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1 Details of BNN encoding

We present details for encoding the inference computation of a single linear-BatchNorm-binarize
module in a BNN. Recall that such a module is defined for an input z € {0,1}", an output
y € {0,1}™, and a weight W € R™*™:

y = bing(BatchNorm(bin,, (W)z)) (1)
where:
bin,, (W) = sign(W) € {-1,1}™*"
x — Elz]
Var[z] + €
is the Batch Normalization [1]] with parameters v € R™ and 8 € R™
binge(z) = (z > 0) = (sign(z) +1)/2 € {0,1}™

BatchNorm(z) = v ©

Batch Normalization becomes a linear transformation in inference:
BN = kBN © g 4 pBN 2)

where:

BN _ v
Vo?+e
bBN — 6 o kBN,U,
w1 is the mean of x on training set

o2 is the variance of x on training set

With WP = bin,, (W) being a fixed parameter, we can rewrite the computation of a single element
of y in[(T)]as the following:

yi = | KPNY Wit 4+ 6PN >0 3)

j=1

To encode as a reified cardinality constraint, we consider 1 and TRUE interchangeably and 0
and FALSE interchangeably. If W™ = 1, we have W)"z; = x;, and if W™ = —1, we rewrite
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Whing; = —z; = (1 — ;) — 1 = —x; — 1. With such substitutions of W}}"z:; we obtain a reified
cardinality constraint:

n
yi = [ kPNY Whta; + 0PN >0
j=1

= | EPN D Dli(ay) + 6547 | 40PN >0

= | D lila) 2 [0k, WP 6PN @)

where:
Z; if W};-in =
lij (fﬂj) = 0 lf Wibjn = 0
-y if W4 |
BT = me (W, 0)

iy

(1.BN 1r/bin BN __biBN_ SAT
by (K5, WP pN) = BN b

> x>y ifk?N>0
(x<y)—{ r<y ifkPN <0

[ [x] ifKBN >0
[x]_{ lz] kBN <0

2 Experimental details

Experimental environment We conduct our experiments on a workstation equipped with two
GPUs (NVIDIA Titan RTX and NVIDIA GeForce RTX 2070 SUPER), 128 GiB of RAM and an
AMD Ryzen Threadripper 2970WX 24-core processor. We use the PyTorch [3] framework to train
all the networks.

Training method We train the networks using the Adam optimizer [2] for 200 epochs with a
minibatch size of 128, with the exception of the undefended conv-small networks on CIFAR10
which is trained for only 90 epochs to avoid overfitting. Due to fluctuations of test accuracy between
epochs, we select from the last three epochs the model with the highest natural test accuracy or PGD
accuracy on the first 40 training minibatches. The mean and variance statistics of batch normalization
layers are recomputed on the whole training set after training finishes. Learning rate is initially le—4
and decayed to half on epoch 150. We use PGD with adaptive gradient cancelling to train robust
networks, where the perturbation bound ¢ is increased linearly from O to the desired value in the first
100 epochs and the number of PGD iteration steps grows linearly from 0 to 10 in the first 50 epochs.

The parameter « in adaptive gradient cancelling is chosen to maximize the PGD attack success rate
evaluated on 40 minibatches of training data sampled at the first epoch. Candidate values of o are
between 0.6 to 3.0 with a step of 0.4. Note that « is a global parameter shared by all neurons.

We do not use any data augmentation techniques for training. Due to limited computing resource and
significant differences between the settings we considered, data in this paper are reported based on
one evaluation run.

Weight initialization All weights for the convolutional or fully connected layers are initialized
from a Gaussian distribution with standard deviation 0.01, and the mask weights My in BinMask
are enforced to be positive by taking the absolute value during initialization.



Table 1: Verification time with varying perturbation bounds. Time limit is 120 seconds.

Dataset Network Mean Solve Time Solver Timeout Mean Build+Solve Time

Training € €= ¢€p €= €1 € = €5 €= € €= €1 € = €9 €= €p €= €1 € = €9
MNIST conv-small 0.0004 0.0021 0.0713 0 0 0.01% 0.0162 0.0180 0.0876
e=0.1 conv-large 0.0025 0.0129 0.1269 0 0 0.01% 0.1115 0.1197 0.2254
MNIST conv-small 0.0004 0.0004 0.0006 0 0 0 0.0147 0.0155 0.0146
€e=0.3 conv-large 0.0010 0.0018 0.0039 0 0 0 0.1162 0.1142 0.1179
CIFAR10 conv-small 0.0013 0.0017 0.0025 0 0 0 0.0271 0.0298 0.0366
€ =2/255 conv-large 0.0097 0.0136 0.0141 0 0 0 0.1750 0.1947 0.1918
CIFAR10 conv-small 0.0009 0.0011 0.0014 0 0 0 0.0236 0.0284 0.0327
e =8/255 conv-large 0.0087 0.0084 0.0090 0 0 0 0.1704 0.1696 0.1781

Other hyperparameters The input quantization step s is set to be 0.61 for training on the MNIST
dataset, and 0.064 = 16.3/255 for CIFAR10, which are chosen to be slightly greater than twice the
largest perturbation bound we consider for each dataset. The CBD loss is applied on conv-large
networks only and 7 is set to be 5e—4 unless otherwise stated. We apply a weight decay of 1le—7
on the binarized mask weight My of BinMask for conv-small and conv-large networks, and
the weight decay is 1e—>5 for the MNIST-MLP network. PGD accuracies reported for the test set are
evaluated with 100 steps of PGD iterations.

3 Adversarial robustness against varying perturbation bounds

We run the verifier with varying perturbation bounds and present the time in and the accuracy
in[Table 2| The bounds are set to be ¢g = 0.1, ¢; = 0.2, and €3 = 0.3 for MNIST and ¢, = 2/255,
€1 = 5/255, and e = 8/255 for CIFAR10. We note a few interesting discoveries:

1. For the same network, the verification becomes slower for larger perturbation bounds. This
behavior is expected because a larger bound corresponds to a larger input perturbation space,
which makes the verification problem harder to solve.

2. For the same bound used in verification, verification is faster for a more robust network
that is trained with a larger perturbation bound. One plausible explanation is that robust
networks are less sensitive to input changes, and they naturally allow the solver to learn
simpler clauses that describe relationships between neurons. Another factor is that stronger
adversarial training usually (but not always) induces more sparse weights as can be seen in

[Table 2|

3. The gap between PGD accuracy and verifiable accuracy for a fixed test perturbation bound
gets narrower as the training perturbation becomes stronger. More interestingly, when tested
against perturbations of €, although the network has higher verifiable accuracy when it
is trained with stronger perturbations, its PGD accuracy even gets lower (comparing PGD
accuracy with e = ¢ in[Table 2). Such phenomenon suggests that PGD accuracy is not
always positively correlated with verfiable accuracy and the adversarial training algorithm
could be further improved.

4 Ablation study

We conduct comprehensive experiments to study the effectiveness of our proposed methods — namely
BinMask, CBD loss, and native handling of the reified cardinality constraints in the MiniSatCS
verifier — under different settings. We apply various combinations of ternary quantization, BinMask,
and CBD loss during training, and verify the networks using multiple solvers. The experimental

results are presented in[Table 3|and[Table 4]

For each dataset, we train the conv-small and conv-large networks under two training settings:
undefended (i.e., € = 0) and adversarial training with a large perturbation bound (¢ = 0.3 for MNIST
and e = 8/255 for CFAR10). We tune the weight decay coefficient of ternary quantization so that the
total sparsity is close to that of BinMask or BinMask+CBD. All BinMask networks have the same




Table 2: Verifiable accuracy with varying perturbation bounds.

Dataset Network Test Accuracy PGD Adversarial Accuracy Verifiable Accuracy Sparsity
Training € €= €o €= €1 € = €o €= €p €= €1 € = €

MNIST conv-small 9744%  93.47%  86.22%  70.68%  89.29%  66.49%  25.45% 90%
e=0.1 conv-large 97.46%  9547%  92.56%  86.98%  91.68%  7535%  40.14% 91%
MNIST conv-small 9431%  91.74%  87.43%  80.70%  90.24%  82.14%  66.42% 94%
e=0.3 conv-large 96.36%  94.82%  92.19%  87.90%  93.71%  88.55%  71.59% 87%
CIFAR10 conv-small 46.58%  33.70% 18.85% 9.32%  26.13% 8.26% 2.39% 94%
€ =2/255 conv-large 47.35%  3822%  28.20% 19.60%  30.49% 13.30% 4.98% 85%
CIFAR10 conv-small 37.75%  33.88%  29.02%  24.60%  32.18%  24.82% 18.93% 96%
e = 8/255 conv-large 35.00%  32.45%  29.17%  2641%  31.20%  2639%  22.55% 98%

Table 3: Comparison of methods on 40 randomly chosen MNIST test images with solving time limit of 3600
seconds.

Network .. Test . Mean Solve Median . Verifiable
Cuwain Architecture Training Method Accuracy Sparsity - Solver Time  Solve Time Timeout Accuracy
Ternary 97.59% 81% MiniSatCS 756.288 4.281 15% 0%

conv-snall MiniSat a0 diz o 324
. . iniSa . . 52%

BinMask 91.35% 8% 73 0.089 0.089 0 52%

RoundingSat 0.048 0.042 0 52%

0 Ternary 99.07% 86% MiniSatCS 2522.082 3600.002 68% 0%
Ternary+CBD 95.58% 87% MiniSatCS 886.007 21.711 20% 0%

conv-large  Temary+10xCBD 92.91% 78% MiniSatCS 342,097 4742 5% 2%
BinMask 98.94% 86% MiniSatCS 2595.032 3600.001 70% 2%

MiniSatCS 0.664 0.028 0 70%

. . MiniSat 225.861 18.761 0 70%

BinMask+CBD 96.88% 89% 73 146.567 0.997 0 70%

RoundingSat 33.922 0.702 0 70%

Ternary (wd0) 94.72% 80% MiniSatCS 186.935 0.105 5% 30%

Ternary (wdl) 89.53% 93%  MiniSatCS 0.005 0.002 0 35%

conv-small MiniSatCS 0.001 0.001 0 52%
MiniSat 0.060 0.024 0 52%

BinMask 94.31% 94% 73 0.040 0.040 0 52%

RoundingSat 0.021 0.031 0 52%

MiniSat-CN 0.034 0.008 0 52%

03 Ternary 96.89% 91% MiniSatCS 2828.479 3600.001 78% 0%
MiniSatCS 0.034 0.020 0 42%

MiniSat 173.877 23.527 0 42%

Ternary+CBD 81.33% 80% 73 5093 1.840 0 42%

conv-large RoundingSat 2.941 1.642 0 42%
BinMask 98.88% 82% MiniSatCS 2442.698 3600.001 65% 5%

MiniSatCS 0.005 0.005 0 52%

MiniSat 0.242 0.045 0 52%

BinMask+CBD 96.26% 87% 73 0.530 0.540 0 52%

RoundingSat 0.088 0.104 0 52%

MiniSat-CN 0.388 0.076 0 52%

weight decay of 1e—7, except for the undefended conv-large networks on CIFAR10 which have a
larger weight decay of 2.5e—6 due to the low sparsity under the default setting.

We consider the following questions for ablation study:

Q: Does native handling of reified cardinality constraints always facilitate the SAT solving?

A: Yes. We compare the solving time of MiniSatCS, MiniSat, Z3, and RoundingSat on both
network architectures trained on both datasets. The sequential counters encoding is used for MiniSat,
and we also evaluate MiniSat-CN that uses the cardinality networks encoding on a few cases, but it



Table 4: Comparison of methods on 40 randomly chosen CIFAR10 test images with solving time limit of 3600
seconds.

Network L Test . Mean Solve Median . Verifiable
Curain Architecture Training Method Accuracy Sparsity  Solver Time  Solve Time Timeout Accuracy
MiniSatCS 0.267 0.006 0 0%
MiniSat 327.303 50.036 7% 0%

- (%
Ternary 4.78% 82% 73 411.638 117.604 5% 0%
RoundingSat 0.361 0.098 0 0%

conv-small

MiniSatCS 0.003 0.003 0 0%
. MiniSat 3.981 3.577 0 0%

0
0 BinMask 55.22% 79% 73 0.590 0376 0 0%
RoundingSat 0.081 0.077 0 0%
Ternary 69.25% 89% MiniSatCS 823.370 1.860 20% 0%
BinMask 67.46% 94%  MiniSatCS 300.404 3.201 5% 0%

conv-large

MiniSatCS 1.415 0.048 0 0%
. MiniSat 168.079 69.471 0 0%

(¥ v
BinMask+CBD 63.18% 8% 73 3515386 3600.121  92% 0%
RoundingSat 19.162 0.858 0 0%
Ternary 32.59% 95%  MiniSatCS 0.002 0.002 0 15%
T
. iniSaf X X o
BinMask 37.75% 96% 73 0.050 0.052 0 18%
RoundingSat 0.033 0.043 0 18%
8/255 MiniSatCS 241.572 0.047 5% 10%
Ternary 34.60% 94% " RoundingSat 516.767 L154  12% 10%
. MiniSatCS 206.037 0.052 5% 0%
conv-large  DinMask 3391% 8% RoundingSat 301.062 0.546 7% 0%
MiniSatCS 0.009 0.011 0 20%
. MiniSat 0.224 0.267 0 20%

(v (v
BinMask+CBD 38.75% 87% 73 0.768 0.795 0 20%
RoundingSat 0.218 0.126 0 20%

is not consistently better than MiniSat. Our solver MiniSatCS, extended from MiniSat with native
handling of reified cardinality constraints, delivers a speedup of mean solving time by a factor of
between 1.35 to 5104.94 times compared all other solvers in all cases, and the average speedup is

40.21. The speedup of median solving time of MiniSatCS compared to others is 8.93 to 75289.76.

Note that although the encoding complexity of MiniSat-CN is O(n log? b) which is asymptotically
better than O(nb) of MiniSat, the low cardinality bounds in our networks make such asymptotic
comparison inaccurate. Also note that MiniSatCS is constantly faster than all other solvers, and no
solver is constantly the second fastest (RoundingSat is usually faster than Z3 and MiniSat, but it is
slower than Z3 in the Ternary+CBD setting with the adversarially trained conv-large network on
MNIST).

Q: How fast do BinMask networks verify compared to ternary quantization networks?

A: For the conv-small networks, BinMask networks verify significantly faster than ternary networks
with similar sparsity, especially in the undefended training setting. For the conv-large networks
without the CBD loss, neither of them constantly verifies faster than the other. We note that for the
conv-large networks, BinMask still produces more balanced layer-wise sparsities, which are, for
example, [9% 21% 21% 28% 90% 87% 41%)] and [84% 61% 65% 61% 87% 86% 70%)] for the
undefended ternary and BinMask networks on MNIST respectively. Their verification speeds are
both slow because the high cardinality bounds dominate verification complexity, which are 115.3 and
119.4 on average for each neuron in the two networks respectively.

Q: How accurate are BinMask networks compared to ternary quantization networks?

A: Interestingly, ternary quantization networks have slightly higher test accuracy in most of the
undefended training cases, but BinMask networks have both higher test accuracy and verifiable
accuracy when trained adversarially. We highlight the comparison of Ternary (wd0), Ternary
(wd1), and BinMask on the adversarially trained conv-small network in[Table 3] The wdoO ternary



network has a weaker weight decay to match the accuracy with the BinMask network, but it verifies
much slower and has lowered verifiable accuracy. The wd1 ternary network is trained with a stronger
weight decay to match the sparsity of the BinMask network, but it has much lower test accuracy and
also verifies slower. Our results suggest that BinMask not only reduces verification complexity, but
also regularizes model capacity to make it more robust.

Q: Does the CBD loss reduce cardinality bound and speed up verification for ternary quanti-
zation networks?

A: Yes, but less effectively. We train conv-1large networks on MNIST with ternary quantization and
CBD loss as the Ternary+CBD networks shown in The CBD loss induces denser networks
with ternary quantization, and the weight decay of Ternary+CBD networks is increased by five times
compared to Ternary networks to maintain comparable sparsity. The average cardinality bound of
the undefended Ternary+CBD network is 4.3, compared to 115.3 of the Ternary network. Although
the Ternary+CBD and BinMask+CBD networks achieve similar average cardinality bounds (4.3 vs
3.8), the ternary network has much higher maximal cardinality bound (146.3 vs 22.3). Therefore, the
verification time of Ternary+CBD is significantly improved over Ternary but is still longer than that
of the BinMask+CBD network. Ternary+10xCBD is obtained by increasing the CBD loss coefficient
7 by ten times on Ternary+CBD, which has a lower average cardinality bound of 3.2, but the maximal
cardinality bound is not decreased (157.7) and its test accuracy is much worse. The adversarially
trained Ternary+CBD network has a lower maximal cardinality bound of 73.1, which also verifies
faster. Ternary quantization networks with the CBD loss suffer from a larger decline of test accuracy
compared to BinMask networks. Our results suggest that lower cardinality bound reduces verification
complexity, and the BinMask formulation makes it easier to optimize for lower cardinality bounds.

Q: Do other solvers benefit from more balanced layer-wise sparsities and/or lower cardinality
bounds?

A: Yes. We evaluate MiniSat, Z3, and RoundingSat on a relatively easy to verify ternary net-
work (undefended conv-small on CIFARIO in [Table 4). The results show that all the solvers
achieve significant speedup on the corresponding BinMask network, although Z3 benefits more from
BinMask than MiniSat and RoundingSat. We also try MiniSat and Z3 on the easiest-to-verify
conv-large network trained with only BinMask (i.e., the one adversarially trained on CIFAR10),
but MiniSat fails due to out of memory error, and Z3 always exceeds the one hour time limit (data not
shown in the table). With BinMask+CBD they both verify much faster. RoundingSat also benefits
from BinMask and BinMask+CBD in this setting as shown in the table. Note that the ternary network
has lower test accuracy and higher overall sparsity, but still verifies slower for all the solvers. Our
results suggest that our two strategies, which are inducing more balanced layer-wise sparsity and
lower cardinality bounds, both reduce the complexity of the verification problem and facilitate all the
solvers that we have considered.
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