
We thank the reviewers for their efforts. We are glad that R1, R2, R3 appreciated the improved understanding of1

NOTEARS (“useful negative results”). Thanks to R2 for describing our theoretical insights in general as “a potentially2

useful side effect for others” and “surprisingly readable for a paper with lots of theoretical results.” R1, R2, R4 recognize3

our empirical results to be “successful” and “a significant improvement.” Below we respond to reviewer comments.4

R3: Questionable that NOTEARS, FGS outperform earlier methods, [2, Table 1] shows MMHC, PC perform5

much better than GES (here FGS) for moderate d. Thank you for pointing this out. We agree that the statement6

on line 276 is too broad and will remove it. To address R3’s concern, we first compared with MMHC and PC in the7

experimental setting of Sec. 5. The significance level α was chosen from the range considered in [2] to minimize SHD.8

The two left panels below show that while MMHC and PC do not perform better than FGS, they are also significantly9

improved by KKTS (we will report full results in the paper). We then performed a second experiment with n = 2d to10

be closer to the setting of [2, Table 1], also adding the GES implementation used in [2]. The right panel shows that FGS11

is actually an improvement over GES, remaining better than MMHC and PC (except d = 10) while GES is worse.12
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R3: “Paper is fairly incremental, developing a single heuristic local search method (namely NOTEARS that13

enjoys no non-trivial performance guarantees).” We naturally disagree about incrementality and are not sure what is14

meant by non-trivial. Prop. 3 provides a negative guarantee for NOTEARS (which is not our method), whereas Thms 915

and 7 provide positive guarantees for our KKTS method to yield KKT points and local minima. We would thus not call16

KKTS heuristic or lacking guarantees. To get from Prop. 3 to KKTS requires several more contributions: reformulating17

the problem and proving that KKT conditions are necessary (Thm 6), and relating the KKT conditions to edge absence18

constraints (Lem. 6, Thm 8). Sec. 2 makes additional contributions in generalizing acyclicity constraints from [32,30].19

R4: Apparently only applicable to continuous case, no mention of categorical. More needed on limitations and20

position in literature. We thank R4 for prompting us to elaborate upon the problem setting and what remains for future21

work, which we will do in the paper. The theory and methods apply straightforwardly to binary variables (although22

we have not experimented with them) but not non-binary categorical variables. As Sec. 3, para. 1 states, the key23

assumption is that each edge is associated with a single parameter Wij . In a (generalized) linear structural equation, a24

single parameter can account for the effect of a binary or continuous input, while a binary output can be handled by a25

suitable loss function (e.g. logistic). However, a single parameter is likely insufficient for a non-binary categorical input26

(typically encoded into multiple binary variables) or output (e.g. [14] proposes multi-logit regression with parameters27

for each level). Therefore the extension to multiple parameters per edge (Sec. 6) is desirable to address categorical28

variables as well as nonlinear models. Abstract: We will add a sentence on the one-parameter-per-edge assumption.29

Title: We find it difficult to capture this assumption in a few readily understood words, but perhaps R4 has a suggestion.30

R1: “What leads to better or worse SHD...F (always squared error...danger of overfitting?), thresholding,31

acyclicity constraint and even centering.” Thanks for the thoughtful questions. Below we summarize what we32

know/have reported. We think a proper exploration would best be left to a journal extension of this paper. Score33

function F : By keeping this as least squares, we have somewhat avoided overfitting to the noise type (Gaussian,34

Gumbel, etc., usually unknown) as opposed to using the log-likelihood. [32, Sec. 5.3] shows that NOTEARS can35

achieve scores close to those of the exact optimizer GOBNILP (especially before thresholding), i.e. it is fitting well36

but not over-fitting, but we have not done a similar comparison for NOTEARS-KKTS. Acyclicity constraint: The37

NOTEARS vs. Abs comparison shows that setting A =W ◦W is empirically superior to A = |W |. As for the function38

h, Appendix C.1 states that the polynomial h(A) from [30] performs slightly better and is slightly faster than the39

exponential h(A) from [32] (the authors of [32] seem to agree as their code now uses polynomial h). Section 6 mentions40

that other h in the class of eq. (1) could be explored in future work. Thresholding: We followed [32] and fixed the41

threshold ω = 0.3 for NOTEARS and for our NOTEARS-inspired algorithms (Abs, KKTS), in part to demonstrate42

success without too much parameter tuning. But we agree that the role of thresholding could be further explored.43

Centering: We were also surprised by the effect this had, as reported in Appendix C.3.44

R1: “Fully continuous” is overstatement. We will remove “fully”. Note that NOTEARS [32] also uses thresholding.45


