α̂0 and β̂0, which constitutes
a Monte-Carlo approximation of the error. We evaluate OS with and without full-correction, with
different batch-size schedules (see §C.1), as well as the randomized Sinkhorn algorithm. Quantitative
results are average over 5 runs. We report quantitative results for ε = 10−2 and non fully-corrective
online Sinkhorn in the main text, and all other curves in Supp. Fig. 4. In Supp. Fig. 7, we also
report results for OT between Gaussians, which is a simpler and less realistic setup, but for which
closed-form expressions of the potentials are known Janati et al., 2020.

Comparison to SGD. For qualitative illustration, on the 1D and 2D problem, we consider the
main existing competing approach (Genevay, Cuturi, et al., 2016), in which ft(·) is parametrized as∑nt
i=1 αtκ(·, xi) (and similarly for gt), where κ is a reproducing kernel (typically a Gaussian). This

differs significantly from online Sinkhorn, where we express e−ft as a Gaussian mixture. The dual
problem (3) is solved using SGD, with convergence guarantees on the dual energy. As advocated by
the authors, we run a grid search over the bandwidth parameter σ of the Gaussian kernel to select the
best performing runs.

Earlier potential convergence. We study convergence curves in Fig. 1, comparing algorithms at
equal number of multiplications. OS outperforms or matches Sinkhorn for N = 100 and N = 1000
on the three problems; it approximately matches the performance of Sinkhorn on N = 10000
new iterates on the 1D and 2D problems. On the two low-dimensional problems, online Sinkhorn
converges faster than Sinkhorn at the beginning. Indeed, it initiates the computation of the potentials
early, while the Sinkhorn algorithm must wait for the cost matrix to be filled. This leads us to study
online Sinkhorn as a catalyser of Sinkhorn in the next paragraph. OS convergence is slower (but is
still noticeable) for the higher dimensional problem. Fully-corrective OS performs better in this case
(see Supp. Fig. 5). We also note that randomized Sinkhorn with batch-size N performs on par with
Sinkhorn of size N (Supp. Fig. 6).

Better-extrapolated potentials. As illustrated in Fig. 2, in 1D, online Sinkhorn refines the poten-
tials (f̂t, ĝt)t until convergence toward (f?, g?). Supp. Fig. 8 shows a visualisation for 2D GMM. As
the parametrization (7) is adapted to the dual problem, the algorithm quickly identifies the correct
shape of the optimal potentials—as predicted by Proposition 3. In particular, OS estimates potentials
with much less errors than SGD in a RKHS in areas where the mass of α and β is low. This allows to
consistently estimate the transport plan, which cannot be achieved using SGD. SGD did not converge
for ε < 10−1, while online Sinkhorn remains stable. OS does not require to set a bandwidth.

5.2 Accelerating Sinkhorn with online Sinkhorn warmup

The discrete Sinkhorn algorithm requires to compute the full cost matrix C , (C(xi, yi))i,j of
size N × N , prior to estimating the potentials f1 ∈ RN and g1 ∈ RN by a first C-transform. In
contrast, online Sinkhorn can progressively compute this matrix while computing first sketches of the
potentials. The extra cost of estimating the initial potentials without full-correction is simply 2N2,
i.e. similar to filling-up C. We therefore assess the performance of online Sinkhorn as Sinkhorn
warmup in a discrete setting. Online Sinkhorn is run with batch-size n during the first iterations,
until observing each sample of [1, N ], i.e. until the cost matrix C is completely evaluated. From
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then, the subsequent potentials are obtained using full Sinkhorn updates. We consider the GMMs
of §5.1, as well as a 3D dragon from Stanford 3D scans Turk and Levoy, 1994 and a sphere of size
N = 12000. We measure convergence using the error ‖Tα(f̂t)− ĝt‖var +‖Tβ(ĝt)− f̂t‖var, evaluated
on the support of α and β; this error goes to 0. We use n(t) = N

100 (1 + 0.1t)1/2—results vary little
with the exponent.

Results. We report convergence curves for ε = 10−3 in Fig. 3, and speed-ups due to OS in Table 1.
Convergence curves for different ε are reported in Supp. Fig. 9. The proposed scheme provides an
improvement upon the standard Sinkhorn algorithm. After N2d computations (the cost of estimating
the full matrix C), both the function value and distance to optimum are lower using OS: the full
Sinkhorn updates then relay the online updates, using an accurate initialization of the potentials. The
OS warmed-up Sinkhorn algorithm then maintains its advantage over the standard Sinkhorn algorithm
during the remaining iterations. The speed gain increases as ε reduces and the OT problem becomes
more challenging. Sampling without replacement brings an additional speed-up.

6 Conclusion

We have extended the classical Sinkhorn algorithm to cope with streaming samples. The resulting
online algorithm computes a non-parametric expansion of the inverse scaling variables using kernel
functions. In contrast with previous attempts to compute OT between continuous densities, these
kernel expansions fit perfectly the structure of the entropic regularization, which is key to the practical
efficiently. We have drawn links between regularized OT and stochastic approximation. This opens
promising avenues to study convergence rates of continuous variants of Sinkhorn’s iterations. Future
work will refine the complexity constants and design adaptive non-parametric potential estimations.
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