
Rethinking pooling in graph neural networks
— Supplementary material —

A Implementation details

A.1 Datasets

Table S1 reports summary statistics of the datasets used in this paper. For SMNIST and ZINC,
we use the same pre-processing steps and data splits as in [10]. For the IMDB-B dataset, we use
uninformative features (vector of ones) for all nodes. NCI1 and IMDB-B are part of the TU Datasets2,
a vast collection of datasets commonly used for evaluating graph kernel methods and GNNs. Errica
et al. [11] show that drawing conclusions based on some of these datasets can be problematic as
structure-agnostic baselines achieve higher performance than traditional GNNs. However, in their
assessment, NCI1 is the only chemical dataset on which GNNs beat baselines. Also, among the
social datasets, IMDB-B produces the greatest performance gap between the baseline and DiffPool
(≈ 20%). Table S1 also shows statistics for PROTEINS, NCI109, DD, and MOLHIV.

Table S1: Statistics of the datasets.
Dataset #graphs #classes #node feat. #node labels Avg #nodes Avg #edges

NCI1 4110 2 - 37 29.87 32.30
IMDB-B 1000 2 - - 19.77 96.53
SMNIST 70000 10 3 - 70.57 564.53
ZINC 12000 - - 28 23.16 49.83
PROTEINS 1113 2 - 3 39.06 72.82
NCI109 4127 2 - 38 29.68 32.13
DD 1178 2 - 82 284.32 715.66
MOLHIV 41127 2 - 9 25.5 27.5

A.2 Models

We implement all models using the PyTorch Geometric Library [12]. We apply the Adam opti-
mizer [22] with learning rate decaying from 10−3 to 10−5. If the validation performance does not
improve over 10 epochs we reduce the learning rate by half. Also, we use early stopping with patience
of 50 epochs.

For the MOLHIV dataset, we propagate the edge features through a linear layer and incorporate the
result in the messages of the first convolutional layer. More specifically, we add the edge embeddings
to the node features and apply a ReLU function. We follow closely the procedure applied to the GIN
and GCN baselines3 for the MOLHIV dataset.

GRACLUS. Our GRACLUS model is based on the implementation available in PyTorch Geometric.
For all datasets, we employ an initial convolution to extract node embeddings. Then, we interleave
convolutions and pooling layers. For instance, a 3-layer GRACLUS model consists of conv →
conv/pool→ conv/pool→ readout→MLP. In all experiments, we apply global mean pooling
as readout layer. Also, we adopt an MLP with a single hidden layer and the same number of hidden
components as the GNN layers. The Complement model sticks to exactly the same setup. We report
the specific hyperparameter values for each dataset in Table S2.

2https://chrsmrrs.github.io/datasets/
3https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol

Table S2: Hyperparameters for the GRACLUS/COMPLEMENT models.
Dataset #Layers |Hidden dim.| |Batch|

NCI1 3 64 8
IMDB-B 2 64 8
SMNIST 2 64 8
ZINC 3 64 8
PROTEINS 3 64 64
NCI109 3 64 64
DD 3 64 64
MOLHIV 2 128 64

DIFFPOOL. We follow the setup in [10] and use 3 GraphSAGE convolutions before and after the
pooling layers, except for the first that adopts a single convolution. The embedding and pooling GNNs
consist of a 1-hop GraphSAGE convolution. We apply residual connections and use embedding
dimension of 32 for NCI1, SMNIST, and IMDB-B, and 56 for ZINC (similar to [10]). We use mini-
batches of size 64 for SMNIST and ZINC. We report in Table S3 the list of the main hyperparameters
used in the experiments. Further details can be found in our official repository. Since the experiments
with DIFFPOOL have been removed from [10] in the latest version of the paper, we report results
with a different architecture in Appendix B.

Table S3: Hyperparameters for DIFFPOOL and its variants.
Dataset #Pool. Layers |GNN hidden dim.| |MLP hidden dim.| |Batch|

NCI1 1 32 32 16
IMDB-B 1 32 50 8
SMNIST 1 32 50 64
ZINC 1 56 56 64
PROTEINS 2 32 50 8
NCI109 1 32 32 16
DD 2 32 50 8
MOLHIV 2 32 50 32

GMN. Based on the official code repository, we re-implemented the GMN using PyTorch Geomet-
ric. The initial query network consists of two basic convolutions — see Equation 1 — followed by
batch normalization. We found that this basic convolution produces better results than the random
walk with restart (RWR) and graph attention networks as suggested in [21]. Our design choice is
also less dependent on dataset specificities, as applying RWR to graphs with multiple connected
components (such as the ones on NCI1) requires additional pre-processing, for example. Table S4
shows more details on the hyperparameters used for the memory layers. We feed the output of the
last memory layer to a single-hidden layer feed-forward net with fifty hidden nodes.

Table S4: Hyperparameters for the GMN models.
Dataset #Keys #Heads #Layers |Hidden dim.| |Batch|

NCI1 [10, 1] 5 2 100 128
IMDB-B [32, 1] 1 2 16 128
SMNIST [32, 1] 10 2 16 128
ZINC [10, 1] 5 2 100 128
PROTEINS [32, 1] 5 2 16 128
NCI109 [32, 1] 5 2 16 128
DD [32, 8, 1] 5 3 64 128
MOLHIV [32, 1] 5 2 16 128

14

B Additional experiments

For completeness, in this section, we report additional results using one more pooling method. We
also present the results of a second version of DIFFPOOL that employs 3 graph convolutions at each
pooling layer. Furthermore, we gauge the impact of the unsupervised loss of GMNs.

MINCUTPOOL. Bianchi et al. [2] propose a pooling scheme based on a spectrum-free formulation
of spectral clustering. Similarly to DIFFPOOL, MINCUTPOOL leverages node features and graph
topology to learn cluster assignments. In particular, these assignments are computed using the
composition of an MLP and a GNN layer. The parameters in a MINCUTPOOL layer are learned by
minimizing a minCUT objective and a supervised loss. As for the code, we use the implementation
available in PyTorch Geometric. In the experiments, we apply three layers of interleaved convolution
and pooling operators, as originally employed in [2].

Randomized MINCUTPOOL. To evaluate the effectiveness of the MINCUTPOOL layers, we
follow a randomized approach. Similarly to the DIFFPOOL variants, we simply replace the learned
assignment matrix with a random one, sampled from a standard normal distribution. We only apply
the supervised loss function. In the following, we refer to this approach as N -MINCUTPOOL.

Another version of DIFFPOOL. Here we consider the architecture choice and implementation
given in [11]. Each pooling and embedding GNN encompasses a 3-layer SAGE convolution. After
the final pooling layer, another group of 3-layer SAGE convolutions is used before the readout layer.
We evaluate a randomized variant with normal distribution, referred to as N -DIFFPOOL V2.

Results. Table S5 displays the results for MINCUTPOOL and DIFFPOOL V2. Overall, we find that
the variants and the original pooling methods obtain similar performance. Notably, SMNIST stands
out as an exception, as MINCUTPOOL performs significantly better (89.3%) than its randomized
version (82.0%). We argue that this is because we only use one single convolution before the first
pooling layer, which is consistent with the findings in Table 2. The fact that the initial features are
dense might make learning smooth features harder. Nonetheless, as we have previously seen, using
as few as two initial convolutions suffices to settle this performance gap on SMNIST.

Table S5: Additional results for MINCUTPOOL and a second implementation of DIFFPOOL.
Models NCI1 � IMDB-B � SMNIST � ZINC � PROTEINS � NCI109 � DD � MOLHIV �

MINCUTPOOL 76.1± 1.9 68.8± 4.6 89.3± 1.0 0.47± 0.01 75.0± 3.7 74.3± 2.2 77.2± 4.1 71.9± 1.6
N -MINCUTPOOL 76.6± 1.6 69.7± 4.8 82.0± 1.6 0.47± 0.01 75.2± 3.5 74.7± 2.1 77.0± 3.2 72.6± 2.2

DIFFPOOL v2 77.4± 2.0 67.7± 3.1 90.7± 0.3 0.50± 0.01 73.2± 3.5 75.2± 1.4 76.5± 2.6 71.8± 2.2
N -DIFFPOOL v2 77.4± 1.4 68.2± 2.8 89.0± 0.5 0.49± 0.01 74.6± 4.0 75.2± 1.7 75.3± 3.4 74.4± 3.0

Unsupervised loss of GMNs. GMNs are trained by alternating between the supervised loss and
the unsupervised (purity enforcing) loss. When using the unsupervised loss, we only update the
model keys; and when using the supervised loss, we update all remaining parameters. In its official
implementation, GMN updates its key locations once each p = 5 epochs. Figure S1 shows the
supervised loss on the validation set, with p ∈ {2, 5}, for ZINC and IMDB. As is the case for
DIFFPOOL, enforcing the role of the unsupervised loss does not improve the performance of GMNs.

C Permutation Invariance

Permutation invariance is an important property for GNNs since it guarantees that the network’s
predictions do not vary with the graph representation. Here we state the permutation invariance of
some of the simplified GNNs discussed in Section 2. For completeness, we bring here definitions of
invariant and equivariant functions over graphs.

Definition 1 (Permutation matrix). Pn ∈ {0, 1}n×n is a permutation matrix of size n if
∑

i Pi,j =
1 ∀j and

∑
j Pi,j = 1 ∀i.

We denote by G the set of undirected graphs and by Gn the set of all graphs with exactly n nodes.

15

0 50 100 150
Epochs

0.4

0.6

0.8

1.0

M
A

E

ZINC

p = 2

p = 5

0 25 50 75
Epochs

0.6

0.7

0.8

C
ro

ss
E

nt
ro

py

IMDB-BINARY

p = 2

p = 5

Figure S1: Supervised loss on validation set for ZINC and IMDB-BINARY datasets. Updating the
keys using the unsupervised loss more frequently shows no positive impact on the performance of
GMN. For IMDB-BINARY, updating the keys more frequently leads to a clearly worse minimum.
Curves are averaged over twenty repetitions with different random seeds.

Definition 2 (Equivariant graph function). A function f : G′ ⊆ G → Rn×d is equivariant if
f(PnAP ᵀ

n ,PnX) = Pnf(A,X) for any G = (A,X) ∈ G′ with n nodes and any permutation
matrix Pn, where n is the number of nodes in G.

Definition 3 (Invariant graph function). Let d > 0. A function f : G′ ⊆ G → I is invariant if
f(PnAP ᵀ

n ,PnX) = f(A,X) for any G = (A,X) ∈ G′ and any permutation matrix Pn, where n
is the number of nodes in G.

C.1 GRACLUS

Remark 3 (On the invariance of GRACLUS and COMPLEMENT.). In general, the invariance of
pooling methods that rely on graph clustering depends on the invariance of the clustering algorithm
itself. For any invariant clustering algorithm, COMPLEMENT (see Section 2) is also invariant.
However, this is naturally not the case of GRACLUS as it employs a heuristic that can return different
graph cuts depending on initialization.

C.2 DIFFPOOL

Theorem 1 (Invariance of randomized DIFFPOOL). The DIFFPOOL variant in Remark 1 is invariant.

We prove this by showing that each modified pooling layer is individually invariant. Here, we treat
the l-th pooling layer as a function fl : G → G. Let G =

(
X(l−1),A(l−1)) be a graph with nl−1

nodes and Pnl−1
be a permutation matrix. Furthermore, we define:(

A(l),X(l)
)

:= fl

(
A(l−1),X(l−1)

)
and

(
A(l)′,X(l)′

)
:= fl

(
Pnl−1

A(l−1)P ᵀ
nl−1

,Pnl−1
X(l−1)

)
,

so that our job reduces to proving
(
A(l),X(l)

)
=
(
A(l)′,X(l)′).

Note that modified assignment matrix for a graph with node features X(l−1) is S̃(l) = X(l−1)S̃′,
and thus the assignment matrix for Pnl−1

X(l−1) is Pnl−1
S̃(l). Then, it follows that:

X(l)′ =
(
Pnl−1

S̃(l)
)ᵀ

GNN
(l)
2 (Pnl−1

A(l−1)Pnl−1

ᵀ,Pnl−1
X(l−1))

= S̃(l)ᵀP ᵀ
nl−1

Pnl−1
GNN

(l)
2 (A(l−1),X(l−1))

= S̃(l)ᵀGNN
(l)
2 (A(l−1),X(l−1))

= X(l)

and for the coarsened adjacency matrix:

A(l)′ =
(
Pnl−1

S̃(l)
)ᵀ

Pnl−1
A(l−1)P ᵀ

nl−1

(
Pnl−1

S̃(l)
)

= S̃(l)ᵀA(l−1)S̃(l)

= A(l)

16

C.3 GMN

Theorem 2 (Invariance of simplified GMN). If the initial query network is equivariant, our simplified
GMN, which employs distances rather than the Student’s t-kernel, is invariant.

We prove this by first proving each modified memory layer is invariant. The final result follows from
the fact that the composition of an equivariant function with a series of invariant functions is invariant.
Note that memory layer l can be seen as a function fl : G′ → G′, where G′ denotes the set of fully
connected graphs.

Let G = (Q(l−1),1nl−1×nl−1
) ∈ G′ and Pnl−1

be a permutation matrix. Furthermore, let(
Q(l),1nl×nl

)
:= fl(PnQ

(l−1),1nl−1×nl−1
)(

Q(l)′,1nl×nl

)
:= fl(Q

(l−1),1nl−1×nl−1
)

To achieve our goal, it suffices to show that Q(l) equals Q(l)′. Let D(l)
h denote the distance matrix

between the queries Q(l−1) and the keys in the h-th head of the l-th memory layer, then

Q(l) = ReLU
(

softmax
(

1x1Conv
(
D

(l)
1 , . . . ,D

(l)
H

))ᵀ
Q(l−1)W (l)

)
Since the distance matrix for the permuted matrix is simply the permuted distance matrix, it follows
that:

Q(l)′ = ReLU
(

softmax
(

1x1Conv
(
Pnl−1

D
(l)
1 , . . . ,Pnl−1

D
(l)
H

))ᵀ
Pnl−1

Q(l−1)W (l)
)

= ReLU
(

softmax
(

1x1Conv
(
D

(l)
1 , . . . ,D

(l)
H

))ᵀ
P ᵀ

nl−1
Pnl−1

Q(l−1)W (l)
)

= ReLU
(

softmax
(

1x1Conv
(
D

(l)
1 , . . . ,D

(l)
H

))ᵀ
Q(l−1)W (l)

)
= Q(l)

D Further details on Remark 2

The unsupervised loss employed to learn GMNs consists of a summation of

DKL

(
Q(l)‖P (l)

)
=

nl−1∑
i=1

nl∑
j=1

P
(l)
ij log

P
(l)
ij

Q
(l)
ij

over all layers, where the matrix P (l) ∈ Rnl−1×nl is defined such that

P
(l)
ij =

(
S
(l)
ij

)2
/
(∑

i S
(l)
ij

)
∑

j′

[(
S
(l)
ij′

)2
/
(∑

i S
(l)
ij′

)] .

The intuition here is to enforce cluster purity by pushing the probabilities P (l)
i: towards their re-

normalized squares. A perhaps counter-intuitive outcome of this design is that choosing nl identical
keys, which results in totally uniform cluster assignments, perfectly minimizes the Kullback-Leibler
divergence. To verify so, we set Qij = 1/nl for all i = 1 . . . nl−1 and j = 1 . . . nl, that is

P
(l)
ij =

n−2
l−1

nln
−1
l−1

nl−1
n−2
l−1

nln
−1
l−1

=
1

nl−1
⇒ DKL

(
Q(l)‖P (l)

)
= 0

17

E Additional embeddings

Figures S2-S13 illustrate the activations throughout the models’ main layers, similarly to Figures
5 and 6 from the main text. For better visualization, we force the embeddings (plots) to share a
common aspect ratio and include the number of nodes at each layer inside brackets. These numbers
correspond to the number of rows of each embedding matrix. Also, the color scale of each embedding
matrix is normalized according to its own range. Therefore, color scales are not comparable across
different embedding matrices. This allows us to assess the degree of homogeneity in each embedding
matrix more accurately. Figures S2-S13 reinforce our findings that GNNs learn smooth signals
across features at early layers. This make the pooling strategies less relevant for learning meaningful
hierarchical representations.

Graphs
After Conv 1
[36, 21, 17]

After Conv 2
[36, 21, 17]

After Pooling 1
[20, 14, 10]

After Conv 3
[20, 14, 10]

After Pooling 2
[11, 9, 6]

Figure S2: GRACLUS on NCI1.

Graphs
After Conv 1
[36, 21, 17]

After Conv 2
[36, 21, 17]

After Pooling 1
[18, 11, 9]

After Conv 3
[18, 11, 9]

After Pooling 2
[9, 6, 5]

Figure S3: COMPLEMENT on NCI1.

Graphs
After Conv 1
[19, 39, 21]

After Conv 2
[19, 39, 21]

After Pooling 1
[10, 20, 11]

Figure S4: GRACLUS on MOLHIV.

Graphs
After Conv 1
[19, 39, 21]

After Conv 2
[19, 39, 21]

After Pooling 1
[10, 20, 11]

Figure S5: COMPLEMENT on MOLHIV.

18

Graphs
After Conv 1
[36, 21, 17]

After Conv 2
[36, 21, 17]

After Pooling 1
[10, 10, 10]

Figure S6: GMN on NCI1.

Graphs
After Conv 1
[36, 21, 17]

After Conv 2
[36, 21, 17]

After Pooling 1
[10, 10, 10]

Figure S7: Random-GMN on NCI1.

Graphs
After Conv 1
[37, 36, 39]

After Conv 2
[37, 36, 39]

After Pooling 1
[32, 32, 32]

Figure S8: GMN on MOLHIV.

Graphs
After Conv 1
[37, 36, 39]

After Conv 2
[37, 36, 39]

After Pooling 1
[32, 32, 32]

Figure S9: Random-GMN on MOLHIV.

19

Graphs
After Conv 1
[62, 66, 68]

After Pooling 1
[28, 28, 28]

After Pooling 2
[7, 7, 7]

Figure S10: DIFFPOOL on NCI1

Graphs
After Conv 1
[62, 66, 68]

After Poolng 1
[28, 28, 28]

After Pooling 2
[7, 7, 7]

Figure S11: N -DIFFPOOL on NCI1.

Graphs
After Conv 1
[90, 73, 74]

After Poolng 1
[56, 56, 56]

After Pooling 2
[14, 14, 14]

Figure S12: DIFFPOOL on MOLHIV.

Graphs
After Conv 1
[90, 73, 74]

After Poolng 1
[56, 56, 56]

After Pooling 2
[14, 14, 14]

Figure S13: N -DIFFPOOL on MOLHIV.

20

