
General comments. We thank the Reviewers for their detailed reviews and the feedback regarding the theoretical1

study of rational neural networks (NNs) and their promising applications. Reviewer 4 noted that the introduction of2

rational NNs is motivated by theory, while most exotic activation functions are only empirically supported. We address3

the referees’ remarks on the theoretical results and numerical experiments here. The paper will be revised accordingly.4

Theoretical results. Reviewer 3 highlights the comparison between this paper and Telgarsky’s work. We wish to em-5

phasize that our key contribution is to employ a composition of low-degree rationals r(x) = r#layers · · · r2(r1(x)),6

naturally realized by a NN, to approximate functions efficiently, while Telgarsky’s work approximates a ReLU NN by a7

high-degree rational function not in the form of a NN. The Newman polynomials used by Telgarsky do not preserve8

(minimax) optimality under composition and result in an exponentially larger number of trainable parameters (see Fig. 19

of the paper for a comparison). Finally, we present optimal lower and upper approximation bounds. The notion of10

size and Zolotarev functions will be explicitly defined in the revised version, as requested by Reviewers 3 and 4.11

In response to Reviewer 2, concerning the choice of the degree (3, 2), we emphasize that this degree appears naturally12

in the technical analysis due to the composition property of the Zolotarev functions (see Section 3.1): the degree of the13

overall rational function r is a whopping 3#layers, while the number of trainable parameters only grows linearly.14

A superdiagonal degree (3, 2) allows r to behave like a nonconstant function at ±∞, unlike a diagonal degree e.g.15

(2, 2). The theory ensures that low-degree rational activation functions minimize the number of trainable parameters16

given a fixed overall degree. The choice is also motivated empirically, and we do not claim that the degree (3, 2) is the17

best choice for all situations as the best configuration may well depend on the application; see below Fig. 1 (right).18

Reviewers 1 and 3 discussed the apparently marginal difference between log(1/ε) and log log(1/ε) in Thm. 4. To19

clarify, the bound for rational NNs is close to optimal, given by ε−d/n (DeVore et al., 1989). Most importantly, a20

rational NN can achieve this approximation power with a depth of only log log(1/ε), which is exponentially smaller21

than the log(1/ε) layers needed by a ReLU network to approximate a smooth function to within ε. This improvement is22

obtained from the composition of low-degree rational functions and is not hidden in multiplicative constants, which do23

not depend on ε. This improved approximation power has practical consequences for larger NNs given that a deep24

NN is computationally expensive to train due to expensive gradient evaluation and slower convergence. The constants25

inside the O notations are computed whenever possible (see Lem. 1 and Cor. 3 of the Supplementary Material) but the26

main theorems of the paper treat a general setting, for which few (if any) papers in the literature give explicit constants.27

Experimental results. We thank the Reviewers for their comments on the experiment in Section 3.1. While Fig. 228

(right) of the paper showed that rational NNs are easier to train than ReLU and Sinusoid NNs, it did not show the29

accuracy loss. We have performed new experiments with a validation set independent of the training set and display30

the validation loss throughout training (see Fig. 1 (left)). We find that rational NNs outperform the other NNs during31

the training phase and on the testing set. Reviewer 3 was concerned that this result was due to the difference in number32

of trainable parameters but the ReLU NN had 8000 and the rational had 7×#layers + 8000 = 8035. Rational NN33

are never much bigger in terms of trainable parameters than ReLU NNs since the increase is only linear with34

respect to the number of layers. Reviewer 2 suggested a comparison with polynomial approximation, which we have35

performed (see Fig. 1 (left)). Here, we train a NN with degree 3 polynomial activation functions. We observe that this36

NN is harder to train than rational NNs as shown by the non-smooth validation loss. Polynomials perform poorly on37

non-smooth functions such as ReLU, with an algebraic convergence of O(1/degree) (Trefethen, 2013) rather than the38

(root-)exponential convergence with rationals. Finally, following Reviewer 2’s suggestion we compare rational NNs39

with different degree activation functions and find that they all perform better than ReLU NNs (see Fig. 1 (right)).40

100 101 102 103 10410 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

ReLU
Sinusoid
Rational
Polynomial

Epochs

V
al

id
at

io
n

lo
ss

100 101 102 103 10410 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

(2, 2)
(3, 2)
(4, 3)
(5, 4)

Epochs

V
al

id
at

io
n

lo
ss

Figure 1: Left: Validation loss of a ReLU (blue), sine (green), polynomial (purple) of degree 3, and rational (red) NNs
of type (3, 2) with respect to the number of optimization steps. Right: Comparison between the validation losses of
rational neural networks of types (2, 2), (3, 2), (4, 3), and (5, 4).


