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Abstract

Stochastic gradient descent (SGD) and its variants have established themselves as
the go-to algorithms for large-scale machine learning problems with independent
samples due to their generalization performance and intrinsic computational advan-
tage. However, the fact that the stochastic gradient is a biased estimator of the full
gradient with correlated samples has led to the lack of theoretical understanding
of how SGD behaves under correlated settings and hindered its use in such cases.
In this paper, we focus on the Gaussian process (GP) and take a step forward
towards breaking the barrier by proving minibatch SGD converges to a critical
point of the full loss function and recovers model hyperparameters with rate O( 1

K )
up to a statistical error term depending on the minibatch size. Numerical studies
on both simulated and real datasets demonstrate that minibatch SGD has better
generalization over state-of-the-art GP methods while reducing the computational
burden and opening up a new, previously unexplored, data size regime for GPs.

1 Introduction

The Gaussian process (GP) has seen many success stories in various domains, be it in optimization
[42, 32], reinforcement learning [33, 20], time series analysis [19, 1], control theory [17, 23] and sim-
ulation meta-modeling [44, 26]. One can attribute such success to its natural Bayesian interpretation,
uncertainty quantification capability and highly flexible model priors. Yet its main limitation is the
O(n3) computation and O(n2) storage for n training points [29]. Indeed, as mentioned in [13], a
traditional large dataset for a GP is one with a few thousand data points and even those often require
approximation techniques.

As a result, during the past two decades, a large proportion of papers on GPs tackled approximate
inference procedures to reduce the computational demands and numerical instabilities (mainly due
to the need for matrix inversions). This push towards scalability dates back to the seminal paper by
Quiñonero-Candela and Rasmussen [27] in 2005 which unified previous approximation methods
into a single probabilistic framework based on inducing points. Since then, many new methods have
also been introduced. Most notable are: variational inference procedures that laid the theoretical
foundation for the class of inducing point methods [8, 25, 43, 3, 40], mixture of experts models
[9, 36], covariance tapering [11, 16] and kernel expansions [21, 28, 41]. On the other hand, there
has been a recent push to utilize increasing computational power and GPU acceleration to solve
exact GPs. This recent literature inlcudes distributed Cholesky factorizations [24], preconditioned
∗Equal contribution.
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conjugate gradients (PCG) to solve linear systems [12] and kernel matrix partitioning to perform all
matrix-vector multiplications [38]. Interestingly [38] was able to fit a bit more than 1 million data
points using 8 GPUs in a few days.

One possible solution to extend GPs far beyond what is currently possible is through stochastic
gradient decent (SGD) and its variants: drawing m << n samples at each iteration and updating
model parameters following the gradient of the loss function on the m subsamples. Indeed, SGD,
or more generally the capability of inference via minibatches (possibly also with second order
information), has been a key propeller behind the success of deep learning in its various forms [22].
The caveat however is that, unlike empirical loss minimization, there exists correlation across all
samples where any finite collection of the samples has a joint Gaussian distribution with covariance
characterized by an empirical kernel matrix. This translates to the stochastic gradient being a biased
estimator of the full gradient when taking expectation with respect to the random sampling. The lack
of theoretical backing and understanding of how SGD behaves in such settings has long stood in the
way of the use of SGD to do inference in GPs [13] and even in most correlated settings.

In this paper, we establish convergence guarantees for both the full gradient and the model parameters.
Interestingly, without convexity or even Liptchitz conditions on the loss function, the structure of the
GP leads to an optimization error term O( 1

K ) for both converging to a critical point and recovering
true key parameters: noise variance and signal variance multiplied by the kernel function. Our proof
takes two steps: first we concentrate the stochastic gradient to its conditional expectation using an
ε-net argument and then we show that the latter satisfies a strongly convex-like property by exploiting
eigenvalues of the empirical kernel matrix. The proof and key findings offer standalone value beyond
GPs and we hope they encourage researchers to further investigate SGD in other correlated settings
such as Lévy, Itô and Markov processes.

Most importantly, however, the results open a new data size regime to explore GPs. We were able to
train n ≈ 1.2×106 data points using a single CPU core in around 30 minutes. Recall, it took the most
recent advancements in exact GPs a couple of days using 8 GPUs when n ≈ 106 and n is limited
to approximately 104 without GPU. We find that GPs inferred using SGD offer remarkably better
performance in various case studies with different dataset sizes, noise levels and input dimensions.
These results highlight the value of intrinsic regularization offered by SGD and also shed light on the
value of increased data sizes in Bayesian non-parametric representations. We first start by listing our
key findings in Section 1.1. We also note that the detailed proof is deferred to the appendix and only
an outline is provided in Section 4.

1.1 Key Findings

We establish convergence guarantees for the minibatch SGD algorithm for training GP, sampling with
or without replacement. Under regularity conditions, our results suggest the following:

• For a large enough minibatch size m, minibatch SGD converges to a critical point of the full log-
likelihood loss function, and recovers the true hyperparameters, including the noise variance and
the signal variance. To be specific, the full gradient and the estimation error of the hyperparameters
evaluated at the Kth iterate are bounded by an optimization error term O( 1

K ) and a statistical
error term: O(m−

1
2 ) for the full gradient and the noise variance, and O((logm)−

1
2 ) for the signal

variance if the kernel function has exponential eigendecay, see Theorems 3.1 and 3.2.

• To guarantee the O( 1
K ) optimization error bound, no convexity or even Liptchitz condition on the

loss function are assumed. Instead, we prove that the conditional expectation of the loss function
given covariates Xn satisfies a relaxed property of strong convexity (see Lemma 4.1), which
provides more flexibility in the choice of initial parameters.

• Through benchmarking with state-of-the-art methods on various datasets we show that SGD
offers great value from both computational and statistical perspectives. Computationally, we
scale to dataset sizes previously unexplored in GPs in a fraction of time needed for competing
methods. Meanwhile statistically, we find that the induced regularization imposed by SGD
improves generalization in GPs, specifically in large data settings.
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2 Problem Setup

Notations Vectors and matrices are denoted by boldface letters, e.g., Kn, θ, except for the full
gradient ∇`(θ) and stochastic gradient g(θ). For any vector u ∈ Rp, ui denotes its ith entry, and

‖u‖2 =
(∑p

i=1 u
2
i

) 1
2 denotes its `2 norm. For any square matrix A, λi(A) denotes its ith largest

eigenvalue.

We consider the Gaussian process model

f ∼ GP(m(·), c(·, ·)), x1, . . . ,xn
i.i.d.∼ P,

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

ε ), 1 ≤ i ≤ n,
(1)

where xi ∈ X ⊂ RD is the input, m(·) : X → R is the prior mean function, c(·, ·) : X × X → R
is the prior covariance function, and εi is the observational noise with variance σ2

ε . With-
out loss of generality, we consider constant 0 mean function. Let the prior covariance func-
tion c(·, ·) = σ2

fk(·, ·) for some kernel function k(·, ·) : X × X → R, where σ2
f is the sig-

nal variance. We observe data points {(xi, yi)}ni=1 generated from (1) and organize them into
(Xn,yn) = ((x1, . . . ,xn)

>, (y1, . . . , yn)
>), from which we aim to learn the hyperparameters in

order to predict outputs from new inputs based on the posterior process.

Denote by θ∗ = (σ2
f , σ

2
ε )
> ∈ R2 the hyperparameters to be determined, and for notational conve-

nience, we may also use θ∗1 to denote σ2
f and θ∗2 to denote σ2

ε in the following. One direct approach to
estimate θ∗ is by applying gradient descent to minimize the scaled negative log marginal likelihood
function

`(θ;Xn,yn) = −
1

n
log p(yn|Xn,θ)

=
1

2n
[y>nK

−1
n (θ)yn + log |Kn(θ)|+ n log(2π)]

(2)

over θ ∈ (0,∞)2, where Kn(θ) = θ1Kf,n + θ2In ∈ Rn×n is the marginal covariance matrix for
noisy observations yn given Xn, and Kf,n ∈ Rn×n is the kernel matrix of k(·, ·) evaluated at Xn,
i.e. (Kf,n)i,j = k(xi,xj). For notational convenience we will omit Kn(θ) to Kn when θ is clear
from the context and denote Kn(θ

∗) by K∗n. In this case, the derivative of `(θ) is of particular
interest to us where each of its entries takes the form

(∇`(θ;Xn,yn))l =
1

2n

[
−y>nK−1n

∂Kn

∂θl
K−1n yn + tr

(
K−1n

∂Kn

∂θl

)]
=

1

2n
tr
[
(K−1n (In − yny

T
nK
−1
n )

∂Kn

∂θl

]
, 1 ≤ l ≤ 2,

(3)

where θl is the lth element of θ and (∂Kn/∂θl)ij = ∂(Kn)ij/∂θl. For notational convenience we
will suppress Xn,yn and use∇`(θ) instead. Notice that the computation in (3) is dominated by the
calculation of K−1n , which requires O(n3) time. In order to reduce the computational cost of training,
we consider the minibatch stochastic gradient descent approach to optimize (2).

2.1 Minibatch SGD algorithm

Let ξ be a random subset of {i}ni=1 of size m, then {(xi, yi)}i∈ξ is the corresponding subset of data
points which we organize into (Xξ,yξ), where Xξ is the submatrix formed by the rows of Xn, and
yξ is the subvector of yn, both indexed by ξ. Define g(θ;Xξ,yξ) ∈ R2 as an approximation to
∇`(θ;Xn,yn) that can be calculated from this subset, i.e.,

(g(θ;Xξ,yξ))l =
1

2sl(m)
tr
[
(K−1ξ (Im − yξy

>
ξ K
−1
ξ )

∂Kξ

∂θl

]
, 1 ≤ l ≤ 2, (4)

where Kξ is the covariance matrix of yξ while also being the principle submatrix formed by the
rows and columns of Kn indexed by ξ. A natural choice for sl(m) is m, but we will see in Section 3
that setting s1(m) � logm and s2(m) = m would lead θ(k)1 and θ(k)2 to both converge to the true
hyperparameters. Algorithm 1 summarizes the steps of minibatch SGD, where we do not specify
whether minibatches are sampled with or without replacement since our theoretical guarantees will
hold true under both scenarios.
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Algorithm 1: Minibatch SGD

1 Input: θ(0) ∈ R2, initial step size α1 > 0.
2 for k = 1, 2, . . . ,K do
3 Randomly sample a subset of indices ξk of size m;
4 Compute the stochastic gradient g(θ(k);Xξk ,yξk);
5 αk ← α1

k ;
6 θ(k) ← θ(k−1) − αkg(θ(k−1);Xξk ,yξk);
7 end for

3 Theoretical Guarantees

In this section, we provide convergence guarantees for Algorithm 1, including error bounds for
‖θ(k) − θ∗‖22 and ∇`(θ(k)). The following assumptions are needed for our theoretical results.
Assumption 3.1 (Exponential eigendecay). The eigenvalues of kernel function k(·, ·) w.r.t. probability
measure P are {Ce−bj}∞j=0, where C ≤ 1 is regarded as a constant.

This exponential eigendecay assumption is satisified by the RBF kernels. In fact, for kernel functions
with a different decay rate (e.g., polynomial decay), similar convergence guarantees shall still hold,
except that the error bounds may scale differently w.r.t. the minibatch size m. The requirement C ≤ 1
is only for theoretical convenience, and it suffices to have a bounded C.

Assumption 3.2 (Bounded iterates). Both θ∗ and θ(k) for 0 ≤ k ≤ K lie in [θmin, θmax]
2, where

0 < θmin < θmax.

Assumption 3.3 (Bounded stochastic gradient). For all 0 ≤ k < K, ‖g(θ(k);Xξk+1
,yξk+1

)‖2 ≤ G
for some G > 0.

The following theorem guarantees the convergence of the parameter iterates under these assumptions.
Theorem 3.1 (Convergence of parameter iterates). Under Assumptions 3.1 to 3.3, when m > C for
some constant C > 0, we have the following results under two corresponding conditions on sl(m):

1. If s2(m) = m, 3
2γ ≤ α1 ≤ 2

γ where γ = 1
4θ2max

, then for any 0 < ε < C log logm
logm , with probability

at least 1− CK exp{−cm2ε},

(θ
(K)
2 − θ∗2)2 ≤

8G2

γ2(K + 1)
+ Cm−

1
2+ε. (5)

2. If in addition to s2(m) = m, s1(m) is set to τ logm where τ > 64θ4max

bθ4min
, 3
2γ ≤ α1 ≤ 2

γ where γ

depends on τ , then for any 0 < ε < 1
2 , with probability at least 1− CK exp{−c(logm)2ε},

‖θ(K) − θ∗‖22 ≤
8G2

γ2(K + 1)
+ C(logm)−

1
2+ε. (6)

Here c, C > 0 depend only on θmin, θmax, b.

Remark 3.1. Theorem 3.1 suggests that the noise variance parameter θ(K)
2 is guaranteed to converge

to the truth θ∗2 , with the optimization error term O( 1
K ) and the statistical error term O(m−

1
2+ε)

with high probability, if ε logm is large, the initial stepsize is appropriately chosen and s2(m) = m.
Furthermore, if we let s1(m) = τ logm, then Algorithm 1 achieves convergence for both θ(K)

1 and
θ
(K)
2 with statistical error O((logm)−

1
2+ε).

Remark 3.2. The optimization error O( 1
K ) is credited to the structure of the GP loss function, which

satisfies a relaxation of strong convexity (details provided in Section 4). The different eigenvalue
structures of Kf,ξ and Im lead to different rates of statistical errors for θ∗1 and θ∗2 , while the fact
that statistical errors depend on m instead of n is due to the correlation among yξ from different
minibatches.
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Remark 3.3. For the second case where s1(m) = τ logm, γ needs to satisfy

γ = min

{
1

32τbθ2max

,
1

4θ2max

− 2θ2max

τbθ4min

}
, (7)

Remark 3.4. One possible extension to our current set-up is to assume the covariance function
c(·, ·) to be the summation over multiple kernel functions: c(·, ·) =

∑M
l=1 σ

2
f,lkl(·, ·) for M > 1. To

establish convergence guarantees for this case, we can follow similar arguments of the current proof
with the additional assumption that the kernel matrices for all kernels k1(·, ·), . . . , kM (·, ·) share the
same eigenvectors, which facilitates the analysis for the gradient.

Based on Theorem 3.1, we also derive the following convergence guarantee for the full gradient.

Theorem 3.2 (Convergence of full gradient). Under Assumptions 3.1 to 3.3, if 3
2γ ≤ α1 ≤ 2

γ for

γ = 1
4θ2max

, m > C, s2(m) = m, then for any 0 < ε < C log logm
logm , with probability at least

1− CK exp{−cm2ε},

‖∇`(θ(K))‖22 ≤ C
[

G2

K + 1
+m−

1
2+ε

]
, (8)

holds, where c, C > 0 depend only on θmin, θmax, b.

Theorem 3.2 implies that, running SGD for sufficiently many iterations with large minibatch size
leads to the convergence to a critical point of `(θ).

4 Proof Overview

In this section, we present the proof overview for the first part of Theorem 3.1 and Theorem 3.2. The
proof of the second part in Theorem 3.1 follows similar ideas although requiring more careful analysis.
With a bit abuse of notation, we will omit g(θ(k);Xξk+1

,yξk+1
) to g(θ(k)) and denote its conditional

expectation E(g(θ(k))|Xξk+1) by g∗(θ(k)). Similarly we define∇`∗(θ(k)) = E(∇`(θ(k))|Xn).

Due to the bias in the stochastic gradient, we take the followings steps instead of directly drawing the
connection between g(θ(k)) and∇`(θ(k)):

• For proving the first part of Theorem 3.1:

– We first show that the conditional expectation g∗(θ(k)) of the stochastic gradient has a
property similar to strong convexity, see Lemma 4.1.

– We then prove that g(θ) is close to its conditional expectation g∗(θ) uniformly over all
possible θ, and thus g(θ(k)) is close to g∗(θ(k)). Applying Lemma 4.2 to each minibatch
leads to the desired result.

These two steps lead to the O( 1
K ) optimization error rate for (θ(k)2 − θ∗2)2, and a statistical error

rate depending on m, as shown in Theorem 3.1.

• For proving Theorem 3.2:

– Lemma 4.2 suggests that∇`(θ(k)) is close to∇`∗(θ(k))

– The eigendecay of kernel matrices ensures that ‖∇`∗(θ(k))‖2 is controlled by (θ
(k)
2 − θ∗2)2,

which is upper bounded in Theorem 3.1.

These steps above provide us with the same error bound of ‖∇`∗(θ(k))‖2 from that of (θ(k)2 − θ∗2)2
in Theorem 3.1.

4.1 Key Lemmas

The following two lemmas are the key building blocks of the proof: one shows the nice convex-like
property of g∗(θ(k)), the other establishes a uniform bound for the statistical error ∇`(θ)−∇`∗(θ)
over θ ∈ [θmin, θmax]

2, and thus also bounds g(θ(k))− g∗(θ(k));
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Lemma 4.1 (Strongly convex-like property of g∗(θ(k))). Under Assumptions 3.1 to 3.3, if s2(m) =
m, m > C, then with probability at least 1−2Km−c, the following claim holds true for 0 ≤ k < K:

(θ
(k)
2 − θ∗2)(g∗(θ

(k)))2 ≥
1

8θ2max

(θ
(k)
2 − θ∗2)2 −

C logm

m
, (9)

Here C > 0 depends only on θmin, θmax, b.

Lemma 4.1 is a relaxation of strong convexity, but leads to similar convergence guarantees from
running SGD on strongly convex objectives. The approximate “curvature" parameter, 1

8θ2max
on the

R.H.S of (9), remains a constant regardless of how large m is. To guarantee the constant “curvature”,
we establish novel upper and lower bounds on

∑m
j=1 λ

l
j(θ

(k)
1 λj+θ

(k)
2 )−2 with high probability when

m is large, where λj is the jth largest eigenvalue of Kf,n, l = 0, 1, 2. The proof is based on the
established error bounds for the empirical eigenvalues in [6] and the eigendecay of the kernel k(·, ·).
Lemma 4.2 (Uniform statistical error). Under Assumption 3.1 to 3.3, for any x > 0, 1 ≤ l ≤ 2, we
have

P

(
sup

θ∈[θmin,θmax]2
|(∇`(θ))i − (∇`∗(θ))i| > Cx

)
≤ δ(x), (10)

where δ(x) ≤ C(log x)4 exp{−cnmin{x2, x}}. Here c, C > 0 only depend on θmin, θmax, b.

The major difficulty in the proof of Lemma 4.2 is to control the error term uniformly over
θ ∈ [θmin, θmax]

2. We need an uniform error bound, since g∗(θ(k)) is no longer the conditional
expectation of g(θ(k)) if conditioning on the past iterate θ(k). Although the set [θmin, θmax]

2 has
constant dimension, the kernel matrix Kn(θ) ∈ Rn×n is of high dimension and is determined by θ
in a non-linear way. Our solution is to explore the Taylor’s expansion of ∇`(θ)−∇`∗(θ), then use
truncation and covering arguments.

5 Related Work

As mentioned earlier, there are several methods trying to tackle the computational complexity of
GPs. Those can be roughly split into three categories, though it is by no means an exhaustive list
(see the survey in [1]). Exact inference via matrix vector multiplications (MVM): This recent
class of literature has had the most success in scaling GPs. Initially such approaches depended
on a structured kernel matrix where data lies in a regularly spaced grid [30, 39]. Then with the
help of GPU acceleration, conjugate gradient and distributed Cholesky factorization, MVMs were
applied to more general settings [38, 12, 37]. Such approaches have training complexity of O(n2)
(O(n logn) possible on spaced grids), yet amenable to distributed computation and GPU acceleration.
Sparse approximate inference: This class of methods is based on a low rank approximation of
the empirical kernel matrix where Kn ≈ KnzK

−1
zz Kzn and z denotes a set of inducing points with

cardinality(z) = nz << n [18, 2, 8, 43, 31]. Their time complexity is mainly O(n2zn) which can be
reduced to O(n+ cnz) for structured and regularly spaced grids. Indeed, sparse GPs have gained
increased attention since variational inference (VI) laid the theoretical foundation of this class of
inducing points/kernel approximations (starting from the early work of Titsias [35]). Stochastic
variational inference (SVI): Following the work of [15], SVI was introduced to GPs in [13]. The
key idea is to introduce a variational distribution over the inducing points so that the VI framework is
amenable to stochastic optimization. This leads to a complexity of O(n3z) at each iteration [14, 5].
Unfortunately, recent results in [7] show the need for at least O(logDn) inducing points for Gaussian
kernels, which implies a superlinear growth with the input dimension.

6 Practical Considerations

6.1 Sampling Scheme

Apart from sampling uniform minibatches stated in Algorithm 1, one may also consider sampling
nearby minibatches in practice. In our case studies, we demonstrate a particular nearby sampling
strategy, i.e., nearest-neighbor search, where a minibatch consists of an uniformly sampled data point
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and its m− 1 nearest neighbors within the data pool. We may construct a k-d tree to conduct such
search, which finds the m− 1 nearest neighbors for every data point in a given dataset of size n in
O(n log n) time and O(n) space.

6.2 Optimizing lengthscale

In practice, when considering the RBF kernel, it is necessary to estimate the lengthscale parameters
as well. Similar to Algorithm 1, we can update the lengthscale parameters alongside the variance
parameters using minibatch SGD. Despite the challenge of providing theoretical guarantees for
lengthscales, our numerical experiments utilize minibatch SGD to estimates all parameters (including
lengthscales) and yield superior results over state-of-the-art methods on a wide range of datasets.

6.3 Prediction

Although our main focus in this paper is estimating the hyperparameters, the last step when applying
GP in real applications is always prediction. With the estimated optimal hyperparameters, various
strategies can be applied to calculate the predictive mean for x∗ and the predictive covariance between
x∗ and x′∗, following the posterior, i.e.,

mpost(x∗) = σ2
fk
>
Xnx∗K

−1
n yn, cpost(x∗,x

′
∗) = σ2

fk(x∗,x
′
∗)− σ4

fk
>
Xnx∗K

−1
n kXnx′∗ , (11)

where kXnx∗ = (k(x1,x∗) . . . , k(xn,x∗))
>. The main computational cost comes from the linear

solvers in (11). In general, for n < 104, they can be computed via Cholesky decomposition; for
n < 105, preconditioned conjugate gradient (PCG) [12] can be applied for acceleration; for n < 106,
PCG with partitioned kernel [38] could provide further speed up, if distributed computational
resources are available. Another practical but less ideal strategy when predicting with extremely large
n is to utilize n1 nearest neighboring data points of x∗ to approximate mpost(·), where n1 < n is
determined by computational resource. This is due to the interpolation nature of Gaussian process
prediction.

7 Numerical Results

7.1 Numerical Illustration of Theory

In this section, we conduct simulation studies to verify our theoretical results†. We consider n =

1, 024, xi
i.i.d.∼ N (0, 52) and yn ∼ N (0, σ2

fKf,n+σ
2
ε In). Kf,n is an RBF kernel matrix with known

lengthscale l = 0.5. The underlying true parameters are σ2
f = 4 and σ2

ε = 1. In each experiment, we
perform 25 epochs of minibatch SGD updates with diminishing step sizes αk = α1/k. Notice that
similar numerical results can be obtained by sampling minibatches with replacement. We let scaling
factors s1(m) = 3 logm for σ2

f and s2(m) = m for σ2
n. Each experiment is repeated 10 times with

independent data pools.

Fig. 1 shows the convergence of parameters. First of all, the curves exhibit O( 1
K ) convergence rate

stated in Theorem 3.1. In addition, the convergence points of σ2
ε are significantly more concentrated

around its truth than that of σ2
f , which is consistent with the O((logm)−

1
2 ) statistical error for σ2

f

and O(m−
1
2 ) statistical error for σ2

ε stated in Theorem 3.1.

Fig. 2 displays the effect of minibatch size m on the convergence of the full gradient. As we can see,
the curves flatten slower and become less concentrated as minibatch size decreases, suggesting that
larger minibatch size results in faster convergence and smaller statistical error for the full gradient.
Additionally, the convergence points of log(||∇`(θ(k))||22) scale linearly with minibatch size m,
indicating O(m−

1
2 ) statistical error for ||∇`(θ(k))||22. The above observations confirm our statements

in Theorem 3.2. Due to space limit, we defer the figures demonstrating the effect of m on the
convergence of parameters to the supplementary file, which also supports our theoretical results.

†The R functions for conducting numerical experiments are available online:
https://github.com/UMDataScienceLab/SGD-in-Gaussain-processes.
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Figure 1: Illustration of the convergence of parameters from different initial points with m = 128.
Lines in black denote the true parameters. The respective initial step sizes α1 are 9, 9, and 6.
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Figure 2: Comparison of the convergence of the full gradient with varying minibatch sizes. The mean
of ||∇`(θ(k))||22 and the region within its one standard error over 10 repetitions are shown in log
scale. The three experiments share initial point θ(0) = (5.0, 3.0) and inital step size α1 = 9.

7.2 Case Studies

In this section, we first compare the generalization performance and training time of our stochastic
gradient-based GP (sgGP) with PCG-based exact GP (EGP) [38], sparse GP regression (SGPR) [35]
and stochastic variational GP (SVGP) [13] on various benchmark datasets. Notice that our approach
differs from EGP in model selection but shares the same formula in prediction. We then demonstrate
sgGP on toy datasets of size 2×106. The real datasets are from UCI repository [10] and the simulated
datasets are from Virtual Library of Simulation Experiments [34].

Throughout all experiments, we consider constant 0 prior mean function and scaled RBF kernel
prior covariance function with a separate lengthscale for each input dimension. Therefore, the
hyperparameters to be learned are lengthscales, signal variance and noise variance. We conduct 10
independent trials on each dataset. In each trial, we randomly split the dataset into 60% training set
and 40% test set. In addition, the training set is normalized to 0 mean and 1 standard deviation, and
the test set is scaled accordingly.

During training (model selection), the hyperparameters and variational parameters are learned through
minimizing the negative log marginal likelihood or its surrogate. We follow similar setups in [38].
For sgGP, we apply nearest-neighbor sampling strategy and perform 100 epochs of Adam with
minibatch size m = 16 and a learning rate of 0.01. For EGP, we perform 100 iterations of Adam
with a learning rate of 0.1. For SGPR and SVGP, we set the number of inducing points to 512 and
1, 024, respectively, following theoretical recommendations in [7]. We carry out 100 iterations of
Adam with a learning rate of 0.1 for SGPR and 100 epochs of Adam with minibatch size m = 1, 024
for SVGP. For the fairness of comparison, we do not perform any pretraining or fine-tuning, and we
ensure different methods share a random but common starting point in each trial.

We code the training of sgGP with base R functions and use R package RANN [4] for nearest-neighbor
search. The prediction of sgGP, together with the training and prediction of EGP, SGPR and SVGP
are implemented through GPyTorch [12, 38]. Each experiment is performed on a single core of Intel
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Table 1: Comparison of root-mean-square-error (RMSE) and training time of different GPs on
benchmark datasets. We report the mean and standard error of RMSE as well as the mean and
standard deviation of training time over 10 trials. The best results are in bold (lower is better). For
query and borehole datasets, we are unable to fit with EGP due to memory limit.

RMSE Training Time (min)

Dataset Size D sgGP EGP SGPR SVGP sgGP EGP SGPR SVGP
Levy 10,000 4 0.265± 0.003 0.312± 0.003 0.564± 0.010 0.582± 0.013 0.51± 0.00 11.48± 1.28 4.04± 0.51 14.58± 0.07

Griewank 10,000 6 0.071± 0.000 0.185± 0.073 0.132± 0.003 0.093± 0.005 0.61± 0.01 15.25± 3.72 1.93± 0.31 13.18± 0.58
Bike 17,379 17 0.221± 0.002 0.228± 0.002 0.276± 0.004 0.250± 0.010 1.98± 0.03 31.48± 7.45 5.31± 2.05 25.26± 3.97

Energy 19,735 27 0.786± 0.001 0.802± 0.007 0.843± 0.006 0.795± 0.005 3.15± 0.04 54.39± 8.01 5.41± 0.73 25.09± 5.50
PM2.5 41,757 15 0.287± 0.002 0.286± 0.003 0.638± 0.005 0.540± 0.010 5.21± 0.04 385.51± 42.59 13.59± 2.30 52.46± 10.08
Protein 45,730 9 0.663± 0.006 0.694± 0.004 0.715± 0.003 0.676± 0.004 3.40± 0.03 500.33± 65.62 19.55± 1.66 55.27± 13.09
Query 100,000 4 0.053± 0.000 –– 0.058± 0.002 0.061± 0.000 6.40± 0.10 –– 20.73± 1.63 124.73± 22.25

Borehole 1,000,000 8 0.172± 0.000 –– 0.176± 0.000 0.173± 0.000 67.29± 13.39 –– 857.60± 76.02 1380.86± 11.32

Table 2: Illustration of sgGP on toy datasets. We follow similar setups in Table 1 but train 25 epochs.

Dataset Size D RMSE Training Time (min) Memory Usage (GB)
OTL Circuit 2,000,000 6 0.401± 0.000 33.43± 4.40 0.99± 0.00
Wing Weight 2,000,000 10 0.072± 0.004 78.78± 9.26 1.22± 0.00

Xeon E5-2680 v3 @ 2.50GHz CPU. We manually inject observational noise into simulated datasets.
For query dataset, we constrain the learned noise to be at least 0.1 to regularize the ill-conditioned
kernel matrix. For borehole, otl circuit and wing weight datasets, we first learn the hyperparameters
and then estimate the RMSE by predicting 40,000 adjacent test points using 60,000 nearby training
points due to memory limit.

Table 1 exhibits the prediction accuracy of different GPs measured by RMSE. We find that sgGP
consistently outperforms other GPs regardless of dataset size, input dimension and training starting
point. Notably, sgGP is able to achieve approximately half the error of SGPR and SVGP on certain
datasets like Levy and PM2.5. By comparing to EGP, we conjecture that the implicit regularization
effect of sgGP by utilizing correlated minibatches led to smaller RMSE, i.e. the algorithm tends
to approach local minimas that have better generalization performance. It is worth noting that 100
epochs of updates are sometimes unnecessary for sgGP as 25 or 50 epochs often result in good
performance.

Table 1 also shows the training time of different GPs. The results illustrate the overwhelming training
time advantage of sgGP over other GPs, especially when parallel and distributed computing resources
are not accessible. As expected, the timing advantage of sgGP scales with dataset size. The time-
performance trade-off has been studied in [38] where EGP is shown to have more favorable prediction
accuracy than scalable approximation methods at the cost of multiple GPUs with sizable memory on
large datasets. Our experiments indicate that sgGP is able to attain preferable hyperparameters to
EGP at a much lower computational cost.

Table 2 displays the results of sgGP on toy datasets of size 2 × 106. Remarkably, it takes around
30 min to train otl circuit dataset using a single CPU core with R functions which are not designed
for fast execution. In addition, sgGP enjoys superior training memory efficiency due to its use of
minibatches. This experiment justifies that SGD opens up a new data size regime for exploring GPs.

8 Conclusion

In this paper, we provide theoretical guarantees for the minibatch SGD for training the Gaussian
process (GP) model. In particular, we prove that the parameter iterates converge to the true hy-
perparameters and a critical point of the full loss function, with rate O( 1

K ) up to a statistical error
term depending on minibatch size. Given the correlation structure of GPs, the challenge lies in
the bias of stochastic gradient when taking expectation w.r.t. random sampling. Numerical studies
support our theoretical results and show that minibatch SGD has better performance than some
state-of-the-art methods for various datasets while enjoying huge computational benefits. We finally
note that investigating variance reduction techniques in correlated settings might be a promising
direction to explore.
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Broader Impact

Practitioners in various areas including, but not limited to, machine learning, statistics and optimiza-
tion can benefit from applying our proposed framework. Our framework does not use any bias in the
data or sensitive information. We do not foresee any negative outcomes on ethical aspects or future
societal consequences.
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