
Rational neural networks

Nicolas Boullé
Mathematical Institute
University of Oxford

Oxford, OX2 6GG, UK
boulle@maths.ox.ac.uk

Yuji Nakatsukasa
Mathematical Institute
University of Oxford

Oxford, OX2 6GG, UK
nakatsukasa@maths.ox.ac.uk

Alex Townsend
Department of Mathematics

Cornell University
Ithaca, NY 14853, USA
townsend@cornell.edu

Abstract

We consider neural networks with rational activation functions. The choice of the
nonlinear activation function in deep learning architectures is crucial and heavily
impacts the performance of a neural network. We establish optimal bounds in
terms of network complexity and prove that rational neural networks approximate
smooth functions more efficiently than ReLU networks with exponentially smaller
depth. The flexibility and smoothness of rational activation functions make them
an attractive alternative to ReLU, as we demonstrate with numerical experiments.

1 Introduction

Deep learning has become an important topic across many domains of science due to its recent
success in image recognition, speech recognition, and drug discovery [23, 28, 29, 32]. Deep learning
techniques are based on neural networks, which contain a certain number of layers to perform several
mathematical transformations on the input. A nonlinear transformation of the input determines the
output of each layer in the neural network: x 7→ σ(Wx+ b), where W is a matrix called the weight
matrix, b is a bias vector, and σ is a nonlinear function called the activation function (also called
activation unit). The computational cost of training a neural network depends on the total number of
nodes (size) and the number of layers (depth). A key question in designing deep learning architectures
is the choice of the activation function to reduce the number of trainable parameters of the network
while keeping the same approximation power [17].

While smooth activation functions such as sigmoid, logistic, or hyperbolic tangent are widely used,
they suffer from the “vanishing gradient problem” [5] because their derivatives are zero for large inputs.
Neural networks based on polynomial activation functions are an alternative [9, 11, 19, 20, 33, 52],
but can be numerically unstable due to large gradients for large inputs [5]. Moreover, polynomials
do not approximate non-smooth functions efficiently [51], which can lead to optimization issues
in classification problems. A popular choice of activation function is the Rectified Linear Unit
(ReLU) defined as ReLU(x) = max(x, 0) [26, 39]. It has numerous advantages, such as being fast
to evaluate and zero for many inputs [16]. Many theoretical studies characterize and understand
the expressivity of shallow and deep ReLU neural networks from the perspective of approximation
theory [13, 31, 36, 49, 53].

ReLU networks also suffer from drawbacks, which are most evident during training. The main
disadvantage is that the gradient of ReLU is zero for negative real numbers. Therefore, its derivative
is zero if the activation function is saturated [34]. To tackle these issues, several adaptations to ReLU
have been proposed such as Leaky ReLU [34], Exponential Linear Unit (ELU) [10], Parametric
Linear Unit (PReLU) [22], and Scaled Exponential Linear Unit (SELU) [27]. These modifications
outperform ReLU in image classification applications, and some of these activation functions have
trainable parameters, which are learned by gradient descent at the same time as the weights and biases
of the network. To obtain significant benefits for image classification and partial differential equation
(PDE) solvers, one can perform an exhaustive search over trainable activation functions constructed
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from standard units [25, 48]. However, most of the “exotic” activation functions in the literature are
motivated by empirical results and are not supported by theoretical statements on their potentially
improved approximation power over ReLU.

In this work, we study rational neural networks, which are neural networks with activation functions
that are trainable rational functions. In Section 3, we provide theoretical statements quantifying
the advantages of rational neural networks over ReLU networks. In particular, we remark that a
composition of low-degree rational functions has a good approximation power but a relatively small
number of trainable parameters. Therefore, we show that rational neural networks require fewer
nodes and exponentially smaller depth than ReLU networks to approximate smooth functions to
within a certain accuracy. This improved approximation power has practical consequences for large
neural networks, given that a deep neural network is computationally expensive to train due to
expensive gradient evaluations and slower convergence. The experiments conducted in Section 4
demonstrate the potential applications of these rational networks for solving PDEs and Generative
Adversarial Networks (GANs).1 The practical implementation of rational networks is straightforward
in the TensorFlow framework and consists of replacing the activation functions by trainable rational
functions. Finally, we highlight the main benefits of rational networks: the fast approximation of
functions, the trainability of the activation parameters, and the smoothness of the activation function.

2 Rational neural networks

We consider neural networks whose activation functions consist of rational functions with trainable
coefficients ai and bj , i.e., functions of the form:

F (x) =
P (x)

Q(x)
=

∑rP
i=0 aix

i∑rQ
j=0 bjx

j
, aP 6= 0, bQ 6= 0, (1)

where rP and rQ are the polynomial degrees of the numerator and denominator, respectively. We say
that F (x) is of type (rP , rQ) and degree max(rP , rQ).

The use of rational functions in deep learning is motivated by the theoretical work of Telgarsky,
who proved error bounds on the approximation of ReLU neural networks by high-degree rational
functions and vice versa [50]. On the practical side, neural networks based on rational activation
functions are considered by Molina et al. [37], who defined a safe Padé Activation Unit (PAU) as

F (x) =

∑rP
i=0 aix

i

1 + |∑rQ
j=1 bjx

j | .

The denominator is selected so that F (x) does not have poles located on the real axis. PAU networks
can learn new activation functions and are competitive with state-of-the-art neural networks for image
classification. However, this choice results in a non-smooth activation function and makes the gradient
expensive to evaluate during training. In a closely related work, Chen et al. [8] propose high-degree
rational activation functions in a neural network, which have benefits in terms of approximation
power. However, this choice can significantly increase the number of parameters in the network,
causing the training stage to be computationally expensive.

In this paper, we use low-degree rational functions as activation functions, which are then composed
together by the neural network to build high-degree rational functions. In this way, we can leverage
the approximation power of high-degree rational functions without making training expensive.
We highlight the approximation power of rational networks and provide optimal error bounds to
demonstrate that rational neural networks theoretically outperform ReLU networks. Motivated by
our theoretical results, we consider rational activation functions of type (3, 2), i.e., rP = 3 and
rQ = 2. This type appears naturally in the theoretical analysis due to the composition property of
Zolotarev sign functions (see Section 3.1): the degree of the overall rational function represented
by the rational neural network is a whopping 3#layers, while the number of trainable parameters
only grows linearly with respect to the depth of the network. Moreover, a superdiagonal type (3, 2)
allows the rational activation function to behave like a nonconstant linear function at ±∞, unlike
a diagonal type, e.g., (2, 2), or the ReLU function. A low-degree activation function keeps the
number of trainable parameters small, while the implicit composition in a neural network gives us the

1All code and hyper-parameters are publicly available at [6].
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approximation power of high-degree rationals. This choice is also motivated empirically, and we do
not claim that the type (3, 2) is the best choice for all situations as the configurations may depend on
the application (see Figure 3 of the Supplementary Material). Our experiments on the approximation
of smooth functions and GANs suggest that rational neural networks are an attractive alternative to
ReLU networks (see Section 4). We observe that a good initialization, motivated by the theory of
rational functions, prevents rational neural networks from having arbitrarily large values.

3 Theoretical results on rational neural networks

Here, we demonstrate the theoretical benefit of using neural networks based on rational activation
functions due to their superiority over ReLU in approximating functions. We derive optimal bounds
in terms of the total number of trainable parameters (also called size) needed by rational networks to
approximate ReLU networks as well as functions in the Sobolev spaceWn,∞([0, 1]d). Throughout
this paper, we take ε to be a small parameter with 0 < ε < 1. We show that an ε-approximation on
the domain [−1, 1]d of a ReLU network by a rational neural network must have the following size
(indicated in brackets):

Rational [Ω(log(log(1/ε)))] ≤ ReLU ≤ Rational [O(log(log(1/ε)))], (2)

where the constants only depend on the size and depth of the ReLU network. Here, the upper
bound means that all ReLU networks can be approximated to within ε by a rational network of
size O(log(log(1/ε))). The lower bound means that there is a ReLU network that cannot be ε-
approximated by a rational network of size less than C log(log(1/ε)), for some constant C > 0. In
comparison, the size needed by a ReLU network to approximate a rational neural network within the
tolerance of ε is given by the following inequalities:

ReLU [Ω(log(1/ε))] ≤ Rational ≤ ReLU [O(log(1/ε))3], (3)

where the constants only depend on the size and depth of the rational neural network. This means
that all rational networks can be approximated to within ε by a ReLU network of size O(log(1/ε))3,
while there is a rational network that cannot be ε-approximated by a ReLU network of size less
than Ω(log(1/ε)). A comparison between (2) and (3) suggests that rational networks could be
more resourceful than ReLU. A key difference between rational networks and neural networks with
polynomial activation functions is that polynomials perform poorly on non-smooth functions such
as ReLU, with an algebraic convergence of O(1/degree) [51] rather than the (root-)exponential
convergence with rationals (see Figure 1 (left)).

3.1 Approximation of ReLU networks by rational neural networks

Telgarsky showed that neural networks and rational functions can approximate each other in the
sense that there exists a rational function of degree2 O(polylog(1/ε)) that is ε-close to a ReLU
network [50], where ε > 0 is a small number. To prove this statement, Telgarsky used a rational
function constructed with Newman polynomials [40] to obtain a rational approximation to the ReLU
function that converges with square-root exponential accuracy. That is, Telgarsky needed a rational
function of degree Ω(log(1/ε)2) to achieve a tolerance of ε. A degree r rational function can be
represented with 2(r + 1) coefficients, i.e., a0, . . . , ar and b0, . . . , br in Equation (1). Therefore, the
rational approximation to a ReLU network constructed by Telgarsky requires at least Ω(polylog(1/ε))
parameters. In contrast, for any rational function, Telgarsky showed that there exists a ReLU network
of size O(polylog(1/ε)) that is an ε-approximation on [0, 1]d.

Our key observation is that by composing low-degree rational functions together, we can approximate
a ReLU network much more efficiently in terms of the size (rather than the degree) of the rational
network. Our theoretical work is based on a family of rationals called Zolotarev sign functions, which
are the best rational approximation on [−1,−`] ∪ [`, 1], with 0 < ` < 1, to the sign function [3, 43],
defined as

sign(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

2A polylogarithmic function in x is any polynomial in log(x) and is denoted by polylog(x).

3



A composition of k ≥ 1 Zolotarev sign functions of type (3, 2) has type (3k, 3k − 1) but can be
represented with 7k parameters instead of 2× 3k + 1. This property enables the construction of a
rational approximation to ReLU using compositions of low-degree Zolotarev sign functions with
O(log(log(1/ε))) parameters in Lemma 1.

Lemma 1 Let 0 < ε < 1. There exists a rational network R : [−1, 1] → [−1, 1] of size
O(log(log(1/ε))) such that

‖R− ReLU‖∞ := max
x∈[−1,1]

|R(x)− ReLU(x)| ≤ ε.

Moreover, no rational network of size smaller than Ω(log(log(1/ε))) can achieve this.

The proof of Lemma 1 (see Supplementary Material) shows that the given bound is optimal in the
sense that a rational network requires at least Ω(log(log(1/ε))) parameters to approximate the ReLU
function on [−1, 1] to within the tolerance ε > 0. The convergence of the Zolotarev sign functions
to the ReLU function is much faster, with respect to the number of parameters, than the rational
constructed with Newman polynomials (see Figure 1 (left)).
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Figure 1: Left: Approximation error ‖ReLU− rN‖∞ of the Newman (blue), Zolotarev sign functions
(red), and best polynomial approximation [42] of degree N − 1 (green) rN to ReLU with respect to
the number of parameters required to represent rN . Right: Best rational function of type (3, 2) (red)
that approximates the ReLU function (blue). We use this to initialize the rational activation functions
when training a rational neural network.

The converse of Lemma 1, which is a consequence of a theorem proved by Telgarsky [50, Theo-
rem 1.1], shows that any rational function can be approximated by a ReLU network of size at most
O(log(1/ε)3).

Lemma 2 Let 0 < ε < 1. If R : [−1, 1]→ [−1, 1] is a rational function, then there exists a ReLU
network f : [−1, 1]→ [−1, 1] of size O(log(1/ε)3) such that ‖R− f‖∞ ≤ ε.

To demonstrate the improved approximation power of rational neural networks over ReLU networks
(O(log(log(1/ε))) versus O(log(1/ε)3)), it is known that a ReLU networks that approximates x2,
which is rational, to within ε on [−1, 1] must be of size at least Ω(log(1/ε)) [31, Theorem 11].

We can now state our main theorem based on Lemmas 1 and 2. Theorem 3 provides bounds
on the approximation power of ReLU networks by rational neural networks and vice versa. We
regard Theorem 3 as an analogue of [50, Theorem 1.1] for our Zolotarev sign functions, where we
are counting the number of training parameters instead of the degree of the rational functions. In
particular, our rational networks have high degrees but can be represented with few parameters due to
compositions, making training more computationally efficient. While Telgarsky required a rational
function with O(kM log(M/ε)M ) parameters to approximate a ReLU network with fewer than k
nodes in each of M layers to within a tolerance of ε, we construct a rational network that only has
size O(kM log(log(M/ε))).

Theorem 3 Let 0 < ε < 1 and let ‖ · ‖1 denote the vector 1-norm. The following two statements
hold:
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1. Let R : [−1, 1]d → [−1, 1] be a rational network with M layers and at most k nodes per
layer, where each node computes x 7→ r(a>x + b) and r is a rational function with Lipschitz
constant L (a, b, and r are possibly distinct across nodes). Suppose further that ‖a‖1 + |b| ≤ 1 and
r : [−1, 1]→ [−1, 1]. Then, there exists a ReLU network f : [−1, 1]d → [−1, 1] of size

O
(
kM log(MLM/ε)3

)
such that maxx∈[−1,1]d |R(x)− f(x)| ≤ ε.
2. Let f : [−1, 1]d → [−1, 1] be a ReLU network with M layers and at most k nodes per layer,
where each node computes x 7→ ReLU(a>x+ b) and the pair (a, b) (possibly distinct across nodes)
satisfies ‖a‖1 + |b| ≤ 1. Then, there exists a rational network R : [−1, 1]d → [−1, 1] of size

O(kM log(log(M/ε)))

such that maxx∈[−1,1]d |f(x)−R(x)| ≤ ε.

Theorem 3 highlights the improved approximation power of rational neural networks over ReLU
networks. ReLU networks of size O(polylog(1/ε)) are required to approximate rational networks
while rational networks of size only O(log(log(1/ε))) are sufficient to approximate ReLU networks.

3.2 Approximation of functions by rational networks

A popular question is the required size and depth of deep neural networks to approximate smooth
functions [31, 38, 53]. In this section, we consider the approximation theory of rational networks. In
particular, we consider the approximation of functions in the Sobolev spaceWn,∞([0, 1]d), where
n ≥ 1 is the regularity of the functions and d ≥ 1. The norm of a function f ∈ Wn,∞([0, 1]d) is
defined as

‖f‖Wn,∞([0,1]d) = max
|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

where n is the multi-index n = (n1, . . . , nd) ∈ {0, . . . , n}d, and Dnf is the corresponding weak
derivative of f . In this section, we consider the approximation of functions from

Fd,n := {f ∈ Wn,∞([0, 1]d), ‖f‖Wn,∞([0,1]d) ≤ 1}.

By the Sobolev embedding theorem [7], this space contains the functions in Cn−1([0, 1]d), which
is the class of functions whose first n − 1 derivatives are Lipschitz continuous. Yarotsky derived
upper bounds on the size of neural networks with piecewise linear activation functions needed to
approximate functions in Fd,n [53, Theorem 1]. In particular, he constructed an ε-approximation to
functions in Fd,n with a ReLU network of size at most O(ε−d/n log(1/ε)) and depth smaller than
O(log(1/ε)). The term ε−d/n is introduced by a local Taylor approximation, while the log(1/ε) term
is the size of the ReLU network needed to approximate monomials, i.e., xj for j ≥ 0, in the Taylor
series expansion.

We now present an analogue of Yarotsky’s theorem for a rational neural network.
Theorem 4 Let d ≥ 1, n ≥ 1, 0 < ε < 1, and f ∈ Fd,n. There exists a rational neural network R
of size

O(ε−d/n log(log(1/ε)))

and maximum depth O(log(log(1/ε))) such that ‖f −R‖∞ ≤ ε.

The proof of Theorem 4 consists of approximating f by a local Taylor expansion. One needs to
approximate the piecewise linear functions and monomials arising in the Taylor expansion by rational
networks using Lemma 1 and Proposition 6 (see Supplementary Material). The main distinction
between Yarotsky’s argument and the proof of Theorem 4 is that monomials can be represented by
rational neural networks with a size that does not depend on the accuracy of ε. In contrast, ReLU
networks require O(log(1/ε)) parameters. Meanwhile, while ReLU neural networks can exactly
approximate piecewise linear functions with a constant number of parameters, rational networks can
approximate them with a size of a most O(log(log(1/ε))) (see Lemma 1). That is, rational neural
networks approximate piecewise linear functions much faster than ReLU networks approximate
polynomials. This allows the existence of a rational network approximation to f with exponentially
smaller depth (O(log(log(1/ε)))) than the ReLU networks constructed by Yarotsky.
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A theorem proved by DeVore et al. [13] gives a lower bound of Ω(ε−d/n) on the number of parameters
needed by a neural network to express any function in Fd,n with an error ε, under the assumption that
the weights are chosen continuously. Comparing O(ε−d/n log(log(1/ε))) and O(ε−d/n log(1/ε)),
we find that rational neural networks require exponentially fewer nodes than ReLU networks with
respect to the optimal bound of Ω(ε−d/n) to approximate functions in Fd,n.

4 Experiments using rational neural networks

In this section, we consider neural networks with trainable rational activation functions of type
(3, 2). We select the type (3, 2) based on empirical performance; roughly, a low-degree (but higher
than 1) rational function is ideal for generating high-degree rational functions by composition,
with a small number of parameters. The rational activation units can be easily implemented in
the open-source TensorFlow library [2] by using the polyval and divide commands for function
evaluations. The coefficients of the numerators and denominators of the rational activation functions
are trainable parameters, determined at the same time as the weights and biases of the neural network
by backpropagation and a gradient descent optimization algorithm.

One crucial question is the initialization of the coefficients of the rational activation functions [8, 37].
A badly initialized rational function might contain poles on the real axis, leading to exploding
values, or converge to a local minimum in the optimization process. Our experiments, supported
by the empirical results of Molina et al. [37], show that initializing each rational function with
the best rational approximation to the ReLU function (as described in Lemma 1) produces good
performance. The underlying idea is to initialize rational networks near a network with ReLU
activation functions, widely used for deep learning. Then, the adaptivity of the rational functions
allows for further improvements during the training phase. We represent the initial rational function
used in our experiments in Figure 1 (right). The coefficients of this function are obtained by using the
minimax command, available in the Chebfun software [14, 15] for numerically computing rational
approximations (see Table 1 in the Supplementary Material).

In the following experiments, we use a single rational activation function of type (3, 2) at each layer,
instead of different functions at each node to reduce the number of trainable parameters and the
computational training expense.

4.1 Approximation of functions

Raissi, Perdikaris, and Karniadakis [45, 46] introduce a framework called deep hidden physics models
for discovering nonlinear partial differential equations (PDEs) from observations. This technique
requires to solving the following interpolation problem: given the observation data (ui)1≤i≤N at the
spatio-temporal points (xi, ti)1≤i≤N , find a neural network N (called the identification network),
that minimizes the loss function

L =
1

N

N∑
i=1

|N (xi, ti)− ui|2. (4)

This technique has successfully discovered hidden models in fluid mechanics [47], solid mechan-
ics [21], and nonlinear partial differential equations such as the Korteweg–de Vries (KdV) equa-
tion [46]. Raissi et al. use an identification network, consisting of 4 layers and 50 nodes per layer, to
interpolate samples from a solution to the KdV equation. Moreover, they observe that networks based
on smooth activation functions, such as the hyperbolic tangent (tanh(x)) or the sinusoid (sin(x)),
outperform ReLU neural networks [45, 46]. However, the performance of these smooth activation
functions highly depends on the application.

Moreover, these functions might not be adapted to approximate non-smooth or highly oscillatory
solutions. Recently, Jagtap, Kawaguchi, and Karnidakis [25] proposed and analyzed different adaptive
activation functions to approximate smooth and discontinuous functions with physics-informed neural
networks. More specifically, they use an adaptive version of classical activation functions such as
sigmoid, hyperbolic tangent, ReLU, and Leaky ReLU. The choice of these trainable activation
functions introduces another parameter in the design of the neural network architecture, which may
not be ideal for use for a black-box data-driven PDE solver.
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Figure 2: Solution to the KdV equation used as training data (left) and validation loss of a ReLU
(blue), sinusoid (green), rational (red), and polynomial (purple) neural networks with respect to the
number of optimization steps (right).

We illustrate that rational neural networks can address the issues mentioned above due to their
adaptivity and approximation power (see Section 3). Similarly to Raissi [45], we use a solution u to
the KdV equation:

ut = −uux − uxxx, u(x, 0) = − sin(πx/20),

as training data for the identification network (see the left panel of Figure 2). We train and compare
four neural networks, which contain ReLU, sinusoid, rational, and polynomial activation functions,
respectively.3 The mean squared error (MSE) of the neural networks on the validation set throughout
the training phase is reported in the right panel of Figure 2. We observe that the rational neural
network outperforms the sinusoid network, despite having the same asymptotic convergence rate.
The network with polynomial activation functions (chosen to be of degree 3 in this example) is harder
to train than the rational network, as shown by the non-smooth validation loss (see the right panel of
Figure 2). We highlight that rational neural networks are never much bigger in terms of trainable
parameters than ReLU networks since the increase is only linear with respect to the number of layers.
Here, the ReLU network has 8000 parameters (consisting of weights and biases), while the rational
network has 8000 + 7×#layers = 8035. The ReLU, sinusoid, rational, and polynomial networks
achieve the following mean square errors after 104 epochs:

MSE(uReLU) = 1.9× 10−4, MSE(usin) = 3.3× 10−6,

MSE(urat) = 1.2× 10−7, MSE(upoly) = 3.6× 10−5.

The absolute approximation errors between the different neural networks and the exact solution to the
KdV equation is illustrated in Figure 2 of the Supplementary Material. The rational neural network
is approximatively five times more accurate than the sinusoid network used by Raissi and twenty
times more accurate than the ReLU network. Moreover, the approximation errors made by the ReLU
network are not uniformly distributed in space and time and located in specific regions, indicating
that a network with non-smooth activation functions is not appropriate to resolve smooth solutions to
PDEs.

4.2 Generative adversarial networks

Generative adversarial networks (GANs) are used to generate fake examples from an existing
dataset [18]. They usually consist of two networks: a generator to produce fake samples and
a discriminator to evaluate the samples of the generator with the training dataset. Radford et
al. [44] describe deep convolutional generative adversarial networks (DCGANs) to build good
image representations using convolutional architectures. They evaluate their model on the MNIST
and Imagenet image datasets [12, 30]. This section highlights the simplicity of using rational
activation functions in existing neural network architectures by training an Auxiliary Classifier GAN
(ACGAN) [41] on the MNIST dataset. In particular, the neural network4, denoted by ReLU network

3Details of the parameters used for this experiment are available in the Supplementary Material.
4We use the TensorFlow implementation available at [1] and provide extended details and results of the

experiment in the Supplementary Material.
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in this section, consists of convolutional generator and discriminator networks with ReLU and Leaky
ReLU [34] activation units (respectively) and is used as a reference GAN. As in the experiment
described in Section 4.1, we replace the activation units of the generative and discriminator networks
by a rational function with trainable coefficients (see Figure 1). We initialize the activation functions
in the training phase with the best rational function that approximates the ReLU function on [−1, 1].

epoch 5
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epoch 10 epoch 15 epoch 20

epoch 5

R
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na

l

epoch 10 epoch 15 epoch 20 MNIST images

Figure 3: Digits generated by a ReLU (top) and rational (bottom) auxiliary classifier generative
adversarial network. The right panel contains samples from the first five classes of the MNIST dataset
for comparison.

We show images of digits from the first five classes generated by a ReLU and rational GANs at
different epochs of the training in Figure 3 (the samples are generated randomly and are not manually
selected). We observe that a rational network can generate realistic images with a broader range of
features than the ReLU network, as illustrated by the presence of bold numbers at the epoch 20 in the
bottom panel of Figure 3. However, the digits one generated by the rational network are identical,
suggesting that the rational GAN suffers from mode collapse. It should be noted that generative
adversarial networks are notoriously tricky to train [17]. The hyper-parameters of the reference model
are intensively tuned for a piecewise linear activation function (as shown by the use of Leaky ReLU
in the discriminator network). Moreover, many stabilization methods have been proposed to resolve
the mode collapse and non-convergence issues in training, such as Wasserstein GAN [4], Unrolled
Generative Adversarial Networks [35], and batch normalization [24]. These techniques could be
explored and combined with rational networks to address the mode collapse issue observed in this
experiment.

5 Conclusions

We have investigated rational neural networks, which are neural networks with smooth trainable
activation functions based on rational functions. Theoretical statements demonstrate the improved
approximation power of rational networks in comparison with ReLU networks. In practice, it
seems beneficial to select the activation function as very low-degree rationals, making training more
computationally efficient. We emphasize that it is simple to implement rational networks in existing
deep learning architectures, such as TensorFlow, together with the ability to have trainable activation
functions.

There are many future research directions exploring the potential applications of rational networks
in fields such as image classification, time series forecasting, and generative adversarial networks.
These applications already employ nonstandard activation functions to overcome various drawbacks
of ReLU. Another exciting and promising field is the numerical solution and data-driven discovery
of partial differential equations with deep learning. We believe that popular techniques such as

8



physics-informed neural networks [46] could benefit from rational neural networks to improve the
robustness and performances of PDE solvers, both from a theoretical and practical viewpoint.

Broader Impact

Neural networks have applications in diverse fields such as facial recognition, credit-card fraud,
speech recognition, and medical diagnosis. There is a growing understanding of the approximation
power of neural networks, which is adding theoretical justification to their use in societal applications.
We are particularly interested in the future applicability of rational neural networks in discovering
and solving of partial differential equations (PDEs). Neural networks, in particular rational neural
networks, have the potential to revolutionize fields where PDE models derived by mechanistic
principles are lacking.
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