
Adversarial Attacks on Linear Contextual Bandits

Evrard Garcelon
?

Facebook AI Research
evrard@fb.com

Baptiste Rozière
?

Facebook AI Research
broz@fb.com

Laurent Meunier
?

Facebook AI Research
laurentmeunier@fb.com

Jean Tarbouriech

Facebook AI Research
jtarbouriech@fb.com

Olivier Teytaud

Facebook AI Research
oteytaud@fb.com

Alessandro Lazaric

Facebook AI Research
lazaric@fb.com

Matteo Pirotta

Facebook AI Research
pirotta@fb.com

Abstract

Contextual bandit algorithms are applied in a wide range of domains, from adver-
tising to recommender systems, from clinical trials to education. In many of these
domains, malicious agents may have incentives to force a bandit algorithm into a
desired behavior. For instance, an unscrupulous ad publisher may try to increase
their own revenue at the expense of the advertisers; a seller may want to increase the
exposure of their products, or thwart a competitor’s advertising campaign. In this
paper, we study several attack scenarios and show that a malicious agent can force
a linear contextual bandit algorithm to pull any desired arm T � o(T) times over
a horizon of T steps, while applying adversarial modifications to either rewards
or contexts with a cumulative cost that only grow logarithmically as O(log T).
We also investigate the case when a malicious agent is interested in affecting the
behavior of the bandit algorithm in a single context (e.g., a specific user). We
first provide sufficient conditions for the feasibility of the attack and an efficient
algorithm to perform an attack. We empirically validate the proposed approaches
in synthetic and real-world datasets.

1 Introduction

Recommender systems are at the heart of the business model of many industries like e-commerce or
video streaming [1, 2]. The two most common approaches for this task are based either on matrix
factorization [3] or bandit algorithms [4], which both rely on a unaltered feedback loop between
the recommender system and the user. In recent years, a fair amount of work has been dedicated to
understanding how targeted perturbations in the feedback loop can fool a recommender system into
recommending low quality items.

Following the line of research on adversarial attacks in supervised learning [5, 6, 7, 8, 9], attacks on
recommender systems have been focused on filtering-based algorithms [10, 11] and offline contextual
bandits [12]. The question of adversarial attacks for online bandit algorithms has only been studied
quite recently [13, 14, 15, 16], and solely in the multi-armed stochastic setting. Although the idea of
online adversarial bandit algorithms is not new (see EXP3 algorithm in [17]), the focus is different
from what we are considering in this article. Indeed, algorithms like EXP3 or EXP4 [18] are designed
to find optimal actions in hindsight in order to adapt to any rewards stream.

? indicates equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The opposition between adversarial and stochastic bandit settings has sparked interests in studying a
middle ground. In [19], the learning algorithm has no knowledge of the type of feedback it receives
(either stochastic or adversarial). In [20, 21, 22, 23, 24], the rewards are assumed to be corrupted
by adversarial rewards. The authors focus on building algorithms able to find the optimal actions
even in the presence of some non-random perturbations. This setting is different from what is studied
in this article because those perturbations are bounded and agnostic to arms pulled by the learning
algorithm, i.e., the adversary corrupt the rewards before the algorithm chooses an arm.

In the broader Deep Reinforcement Learning (DRL) literature, the focus is placed on modifying the
observations of different states to fool a DRL system at inference time [25, 26] or the rewards [27].

Contribution. In this work, we first follow the research direction opened by [13] where the attacker
has the objective of fooling a learning algorithm into taking a specific action as much as possible.
For example in a news recommendation problem, as described in [4], a bandit algorithm chooses
between K articles to recommend to a user, based on some information about them, called context.
We assume that an attacker sits between the user and the website, they can choose the reward (i.e.,
click or not) for the recommended article observed by the recommending algorithm. Their goal is to
fool the bandit algorithm into recommending some articles to most users. The contributions of our
work can be summarized as follows:

• We extend the work of [13, 14] to the contextual linear bandit setting showing how to perturb
rewards for both stochastic and adversarial algorithms, forcing any bandit algorithms to pull
a specific set of arms, o(T) times for logarithmic cost for the attacker.

• We analyze, for the first time, the setting in which the attacker can only modify the context
x associated with the current user (the reward is not altered). The goal of the attacker is
to fool the bandit algorithm into pulling arms of a target set for most users (i.e., contexts)
while minimizing the total norm of their attacks. We show that the widely known LINUCB
algorithm [28, 18] is vulnerable to this new type of attack.

• We present a harder setting for the attacker, where the latter can only modify the context
associated to a specific user. This situation may occur when a malicious agent has infected
some computers with a Remote Access Trojan (RAT). The attacker can then modify the
history of navigation of a specific user and, as a consequence, the information seen by the
online recommender system.We show how the attacker can attack the two very common
bandit algorithms LINUCB and Linear Thompson Sampling (LINTS) [29, 30] and, in
certain cases, force them to pull a set of arms most of the time when a specific context (i.e.,
user) is presented to the algorithm (i.e., visits a website).

2 Preliminaries

We consider the standard contextual linear bandit setting with K 2 N arms. At each time t,
the agent observes a context xt 2 Rd, selects an action at 2 J1,KK and observes a reward:
rt,at = h✓at , xti+ ⌘

t
at

where for each arm a, ✓a 2 Rd is a feature vector and ⌘
t
at

is a conditionally
independent zero-mean, �2-subgaussian noise. The contexts are assumed to be sampled stochastically
except in App. D.
Assumption 1. There exist L > 0 and D ⇢ Rd, such that for all t, xt 2 D and, 8x 2 D, 8a 2

J1,KK, kxk2  L and h✓a, xi 2 (0, 1]. In addition, we assume that there exists S > 0 such that
k✓ak2  S for all arms a.

The agent minimizes the cumulative regret after T steps RT =
PT

t=1h✓a
?
t
, xti � h✓at , xti, where

a
?
t := argmaxah✓a, xti. A bandit learning algorithm A is said to be no-regret when it satisfies

RT = o(T), i.e., the average expected reward received by A converges to the optimal one. Classical
bandit algorithms (e.g., LINUCB and LINTS) compute an estimate of the unknown parameters
✓a using past observations. Formally, for each arm a 2 [K] we define S

t
a as the set of times up

to t � 1 (included) where the agent played arm a. Then, the estimated parameters are obtained
through regularized least-squares regression as b✓ta = (Xt,aX

>
t,a + �I)�1

Xt,aYt,a, where � > 0,
Xt,a = (xi)i2St

a
2 Rd⇥|St

a| and Yt,a = (ri,ai)i2St
a
2 R|St

a|. Denote by Vt,a = �I +Xt,aX
>
t,a the

design matrix of the regularized least-square problem and by kxkV =
p

x>V x the weighted norm

2

w.r.t. any positive matrix V 2 Rd⇥d. We define the confidence set:

Ct,a =
n
✓ 2 Rd :

��✓ � b✓t,a
��
Vt,a

 �t,a

o
(1)

where �t,a = �

q
d log

�
(1 + L2(1 + |St

a|)/�)/�
�
+ S

p
�, which guarantees that ✓a 2 Ct,a, for all

t > 0, w.p. 1 � �. This uncertainty is used to balance the exploration-exploitation trade-off either
through optimism (e.g., LINUCB) or through randomization (e.g., LINTS).

3 Online Adversarial Attacks on Rewards

The ultimate goal of a malicious agent is to force a bandit algorithm to perform a desired behavior.
An attacker may simply want to induce the bandit algorithm to perform poorly—ruining the users’
experience—or to force the algorithm to suggest a specific arm. The latter case is particularly
interesting in advertising where a seller may want to increase the exposure of its product at the
expense of the competitors. Note that the users’ experience is also compromised by the latter attack
since the suggestions they will receive will not be tailored to their needs. Similarly to [14, 13], we
focus on the latter objective, i.e., to fool the bandit algorithm into pulling arms in A

†, a set of target
arms, for T � o(T) time steps (independently of the user).

A way to obtain this behavior is to dynamically modify the reward in order to make the bandit
algorithm believe that a† is optimal, for some a

†
2 A

†. Clearly, the attacker has to pay a price in
order to modify the perceived bandit problem and fool the algorithm. If there is no restriction on
when and how the attacker can alter the reward, the attacker can easily fool the algorithm. However,
this setting is not interesting since the attacker may pay a cost higher than the loss suffered by the
attacked algorithm. An attack strategy is considered successful when the total cost of the attack is
sublinear in T .

In this section, we show that under Assumption 1, there exists an attack algorithm that is successful
against any bandit algorithm, stochastic or adverserial.

Setting. We assume that the attacker has the same knowledge as the bandit algorithm A about the
problem (i.e., knows � and L). The attacker is assumed to be able to observe the context xt, the arm
at pulled by A, and can modify the reward received by A. When the attacker modifies the reward rt,at

into ert,at the instantaneous cost of the attack is defined as ct :=
��rt,at�ert,at

��. The goal of the attacker
is to fool algorithm A such that the arms in A

† are pulled T � o(T) times and
PT

t=1 ct = o(T).
We also assume that the action for the arms in the target set is strictly positive for every context
x 2 D. That is to say that � := minx2D

n
hx, ✓a†

?(x)
i �maxa2A†,a 6=a†

?(x)
hx, ✓ai

o
> 0 where

a
†
?(x) = argmaxa2A†hx, ✓ai for every x 2 D.

Attack idea. We leverage the idea presented in [14] and [13] where the attacker lowers the reward
of arms a /2 A

† so that algorithm A learns that an arm of the target set is optimal for every context.
Since A is assumed to be no-regret, the attacker only needs to modify the rewards o(T) times to
achieve this goal. Lowering the rewards has the effect of shifting the vectors (✓a)a/2A† to new vectors
(✓0a)a/2A† such that for all arms a /2 A

† and all contexts x 2 D, there exists an arm a
†
2 A

† such
that h✓0a, xi  h✓a† , xi. Since rewards are assumed to be bounded (see Asm. 1), this objective can be
achieved by simply forcing the reward of non-target arms a /2 A

† to the minimum value. Contextual
ACE (see Fig. 2) implements a soft version of this idea by leveraging the knowledge of the reward
distribution. At each round t, Contextual ACE modifies the reward perceived by A as follows:

er1t,at
= ⌘

0
t1{at /2A†} + rt,at1{at2A†} (2)

where ⌘
0
t is a �-subgaussian random variable generated by the attacker independently of all other

random variables. Contextual ACE transforms the original problem into a stationary bandit problem
in which there is a targeted arm that is optimal for all contexts and all non targeted arms have expected
reward of 0. The following propostion shows that the cumulative cost of the attack is sublinear.
Proposition 1. For any � 2 (0, 1/K], when using Contextual ACE algorithm (Fig. 1) with perturbed
rewards er1, with probability at least 1�K�, algorithm A pulls an arm in A

† for T � o(T) time steps
and the total cost of attacks is o(T).

3

The proof of this proposition is provided in App. A.1. While Prop. 1 holds for any no-regret algorithm
A, we can provide a more precise bound on the total cost by inspecting the algorithm. For example, we
can show (see App. E), that, with probability at least 1�K�, the number of times LINUCB [28] pulls

arms not in A
† is at most

P
j /2A† Nj(T) 

64K�2�S2

�2

⇣
d log

⇣
�+TL2

d
�2

⌘⌘2
. This directly translates

into a bound on the total cost.

Comparison with ACE [14]. In the stochastic setting, the ACE algorithm [14] leverages a bound
on the expected reward of each arm in order to modify the reward. However, the perturbed reward
process seen by algorithm A is non-stationary and in general there is no guarantee that an algorithm
minimizing the regret in a stationary bandit problem keeps the same performance when the bandit
problem is not stationary anymore. Nonetheless, transposing the idea of the ACE algorithm to our
setting would give an attack of the following form, where at time t, Alg. A pulls arm at and receives
rewards er2t,at

:
er2t,at

= (rt,at +max(�1,min(0, Ct,at)))1{at /2A†} + rt,at1{at2A†}

with Ct,at = (1� �)mina†2A† min✓2Ct,a† h✓, xti �max✓2Ct,at
h✓, xti. Note that Ct,a is defined as

in Eq. 1 using the non-perturbed rewards, i.e., Yt,a = (ri,ai)i2St
a
.

Bounded Rewards. The bounded reward assumption is necessary in our analysis to prove a formal
bound on the total cost of the attacks for any no-regret bandit algorithm, otherwise we need more
information about the attacked algorithm. In practice, the second attack on the rewards, er2, can be
used in the case of unbounded rewards for any algorithms. The difficulty for unbounded reward is that
the attacker has to adapt to the environment reward but in order to do so the reward process observed
by the bandit algorithm becomes non-stationary under the attack. Thus, there is no guarantee that an
algorithm like LINUCB will pull a target arm as the proof relies on the environment observed by the
bandit algorithm being stationary. We observe empirically that the total cost of attack is sublinear
when using er2.

[13] does not assume that rewards are bounded but focus on attacking algorithms in the stochastic
multi-armed setting. That is to say they study attacks only designed for "-greedy and UCB while we
provide an efficient attack for any algorithms in the linear contextual case. We can extend their work,
and thus remove the bounded reward assumption, in the linear contextual case by using the following
attack, designed only for LINUCB:

er3t,at
=

rt,at + min

a†2A†
min

✓2Ct,a†
h✓, xti � max

✓2Ct,at

h✓, xti

!
1{at /2A†} + rt,at1{at2A†} (3)

with Ct,a defined as in Eq. (1). Although, the attack er3 is not stationary, it is possible to prove that
the total cost of attack is O(log(T)) because we know that the attacked bandit algorithm is LINUCB.

Constrained Attack. When the attacker has a constraint on the instantaneous cost of the attack,
using the perturbed reward er1 may not be possible as the cost of the attack at time t is not decreasing
over time. Using the perturbed reward er2 offers a more flexible type of attack with more control on
the instantaneous cost thanks to the parameter �. But it still suffers from a minimal cost of attack
from lowering rewards of arms not in A

†.

Defense mechanism. The attack based on reward er1 is hardly detectable without prior knownledge
about the problem. In fact, the reward process associated to er1 is stationary and compatible with the
assumption about the true reward (e.g., subgaussian). While having very low rewards is reasonable in
advertising, it can make the attack easily detectable in some other problems. On the other hand, the
fact that er2 is a non-stationary process makes this attack easier to detect. When some data are already
available on each arm, the learner can monitor the difference between the average rewards per action
computed on new and old data.

4 Online Adversarial Attacks on Contexts

In this section, we consider the attacker to be able to alter the context xt perceived by the algorithm
rather than the reward. The attacker is now restricted to change the type of users presented to the
learning algorithm A, hence changing its perception of the environment. We show that under the
assumption that the attacker knows a lower-bound to the reward of the target set, it is possible to fool
LINUCB.

4

For time t = 1, 2, ..., T do

1. Alg. A chooses arm at based on context xt

2. Environment generates reward: rt,at =
h✓at , xti + ⌘t with ⌘t

at conditionally �2-
subgaussian

3. Attacker observes reward rt,at and feeds the
perturbed reward er1t,at (or er2t,at) to A

Figure 1: Contextual ACE algorithm

Input: attack parameter: ↵
For time t = 1, 2, ..., T do

1. Attacker observes the context xt, computes potential
arm a0

t and sets ext = xt + (↵(xt)� 1)xt 1{a0
t /2A†}

2. Alg. A chooses arm at based on context ext

3. Environment generates reward: rt,at = h✓at , xti+⌘t
with ⌘t conditionally �2-subgaussian

4. Alg. A observes reward rt,at

Figure 2: ConicAttack algorithm.

Setting. As in Sec. 3, we consider the attacker to have the same knowledge about the problem as A.
The main difference with the previous setting is that the attacker attacks before the algorithm. We
adopt a white-box [6] setting attacking LINUCB. The goal of the attacker is unchanged: they aim at
forcing the algorithm to pull arms in A

† for T � o(T) time steps while paying a sublinear total cost.
We denote by ext the context after the attack and by ct = kxt � extk2 the instantaneous cost.

Difference between attacks on contexts and rewards. Perturbing contexts is fundamentally differ-
ent from perturbing the rewards. The attacker only modifies the context that is shown to the bandit
algorithm. The true context, which is used to compute the reward, remains unchanged. In other
words, the attacker cannot modify the reward observed by the bandit algorithm. Instead, the attack
algorithm described in this section fools the bandit algorithm by making the rewards appear small
relative to the contexts and requires more assumptions on the bandit algorithm than in Sec. 3.

Attack Idea. The idea of the attack in this setting is similar to the attack of Sec. 3. The attacker builds
a bandit problem where arm an a

†
2 A

† is optimal for all contexts by lowering the perceived value
of all other arms not in A

†. The attacker cannot modify the reward but, thanks to the linear reward
assumption, they can scale the contexts to decrease the predicted rewards in the original context.

At time t, the attacker receives the context xt and computes the attack. Thanks to the white-box setting,
it computes the arm at that algorithm A would pull if presented with context xt. If at /2 A

† then the
attacker changes the context to ext = ↵atxt with ↵at > maxx2D mina†2A†h✓at , xi/h✓a† , xi.This
factor is chosen such that for a ridge regression computed on the dataset (↵xi, h✓, xii)i outputs a
parameter close to ✓/↵ therefore the attacker needs to choose ↵ such that for every context x 2 D,
hx, ✓/↵i  maxa†2A†hx, ✓a† , xi. In other words, the attacker performs a dilation of the incoming
context every time algorithm A does not pull an arm in A

†. The fact that the decision rule used
by LINUCB is invariant by dilation guarantees that the attacker will not inadvertently lower the
perceived rewards for arms in A

†. Because the rewards are assumed to be linear, presenting a large
context ↵x and receiving the reward associated with the normal context x will skew the estimated
rewards of LINUCB. The attack protocol is summarized in Fig. 2.

In order to compute the parameter ↵ used in the attack, we make the following assumption concerning
the performance of the arms in the target set:
Assumption 2. For all x 2 D, there exists a† 2 A

†, such that 0 < ⌫  hx, ✓a†i and ⌫ is known to
the attacker.

Knowing ⌫. For advertising and recommendation systems, knowing ⌫ is not problematic. Indeed
in those cases, the reward is the probability of impression of the ad (r 2 [0, 1]). The attacker has
the freedom to choose one of multiple target arms with strictly positive click probability in every
context. This freedom is an important aspect for the attacker since it allows the attacker to cherry
pick the target ad(s). In particular, the attacker can estimate ⌫ based on data from previous campaigns
(only for the target ad). For instance, a company could have run many ad campaigns for one of their
products and try to get the defender’s system to advertise it.

An issue is that the norm of the attacked context can be greater that the upper bound L of
Assumption 1. To prevent this issue, we choose a context-dependent multiplicative constant
↵(x) = min{2/⌫, L/kxk2} which amounts to clip the norm of the attacked context to L. In
Sec. 6, we show that this attack is effective for different size of target arms sets. We also show that in
the case of contexts such that kxk2  ⌫L/2 that the cost of attacks is logarithmic in the horizon T .
Proposition 2. Using the attack described in Fig. 2 and assuming that kxk2  ⌫L/2 for all contexts
x 2 D, for any � 2 (0, 1/K], with probability at least 1�K�, the number of times LINUCB does not

5

pull an arm in A
† before time T is at most

P
j /2A† Nj(T)  32K2

⇣
�
↵2 + �

2
d log

⇣
�d+TL2↵2

d��

⌘⌘3

with Nj(T) the number of times arm j has been pulled during the first T steps, The total cost for the

attacker is bounded by:
PT

t=1 ct 
64K2

⌫

⇣
�
↵2 + �

2
d log

⇣
�d+TL2↵2

d��

⌘⌘3
with ↵ = 2/⌫.

The proof of Proposition 2 (see App. A.2) assumes that the attacker can attack at any time step,
and that they can know in advance which arm will be pulled by Alg. A in a given context. Thus
it is not applicable to random exploration algorithms like LINTS [29] and "-GREEDY. We also
observed empirically that thowe two randomized algorithms are more robust to attacks (see Sec. 6)
than LINUCB.

Norm Clipping. Clipping the norm of the attacked contexts is not beneficial for the attacker. Indeed,
this means that an attacked context was violating the assumption (used by the bandit algorithm) that
contexts are bounded by L. The attack could then be easily detectable and may succeed only because
it is breaking an underlying assumption used by the bandit algorithm. Prop. 2 provides a theoretical
grounding for the proposed attack when contexts are bounded by ⌫L/2 and not only L. Although,
we can not prove a bound on the cumulative cost of attacks in general, we show in Sec. 6 that attacks
are still successful for multiple datasets where contexts are not bounded by ⌫L/2.

5 Offline attacks on a Single Context

Previous sections focused on the man-in-the-middle (MITM) attack either on reward or context. The
MITM attack allows the attacker to arbitrarily change the information observed by the recommender
system at each round. This attack may be hardly feasible in practice, since the exchange channels
are generally protected by authentication and cryptographic systems. In this section, we consider
the scenario where the attacker has control over a single user u. As an example, consider the case
where the device of the user is infected by a malware (e.g., Trojan horse), giving full control of the
system to the malicious agent. The attacker can thus modify the context of the specific user (e.g., by
altering the cookies) that is perceived by the recommender system. We believe that changes to the
context (e.g., cookies) are more subtle and less easily detectable than changes to the reward (e.g.,
click). Moreover, if the reward is a purchase, it cannot be altered easily by taking control of the user’s
device. Clearly, the impact of the attacker on the overall performance of the recommender system
depends on the frequency of the specific user, that is out of the attacker’s control. It may be thus
difficult to obtain guarantees on the cumulative regret of algorithm A. For this reason, we mainly
focus on the study of the feasibility of the attack.

The attacker targets a specific user (i.e., the infected user) associated to a context x†. Similarly to
Sec. 4, the objective of the attacker is to find the minimal change to the context presented to the
recommender system A such that A selects an arm in A

†. A observes a modified context ex instead
of x†. After selecting an arm at, A observes the true noisy reward rt,at = h✓at , x

†
i+ ⌘

t
at

. We still
study a white-box setting: the attacker can access all the parameters of A.

In this section, we show under which condition it is possible for an attacker to fool both an optimistic
and posterior sampling algorithm.

5.1 Optimistic Algorithm: LINUCB

We consider the LINUCB algorithm which chooses the arm to pull by maximizing an upper-
confidence bound on the expected reward. For each arm a and context x, the UCB value is given
by max✓2Ct,ahx, ✓i = hx, ✓̂

t
ai + �t,akxkeV �1

t,a
(see Sec. 2). The objective of the attacker is to force

LINUCB to pull an arm in A
† once presented with context x†. This means to find a perturbation

of context x† that makes any arm in A
† the most optimistic arm. Clearly, we would like to keep

the perturbation as small as possible to reduce the cost for the attacker and the probability of being
detected. Formally, the attacker needs to solve the following non-convex optimization problem:

min
y2Rd

kyk2 s.t max
a/2A†

max
✓2eCt,a

hx
† + y, ✓i+ ⇠  max

a†2A†
max

✓2eCt,a†

hx
† + y, ✓i (4)

where ⇠ > 0 is a parameter of the attacker and eCt,a :=
�
✓ | k✓ � ✓̂

t
akeVt,a

 �t,a

is the confidence

set constructed by LINUCB. We use the notation eC, eV to stress the fact that LINUCB observes only

6

the modified context. In contrast to Sec. 3 and 4, the attacker may not be able to force the algorithm
to pull any of the target arms in A

†. In other words, Problem 4 may not be feasible. However, we are
able to characterize the feasibility of (4).
Theorem 1. Problem (4) is feasible at time t iff.

9✓ 2 [a†2A† eCt,a† , ✓ 62 Conv
⇣
[a/2A† eCt,a

⌘
(5)

The condition given by Theorem 1 says that this attack can be done when there exists a vector x for
which an arm in A

† is assumed to be optimal according to LINUCB. The condition mainly stems
from the fact that optimizing a linear product on a convex compact set will reach its maximum on
the edge of this set. In our case this set is the convex hull of the confidence ellipsoids of LINUCB.
Although it is possible to use an optimization algorithm for this class of non-convex problems—e.g.,
DC programming [31]—they are still slow compared to convex algorithms. Therefore, we present a
simple convex relaxation of the previous problem for a single target arm a

†
2 A

† that still enjoys
some empirical performance compared to Problem (4). The final attack can then be computed as the
minimum of the attacks obtained for each a

†
2 A

†. The relaxed problem is the following for each
a
†
2 A

†:
min
y2Rd

kyk2 s.t max
a 6=a†,a 62A†

max
✓2Ct,a

hx
† + y, ✓ � ✓̂

t
a†i  �⇠ (6)

Since the RHS of the constraint in Problem (4) can be written as max✓2Ct,a† h✓, x
† + yi for any y,

the relaxation here consists in using h✓, x
† + yi as a lower-bound to this maximum for any ✓ 2 Ct,a† .

For the relaxed Problem (6), the same type of reasoning as for Problem (4) gives that Problem (6) is
feasible if and only if ✓̂a†(t) 62 Conv

⇣S
a 6=a†,a 62A† Ct,a

⌘
.

If Condition (5) is not met, no arm a
†
2 A

† can be pulled by LINUCB. Indeed, the proof of Theorem
1 shows that the upper-confidence of every arm in A

† is always dominated by another arm for any
context. In other words, if any arm in A

† is optimal for some contexts then the condition is satisfied a
linear number of times for LINUCB (for formal proof of this fact see App. A.4).

5.2 Random Exploration Algorithm: LINTS

The previous subsection focused on LINUCB, however we can obtain similar guarantees for algo-
rithms with random exploration such as LINTS. In this case, it is not possible to guarantee that a
specific arm will be pulled for a given context because of the randomness in the arm selection process.
The objective is to guarantee that an arm from A

† is pulled with probability at least 1� �. Similarly
to the previous subsection, the problem of the attacker can be written as:

min
y2Rd

kyk s.t P
⇣
9a

†
2 A

†
, 8a 62 A

†
, hx

† + y, e✓a � e✓a†i  �⇠

⌘
� 1� � (7)

where the e✓a for different arms a are independently drawn from a normal distribution with mean
✓̂a(t) and covariance matrix �

2
V̄

�1
a (t) with � = �

p
9d ln(T/�). Solving this problem is not easy

and in general not possible, even for a single arm. For a given x and arm a, the random variable
hx, e✓ai is normally distributed with mean µa(x) := h✓̂a(t), xi and variance �

2
a(x) := ⌫

2
||x||

2
V̄ �1
a (t)

.

We can then write hx, e✓ai = µa(x) + �a(x)Za with (Za)a ⇠ N (0, IK). For the sake of clarity, we
drop the variable x when writing µa(x) and �a(x).

Let’s imagine (just for this paragraph) that A† = {a
†
}, then the constraint in Problem (7) becomesh

1� EZa†

⇣
⇧a 62A†�

⇣
�a†Za†+µa†�µa

�a

⌘⌘i
 � where � is the cumulative distribution function of a

normally distributed Gaussian random variable. Unfortunately, computing exactly this expectation is
an open problem.

In the more general case where |A
†
| � 1, rewriting the constraints of Problem (7) is not possible.

Following the idea of [14], for every single target arm a
†
2 A

†, a possible relaxation of the constraint
in Problem (7) is, to ensure that there exists an arm a

†
2 A

† such that for every arm a 62 A
†,

1 � �
⇣
(µa† � µa � ⇠)/(

q
�2
a + �2

a†)
⌘


�

K�|A†| , where |A
†
| is the cardinal of A

†. Thus the

7

relaxed version of the attack on LINTS for a single arm a
† is:

min
y2Rd

kyk s.t. 8a 62 A
†
, hx

† + y, ✓̂a† � ✓̂ai � ⇠ � ⌫��1
⇣
1� �

K�|A†|

⌘��x† + y
��
V̄ �1
a +V̄ �1

a†
(8)

Problem (8) is similar to Problem (6) as the constraint is also a Second Order Cone Program but with
different parameters (see App. C). As in section 5.1, we compute the final attack as the minimum of
the attacks computed for each arm in A

†.

6 Experiments

In this section, we conduct experiments on the attacks on contextual bandit problems with simulated
data and two real-word datasets: MovieLens25M [32] and Jester [33]. The synthetic dataset and the
data preprocessing step are presented in App. B.1.

6.1 Attacks on Rewards

We study the impact of the reward attack for 4 contextual algorithms: LINUCB, LINTS, "-GREEDY
and EXP4. As parameters, we use L = 1 for the maximal norm of the contexts, � = 0.01, � =
�
p
d ln(t/�))/2, "t = 1/

p
t at each time step t and � = 0.1. We choose only a unique target arm

a
†. For EXP4, we use N = 10 experts with N � 2 experts returning a random arm at each time, one

expert choosing arm a
† every time and one expert returning the optimal arm for every context. With

this set of experts the regret of bandits with expert advice is the same as in the contextual case. To
test the performance of each algorithm, we generate 40 random contextual bandit problems and run
each algorithm for T = 106 steps on each. We report the average cost and regret for each of the 40
problems. Figure 3 (Top) shows the attacked algorithms using the attacked reward er1 (reported as
“stationary CACE”) and the rewards er2 (reported as CACE).

These experiments show that, even though the reward process is non-stationary, usual stochastic
algorithms like LINUCB can still adapt to it and pull the optimal arm for this reward process (which is
arm a

†). The true regret of the attacked algorithms is linear as a† is not optimal for all contexts. In the
synthetic case, for the algorithms attacked with the rewards er2, over 1M iterations and � = 0.22, the
target arm is drawn more than 99.4% of the time on average for every algorithm and more than 97.8%
of the time for the stationary attack er1 (see Table 2 in App. B.2). The dataset-based environments
(see Figure 3 (Left)) exhibit the same behavior: the target arm is pulled more than 94.0% of the time
on average for all our attacks on Jester and MovieLens and more than 77.0% of the time in the worst
case (for LINTS attacked with the stationary rewards) (see Table 2).

6.2 Attacks on Contexts

We now illustrate the effectiveness of the attack in Alg. 2. We study the behavior of attacked LINUCB,
LINTS, "-GREEDY with different size of target arms set (|A†

|/K 2 {0.3, 0.6, 0.9} with K the total
number of arms). We test the performance of LINUCB with the same parameters as in the previous
experiments. Yet since the variance is much smaller in this case, we generate a random problem and
run 20 simulations for each algorithm. The target arms are chosen randomly and we use the exact
lower-bound on the reward of those arms to compute ⌫.

Table 1: Percentage of iterations for which the algorithm pulled an arm in the target set A† (with
a target set size of 0.3K arms) (Left) Online attacks using ContextualConic (CC) algorithm. Per-
centages are averaged over 20 runs of 1M iterations. (Right) Offline attacks with exact (Full) and
Relaxed optimization problem. Percentages are averaged over 40 runs of 1M iterations.

Synthetic Jester Movilens

LINUCB 28.91% 26.59% 31.13%
CC LinUCB 98.55% 98.36% 99.61%
"-GREEDY 25.7% 25.85% 31.78%
CC "-GREEDY 89.71% 99.85% 99.92%
LINTS 27.2% 26.10% 33.24%
CC LINTS 30.93% 97.26% 98.82%

Synthetic Jester MovieLens

LINUCB 0.07% 0.01% 0.39%
LINUCB Relaxed 13.76% 97.81% 4.09%
LINUCB Full 88.30% 99.98% 99.99%
"-GREEDY 0.01% 0.00% 0.03%
"-GREEDY Full 99.98% 99.95% 99.97%
LINTS 0.02% 0.01% 0.05%
LINTS Relaxed 18.21% 80.48% 5.56%

Table 1 (Left) shows the percentage of times an arm in A
†, for |A†

| = 0.3K, has been selected by the
attacked algorithm. We see that, as expected, CC LINUCB reaches a ratio of almost 1, meaning the

8

CACE LinUCB, � = 0.5
Stationary CACE LinUCB
CACE LinTS, � = 0.5
Stationary CACE LinTS
CACE Exp4, � = 0.5
Stationary CACE Exp4
CACE "-greedy, � = 0.5
Stationary CACE "-greedy

0 2 4 6 8

·105

0

2,000

4,000

6,000

8,000

hBK2
0 2 4 6 8

·105

0

0.2

0.4

0.6

0.8

1

1.2
·105

Time
0 2 4 6 8

·105

0

1

2

3

4

5

·104

Time

Attacked LinUCB, |A| = 0.3K
Attacked LinUCB, |A| = 0.6K
Attacked LinUCB, |A| = 0.9K
Attacked "-greedy, |A| = 0.3K
Attacked "-greedy, |A| = 0.6K
Attacked "-greedy, |A| = 0.9K
Attacked LinTS, |A| = 0.3K
Attacked LinTS, |A| = 0.6K
Attacked LinTS, |A| = 0.9K

0 2 4 6 8

·105

0

0.5

1

1.5

·106

Time

0 2 4 6 8

·105

0

0.5

1

1.5

2

2.5
·106

Time
0 2 4 6 8

·105

0

1

2

3

4

5
·105

Time

Figure 3: Total cost of attacks on rewards for the synthetic (Left, � = 0.22), Jester (Center, � = 0.5)
and MovieLens (Right, � = 0.5) environments. Bottom, total cost of ContextualConic attacks on the
synthetic (Left), Jester (Center) and MovieLens (Right) environments.

target arms are indeed pulled a linear number of times. A more surprising result (at least not covered
by the theory) is that "-GREEDY exhibits the same behavior. Similarly to LINTS, "-GREEDY exhibits
some randomness in the action selection process. It can cause an arm a

†
2 A

† to be chosen when the
context is attacked and interfere with the principle of the attack. We suspect that is what happens for
LINTS. Fig. 3 (Bottom) shows the total cost of the attacks for the attacked algorithms . Despite the
fact that the estimate of ✓a† can be polluted by attacked samples, it seems that LINTS can still pick
up a

† as being optimal for some dataset like MovieLens and Jester but not on the simulated dataset.

6.3 Offline attacks on a Single Context

We now move to the setting described in Sec. 5 and test the same algorithms as in Sec. 6.2. We run
40 simulations for each algorithm and each attack type. The target context x† is chosen randomly and
the target arm as the arm minimizing the expected reward for x†. The attacker is only able to modify
the incoming context for the target context (which corresponds to the context of one user) and the
incoming contexts are sampled uniformly from the set of all possible contexts (of size 100). Table 1
(Right) shows the percentage of success for each attack. We observe that the non-relaxed attacks on
"-GREEDY and LINUCB work well across all datasets. However, the relaxed attack for LINUCB and
LINTS are not as successful, on the synthetic dataset and MovieLens25M. The Jester dataset seems
to be particularly suited to this type of attacks because the true feature vectors are well separated from
the convex hull formed by the feature vectors of the other arms: only 5% of Jester’s feature vectors
are within the convex hull of the others versus 8% for MovieLens and 20% for the synthetic dataset.
As expected, the cost of the attacks is linear on all the datasets (see Figure 6 in App. B.4). The cost is
also lower for the non-relaxed than for the relaxed version of the attack on LINUCB. Unsurprisingly,
the cost of the attacks on LINTS is the highest due to the need to guarantee that a† will be chosen
with high probability (95% in our experiments).

7 Conclusion

We presented several settings for online attacks on contextual bandits. We showed that an attacker
can force any contextual bandit algorithm to almost always pull an arbitrary target arm a

† with
only sublinear modifications of the rewards. When the attacker can only modify the contexts, we
prove that LINUCB can still be attacked and made to almost always pull an arm in A

† by adding
sublinear perturbations to the contexts. When the attacker can only attack a single context, we derive
a feasibility condition for the attacks and we introduce a method to compute some attacks of small
instantaneous cost for LINUCB, "-GREEDY and LINTS. To the best of our knowledge, this paper is
the first to describe effective attacks on the contexts of contextual bandit algorithms. Our numerical
experiments, conducted on both synthetic and real-world data, validate our results and show that the
attacks on all contexts are actually effective on several algorithms and with more permissible settings.

9

Broader Impact

Adversarial attacks have been a major concerns in the machine learning community for some time
[5, 6, 7, 8, 9] as they delve deeply into the robustness of such machine learning systems. Although,
adversarial attacks have only been recently studied for bandits and reinforcement learning algorithms
[12, 25]. Those settings are applied to a wide range of applications such as recommender systems or
cooling down data centers [34].

In adversarial attacks on supervised algorithms and cryptography, it is well-accepted that the study
and publication of attack schemes helps build trustful secure systems [35]. While there is a risk
that our methods could be used by malicious attackers, we believe that they will also prompt some
practitioners to ensure such modifications of the rewards or contexts of their data can be detected or
even prevented.

References

[1] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,
Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video recommendation
system. In Proceedings of the fourth ACM conference on Recommender systems, pages 293–296,
2010.

[2] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):1–
19, 2015.

[3] Haekyu Park, Jinhong Jung, and U Kang. A comparative study of matrix factorization and
random walk with restart in recommender systems. In 2017 IEEE International Conference on
Big Data (Big Data), pages 756–765. IEEE, 2017.

[4] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670. ACM, 2010.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389, 2012.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[7] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learning.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 19–35. IEEE, 2018.

[8] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on
factorization-based collaborative filtering. In Advances in neural information processing
systems, pages 1885–1893, 2016.

[9] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear regression against
training data poisoning. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, pages 91–102, 2017.

[10] Konstantina Christakopoulou and Arindam Banerjee. Adversarial attacks on an oblivious
recommender. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys
’19, page 322–330, New York, NY, USA, 2019. Association for Computing Machinery.

[11] Bhaskar Mehta and Wolfgang Nejdl. Attack resistant collaborative filtering. In Proceedings
of the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, pages 75–82, 2008.

[12] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. Data poisoning attacks in contextual
bandits. In International Conference on Decision and Game Theory for Security, pages 186–204.
Springer, 2018.

[13] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic
bandits. In Advances in Neural Information Processing Systems, pages 3640–3649, 2018.

[14] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. arXiv preprint
arXiv:1905.06494, 2019.

10

[15] Nicole Immorlica, Karthik Abinav Sankararaman, Robert E. Schapire, and Aleksandrs Slivkins.
Adversarial bandits with knapsacks. 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 202–219, 2018.

[16] Ziwei Guan, Kaiyi Ji, Donald J Bucci Jr, Timothy Y Hu, Joseph Palombo, Michael Liston, and
Yingbin Liang. Robust stochastic bandit algorithms under probabilistic unbounded adversarial
attack. arXiv preprint arXiv:2002.07214, 2020.

[17] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[18] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Pre-publication version, 2018.
[19] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial

bandits. In Conference on Learning Theory, pages 42–1, 2012.
[20] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to

adversarial corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122, 2018.

[21] Yingkai Li, Edmund Y Lou, and Liren Shan. Stochastic linear optimization with adversarial
corruption. arXiv preprint arXiv:1909.02109, 2019.

[22] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. arXiv preprint arXiv:1902.08647, 2019.

[23] Thodoris Lykouris, Max Simchowitz, Aleksandrs Slivkins, and Weidong Sun. Corruption robust
exploration in episodic reinforcement learning. ArXiv, abs/1911.08689, 2019.

[24] Sayash Kapoor, Kumar Kshitij Patel, and Purushottam Kar. Corruption-tolerant bandit learning.
Machine Learning, 108(4):687–715, 2019.

[25] Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Targeted attacks on deep reinforcement
learning agents through adversarial observations. arXiv preprint arXiv:1905.12282, 2019.

[26] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and Yang Liu.
Stealthy and efficient adversarial attacks against deep reinforcement learning. To appear in
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[27] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch reinforcement
learning and control. In Advances in Neural Information Processing Systems, pages 14543–
14553, 2019.

[28] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,
2011.

[29] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning, pages 127–135, 2013.

[30] Marc Abeille, Alessandro Lazaric, et al. Linear thompson sampling revisited. Electronic
Journal of Statistics, 11(2):5165–5197, 2017.

[31] Hoang Tuy. Dc optimization: theory, methods and algorithms. In Handbook of global optimiza-
tion, pages 149–216. Springer, 1995.

[32] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis) DOI=http://dx.doi.org/10.1145/2827872,
5(4):1–19, 2015.

[33] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant time
collaborative filtering algorithm. information retrieval, 4(2):133–151, 2001.

[34] Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle.
Data center cooling using model-predictive control. In Advances in Neural Information Pro-
cessing Systems, pages 3814–3823, 2018.

[35] Nicholas Carlini Athalye Anish and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, 2018.

[36] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

11

[37] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0–Fundamental Algorithms for Scientific
Computing in Python. arXiv e-prints, page arXiv:1907.10121, Jul 2019.

[38] J.M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra and its
Applications, 11(1):3 – 5, 1975.

12

